
Karakaya,	Ergül	Aydın	 	 												 					 	 																																																JTOM(8)2,	487-496,	2024	

487

Journal of Turkish

Operations Management

Mathematical modelling and a greedy heuristic for harmonic mixing and
popularity-based playlist generation problem

Zülkar Karakaya1, Zeliha Ergül Aydın2*

1 Department of Industrial Engineering, Eskisehir Technical University, Eskişehir
e-mail: zulkarkarakaya1@gmail.com, ORCID No: http://orcid.org/0009-0008-2636-0684	
2 Department of Industrial Engineering, Eskisehir Technical University, Eskişehir
e-mail:zergul@eskisehir.edu.tr, ORCID No: http://orcid.org/0000-0002-7108-8930
*Corresponding Author

Article Info Abstract

 The rise of the electronic music industry has led to a need for creative playlist-

generation methods, particularly for DJs aiming to deliver seamless and
harmonically enhanced performances. Harmonic mixing, a crucial process of
DJing, involves synchronizing and aligning songs based on musical harmony,
making the mix sound soft and clear. In harmonic mixing, the DJ has to select
songs from the extensive music archive, considering notes, tempo, length, and
popularity of the songs. However, manually generating playlists that adhere
to harmonic mixing principles can be time-consuming. This paper introduces
a mixed-integer mathematical model and a novel greedy heuristic to automate
playlist generation, considering factors like popularity, tempo, and harmonic
mixing rules. We compare the novel greedy heuristic's performance to the
mathematical model on 16 test problems created with Spotify's API,
incorporating real-world data on song characteristics. The results show that
the heuristic method generates playlists at least seven times faster and has an
average gap of 13.84% with the mathematical model.

1. Introduction

The electronic music industry has grown significantly in recent years, driven by the increasing number of music
fans, DJs, and live events. One of the main tasks of DJs today is to generate seamless playlists that captivate the
audience and elevate the overall experience. Generating such playlists, however, is a complex and laborious task
considering notes, tempo, length, and song popularity.

Harmonic mixing has become vital for DJs seeking to deliver polished performances. DJs apply the method of
harmonic mixing to beat-synchronize and harmonically align two or more songs (Gebhardt, Davie, and Seeber,
2016). Despite its importance, existing literature lacks comprehensive studies combining harmonic mixing
principles with other critical factors such as song popularity and tempo transitions. The importance of harmonic
mixing cannot be underestimated because it contributes significantly to the integrity and clarity of a DJ's
performance. However, given the many factors to consider, manually editing a playlist that adheres to harmonic
mixing principles can be time-consuming and challenging. Accordingly, our research aims to help DJs by enabling
them to quickly create playlists automatically while ensuring harmony in notes, tempo, popularity, and playlist
duration. This study is unique in its combination of harmonic mixing principles with other key factors such as song
popularity, tempo transitions, and playlist duration an approach not previously explored in automatic playlist
generation studies.

This paper presents a mixed-integer mathematical model and a novel greedy heuristic designed to generate
playlists that adhere to harmonic mixing principles. Our mathematical model aims to maximize the total popularity
of the songs within the playlist, considering playlist duration and tempo transitions. Given the computational
complexity of the model, we develop a greedy heuristic algorithm. The greedy heuristic algorithm builds playlists

Article History:
Received: 08.11.2023
Revised: 16.09.2024
Accepted: 22.10.2024

 Keywords

Harmonic mixing,
Playlist generation,
Greedy algorithm

Karakaya,	Ergül	Aydın	 	 												 					 	 																																																JTOM(8)2,	487-496,	2024	

488

by strategically adding songs based on popularity, suitability for harmonic mixing, playlist duration, and tempo
transitions, which start by selecting a random first song. To validate the mathematical model and greedy heuristic,
we apply them to a diverse set of 16 test problems of varying sizes, drawing upon data obtained through Spotify's
API, which includes information on song popularity, key, notes, tempo, and duration.
In the subsequent sections of this paper, we examine the related works, give the problem statement, mathematical
model, and greedy heuristic algorithm in detail, present the results from our comprehensive computational testing,
and analyze these results.

2. Related works

Dias et al. (2017) categorized the playlist generation problems under three headings; manual generation, automatic
generation and recommendation, and assisted playlist creation. This study considers automated methods that create
playlists nearly entirely without human interaction. Automatic playlist generation has become one of the main
fields in music information retrieval (Shuhendler and Rabin, 2024). Mainly, automatic playlist generation
approaches are similarity-based algorithms, collaborative filtering, frequent pattern mining, statistical models,
case-based reasoning, discrete optimization, and hybrids (Bonnin and Jannach, 2014). This section focuses on
discrete optimization techniques for automatic playlist generation, as the proposed methods in this study are under
this category. In discrete optimization, the goal is to create a sequence of songs from a catalogue that meets
predefined constraints, reflecting the desired rules, while maximizing a utility function (Gabbolini and Bridge,
2024). Automatic playlist generation is NP-hard (Pauws et al., 2008), hence existing studies about discrete
optimization performed metaheuristic or heuristic algorithms to solve large-size problems.

The Traveling Salesman Problem (TSP) can be used to translate the challenge of creating a playlist that satisfies
specific constraints into a problem of determining the optimal route (Hartono and Yoshitake, 2013). Pohle et al.
(2005) presented an approach to generate playlists for mobile music players that prioritize similarity between
consecutive songs, using a TSP algorithm with timbral similarities as distances. They evaluated the fitness of four
different TSP algorithms based on runtime, route length, and genre distribution entropy. Pohle et al. (2007), who
again address the problem as TSP, presented a new interface for music players that uses a combination of audio
signal analysis and web-based artist profile comparison to create intelligently structured playlists with minimal
distance between songs. On the other Mocholi et al. (2012) handled playlist generation problem as an Orienteering
Problem and proposed multicriteria ant colony algorithm for a solution. Why they used OP instead of TSP is that
they considered playlists created with some songs selected from music archives. Hsu and Lai (2014) applied a
tabu search algorithm to a generate playlist automatically for users based on user listening history. All these studies
in discrete optimization generated personalized playlists based on the user's music preference. Discrete
optimization-based research on automatic playlist generation appears to have stopped after 2014 (Gabbolini and
Bridge, 2024). This could be because of the growing popularity of machine learning and artificial intelligence
techniques. However, discrete optimization approaches still hold significant promise for developing customized
and effective automatic playlist creation, especially for DJs with specific needs, such as harmonic mixing
requirements.

There are a limited number of studies on automatic playlist generation for DJs. Kahanda and Kanewala (2007),
combined similarity-based and constraint-based techniques to generate playlists automatically for radio stations.
They ensure two songs of the same album/artist are not included in a playlist, the genre of two consecutive songs
should be different, and the tempos of consecutive songs should be very close with Improved Adaptive Search
Algorithm. Besides, they use content-based similarity functions to measure the similarity of songs. To our
knowledge, none of these studies have addressed harmonic mixing rules for playlist generation problems. To fill
this gap, we formulate the playlist generation problem with harmonic mixing rules as a mixed-integer mathematical
model and propose a novel greedy heuristic for the solution.

3. Problem statement and mathematical model

DJs generating playlists for an event should plan carefully and create an engaging musical experience for the
audience of an event. When creating a playlist, DJs pick songs from their music archives that suit the event concept
and the audience. Some musical rules apply when selecting and sorting songs.

Karakaya,	Ergül	Aydın	 	 												 					 	 																																																JTOM(8)2,	487-496,	2024	

489

Generally, people would rather listen to familiar songs than unfamiliar ones. One of the factors of a good playlist
is the audience's familiarity with the songs in the playlist (Fields et al., 2010). Therefore, including popular songs
in the playlist may attract the audience's attention.

Most DJs apply the rules of harmonic mixing when preparing the playlist, which they will use in their performances
so that the transition between songs played back to back is smooth. The most crucial point of the harmonic mixing
method is to mix by considering a mathematical set of rules when mixing songs. This way, the total harmony of
the songs is ensured. Harmonic mixing is based on selecting notes created by the notation method called Camelot
by paying attention to a mathematical rule. In Camelot's notes, 24 notes start from 1A and 1B to 12A and 12B.
Whatever the note of the song playing at that moment is, the note of the next song must either have the same note
as the song playing or have a note adjacent to the note of the song playing on the Camelot wheel shown in Figure
1. Figure 1 also shows the adjacent (neighbors) notes of 8A, which are 9A, 7A, and 8B. According to the harmonic
mixing rule, a song with 8A, 7A, 9A, or 8B can be played after a song with the note 8A.

Figure 1. Camelot Wheel

The flow of the playlist is an aesthetic phenomenon; so, a DJ may want the tempo to stay relatively close between
the consecutive songs in addition to consecutive songs to be acoustically similar (Bittner et al., 2017). The
acoustically similarity can be achieved by ensuring that the bpm difference between the tempo of two consecutive
songs in this playlist does not exceed a specific value.

DJs generate their playlists per all these rules manually by spending hours or by paying significant fees through
paid programs. To solve this problem, first of all, a mixed integer mathematical model is presented in this study.
Then, a greedy heuristic algorithm is proposed to solve large problems in a reasonable time. The definition of the
sets, parameters, and decision variables of the mathematical model is as follows:
Sets:
I, J, K: The set of songs which in the music archive {1,…, n} 1:dummy starting song n: dummy last song

Parameters:
𝑝! : The popularity score of song i
𝑡!: The tempo of song i
𝑠!: The duration of song i

𝑑!": &
1, 𝑖𝑓	𝑠𝑜𝑛𝑔	𝑖	𝑎𝑛𝑑	𝑠𝑜𝑛𝑔	𝑗	𝑎𝑟𝑒	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠	𝑜𝑛	𝑐𝑎𝑚𝑒𝑙𝑜𝑡	𝑤ℎ𝑒𝑒𝑙
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																																																					

𝑏: The maximum tempo changes between two consecutive songs in the playlist
𝑐: The playlist's duration in seconds
𝑛: number of songs in the music archive

Decision variables:

𝑥!" 	= &1, if	song	j	plays	after	song	i	in	the	playlist0, otherwise																																																								

𝑦!	 =	 &
1, if	the	song	i	plays	in	the	playlist
0, otherwise 																																							

Karakaya,	Ergül	Aydın	 	 												 					 	 																																																JTOM(8)2,	487-496,	2024	

490

Max 𝑧 =&𝑝!𝑦!

"

!#$

																																																																																																																																																																																										(1)

s.t

&𝑠!𝑦!	
"

!#$

≤ 𝑐																																																																																																																																																																																																			(2)

&𝑥!%

"

%#$
!&%

	= 	𝑦!				∀i																																																																																																																																																																																										(3)	

𝑥!% 	≤ 	𝑑!% 				∀𝑖, 𝑗 ∈ 𝐼																																																																																																																																																																																				(4)

𝑥!%6𝑡! 	−	𝑡%6 	≤ 𝑏				∀𝑖, 𝑗		 (5)

&𝑥$%

"

%#'

= 1																																																																																																																																																																																																					(6)

&𝑥!"

"($

!#$

= 1																																																																																																																																																																																																					(7)

&𝑥!%

"

!#$
)&*

	≤ 1				∀𝑗																																																																																																																																																																																												(8)

&𝑥!%

"

%#$
)&*

	≤ 1				∀𝑖																																																																																																																																																																																										 (9)			

&𝑥!%

"($

!#$,
!&%

			−	&𝑥%,

"

,#'
%&,

= 0				∀𝑗																																																																																																																																																																						(10)

𝑢! 	−	𝑢% 	+ 1	 ≤ (𝑛 − 1)A1 − 𝑥!%B			∀𝑖, ∀𝑗	, 𝑖 ≠ 𝑗																																																																																																																																	(11)

0	 ≤ 	𝑢! 	≤ 𝑛 − 1				∀𝑖																																																																																																																																																																																	(12) 	

𝑥!% ∈ {0,1}				∀𝑖, 𝑗																																																																																																																																																																																										(13)

𝑦! ∈ {0,1}				∀𝑖																																																																																																																																																																																															(14)

0 ≤ 𝑢!				∀𝑖																																																																																																																																																																																																						(15)

The objective function (1) maximizes the popularity of the playlist. The capacity constraint (2) ensures that the
total duration of the songs in the playlist does not exceed the total duration of the playlist. If a song plays before
another song, it will be assigned to the playlist in (3). (4) assures that songs can only be played back to back on
the playlist if they are neighbors on Camelot wheel. This constraint ensures that the playlist fits the harmonic
mixing rules. (5) checks that the difference between the tempos of consecutive songs in the playlist does not exceed
the determined maximum tempo change limit. (6) and (7) make sure that the playlist starts and ends at the dummy
starting and closing songs. (8) and (9) allow at most one song to be played before and after each song. The flow
constraint of the model is given in (10). (11) represent Miller-Tucker-Zemlin subtour elimination constraints. In
this problem, this subtour elimination constraint prevents the generation of subplaylists. (12) to (15) define
decision variables, respectively.

4. Proposed method: A greedy heuristic

Karakaya,	Ergül	Aydın	 	 												 					 	 																																																JTOM(8)2,	487-496,	2024	

491

The proposed method for automatic playlist creation utilizes a greedy heuristic algorithm designed for efficiency
and effectiveness in generating playlists based on harmonic mixing principles. The algorithm aims to maximize
the playlist's popularity, considering constraints such as tempo differences, harmonic mixing rules, and the
playlist's desired duration. The algorithm starts with a randomly selected song and builds a playlist iteratively by
greedily selecting the next most popular song that ensures the constraints. The greedy heuristic algorithm is
demonstrated in Table 1.

Table 1. Pseudocode of the greedy heuristic algorithm

Input: I Music archive, 𝑏 the maximum tempo changes between two consecutive songs in the playlist, c the
playlist's duration in seconds
Output: P Playlist
maxPopularite=0
For i=1 to populationSize:
 Initialize I, candidatePlaylist
 Select a song randomly from I as a currentSong
 Add currentSong to candidatePlaylist
 currentDuration = currentSong’s duration
 currentPopularite= currentSong’s popularity
 while currentDuration <= c:
 feasibleSongList={}
 For j in I:
 if song j neighbors of current song in Camelot and tempo(song j)-tempo(currentSong)<=b
 Add song j to feasibleSongList
 if length (feasibleSongList)==0:
 Break
 else:
 Assign the song with maximum popularity in the feasibleSongList as the currentSong
 currentDuration+= current_song’s duration
 currentPopulerite+= current_song’s popularity
 Add current_song to candidatePlaylist
 Remove current_song from I
 if maxPopularite< currentPopulerite:
 maxPopularite= currentPopulerite
 P= candidatePlaylist

5. Computational experiments and discussions

5.1 Generation of test problems

One of the world's most popular music streaming platforms, Spotify allows users to listen to songs on smart devices
from prominent international record companies without purchasing songs legally. Besides, developers can retrieve
content metadata with Spotify Web API (2023) for free. We also use the Spotify Web API to generate test problems
for this study.

With Spotify Web API, we accessed 16 public electronic music archives and the songs' characteristics in these
archives: popularity, tempo, key, mode, and duration. These music archive lists contain different numbers of songs
from 20 songs to 1077 songs. A song's popularity score ranges from 0 to 100, with 100 being the most popular.
The number of plays the song has received and how recently those plays have occurred are used to calculate the
popularity score. The key value representing the pitch class takes a value between 0 and 11, and a mode value of
1 or 0 represents major or minor. Harmonic mixing is usually based on a notation called Camelot. For this reason,
we converted the key value and mode values to notes of Camelot notation. Finally, duration is the song length in
milliseconds. We used Python 3.6 to create the test problems.

5.2 Parameters

Karakaya,	Ergül	Aydın	 	 												 					 	 																																																JTOM(8)2,	487-496,	2024	

492

While solving test problems in this study, we set the maximum value of the tempo difference of two consecutive
songs as 10 bpm and the playlist's duration in seconds as 3600300 ms. Also, for the greedy heuristic, we take the
initial population size as 25% of the number of songs in the archive included in each test problem. Moreover, we
run all experiments on a computer with a macOS Mojave, Intel Core i7 at 2.5GHz, 4 cores, and 16.00 GB RAM.

5.3 Computational results and discussions

To find out how long they can wait to see the results of a program that automatically generates a playlist based on
harmonic mixing, we reached out to DJs. According to the responses we received, the working time of the model
was limited to 3 hours. In addition, we employed Gurobi solver with Python to solve the proposed mathematical
model. The results obtained from solving the test problems with the mathematical model are given in Table 2. In
the given 3-hour solution time, the mathematical model reached the best solution for 11 of the 16 test problems.
However, for the remaining 5 test problems, the best solution found within the given time was reported.

Table 2. Mathematical model results

Test Problem Number of songs Model status Run time (sec) Total popularity of the playlist

Test 1 20 optimal 0.470 401

Test 2 30 optimal 0.598 492

Test 3 40 optimal 1.061 492

Test 4 50 optimal 1.695 492

Test 5 60 optimal 7.945 503

Test 6 92 optimal 8.107 934

Test 7 101 best solution 10800.048 1117

Test 8 156 best solution 10800.095 537

Test 9 150 best solution 10800.104 1117

Test 10 200 optimal 1983.153 1021

Test 11 251 optimal 675.280 1687

Test 12 387 best solution 10800.357 1547

Test 13 788 optimal 296.008 1134

Test 14 860 optimal 103.828 1437

Test 15 1000 best solution 10804.308 1478

Test 16 1077 optimal 307.932 1399

As an example, Table 3 shows the playlist obtained with the mathematical model was created from an archive of
40 songs called Test 3.

Table 3. Playlist generated by the mathematical model for test 3

Song Name Note Tempo Popularity Duration
Kaizoku 6B 145 42 7 min 07 sec

Deine Angst 7B 144 52 5 min 21 sec
Full of Fire 8B 146 39 5 min 24 sec

Weltschmerz 8A 140 53 6 min 24 sec
Adrenaline 8B 134 49 6 min 51 sec
Still Raving 9B 135 45 5 min 57 sec

Karakaya,	Ergül	Aydın	 	 												 					 	 																																																JTOM(8)2,	487-496,	2024	

493

300000003 10B 133 52 5 min 45 sec
Born In 1968 10A 135 42 5 min 7 sec

Rave Harder Techno Bass 9A 136 69 6 min
Sparkling System 9A 136 49 5 min 58 sec

Total: 492 Total: 59 min 54 sec

The greedy heuristic algorithm with random-start generates playlists with ¼ of the number of songs in the archive
and selects which has the most total popularity. Because the first song in each playlist is randomly selected, the
algorithm does not produce the same result every time. For this reason, the greedy heuristic algorithm was run ten
times for each test problem to get more reliable results. The average results for each test are shown in Table 4.
Table 4 demonstrates that the solution of the heuristic algorithm is below the total popularity values reached by
the mathematical model. However, it produces solutions in a shorter time than the mathematical model.

Table 4. Greedy heuristic results

Test Problem Number of songs Average run time (sn) Average total popularity
Test 1 20 0.0003 340.4
Test 2 30 0.0010 447.3
Test 3 40 0.0014 450.2
Test 4 50 0.0025 447.1
Test 5 60 0.0039 468.5
Test 6 92 0.0108 695.5
Test 7 101 0.0103 911.8
Test 8 156 0.0710 524.1
Test 9 150 0.0499 866.4
Test 10 200 0.0811 796.5
Test 11 251 0.3061 1343.9
Test 12 387 1.5459 1273.2
Test 13 788 14.8403 1050.8
Test 14 860 3.1289 1247.6
Test 15 1000 36.5382 1259.3
Test 16 1077 42.0617 1276.1

Run time analysis of the methods is given in Table 5 in detail. In the last column of the table, the greedy heuristic
algorithm is given how many times faster the mathematical model is. According to run time, it is clear that the
greedy heuristic algorithm surpasses the mathematical model. In the large-scale test problems 13 to 16, where the
heuristic algorithm runs slowest, it has been observed to be approximately 14, 3, 36, and 42 times faster than the
mathematical model, respectively. This result shows that the heuristic algorithm can be more useful in large-scale
real-life problems.

Table 5. Run times

Test
Problem

Run time of the
mathematical model (sec)

Run time of
the greedy heuristic (sec) Relative Speed

Test 1 0.470 0.0003 1566.6667

Test 2 0.598 0.0010 598.0000

Test 3 1.061 0.0014 757.8571
Test 4 1.695 0.0025 678.0000
Test 5 7.945 0.0039 2037.1795
Test 6 8.107 0.0108 750.6481

Karakaya,	Ergül	Aydın	 	 												 					 	 																																																JTOM(8)2,	487-496,	2024	

494

Test 7 10800.048 0.0103 1048548.3495
Test 8 10800.095 0.0710 152114.0141
Test 9 10800.104 0.0499 216434.9499
Test 10 1983.153 0.0811 24453.1813
Test 11 675.280 0.3061 2206.0764
Test 12 10800.357 1.5459 6986.4526
Test 13 296.008 14.8403 19.9462
Test 14 103.828 3.1289 33.1835
Test 15 10804.308 36.5382 295.6990
Test 16 307.932 42.0617 7.3210

In Figure 2, the results of the mathematical model and the greedy heuristic algorithm are compared regarding the
total popularity of playlists. From Figure 2, it can be seen that the greedy heuristic approach produces results that
are comparable to those of the mathematical model when the playlists. In addition, Figure 3 shows the gap between
the solutions obtained by the mathematical model and the greedy heuristic. This gap is calculated by (16).
According to this comparison, the maximum gap between the greedy heuristic algorithm and the mathematical
model in the Test 6 problem is 25.4%. This maximum gap is acceptable, considering the speed of the greedy
heuristic algorithm. The test problem in which the heuristic algorithm comes closest to the result of the
mathematical model is the Test 8 problem with a gap of 2.4%. This result emphasizes the capacity of the heuristic
methodology to provide practical and effective solutions. Besides, it is seen that the greedy heuristic algorithm
approaches the mathematical model with an average gap of 13.84% in all test problems. In particular, the gap value
in large test problems 13, 14, and 16, in which the mathematical model reaches the optimal solution, is lower than
the average openness. This finding indicates that the heuristic algorithm can find effective solutions for large-scale
real-life problems in a short time.

Figure 2. Comparison of mathematical model and greedy heuristic algorithm

Karakaya,	Ergül	Aydın	 	 												 					 	 																																																JTOM(8)2,	487-496,	2024	

495

Figure 3. Gaps between mathematical model and greedy heuristic algorithm

Gap = ./0123/0)4/5	.6725	86590)6:(;12	<=227>	129=)?0)4	?6590)6:

./0123/0)4/5	.6725	86590)6:
. 100 (16)

The greedy heuristic's primary goal is to solve the problem much more quickly than a mathematical model, which
takes a significantly longer. In addition, the mathematical model is solved using the license-required Gurobi solver.
The algorithm has a cost advantage because the heuristic does not require a Gurobi license, which is quite
expensive. One can reach datasets, the codes of the mathematical model, and the heuristic algorithm used in this
study on the https://drive.google.com/drive/folders/1qM3cLsHzzDx6U3IbjHVcYuXUo9sI_PN9?usp=sharing.

6. Conclusion and future research

This paper presented a new mathematical model for harmonic mixing and a popularity-based playlist generation
problem. This model generated a playlist that maximized the total popularity, assured the harmonic mixing rules,
and limited the tempo difference between songs played consecutively. The proposed model was evaluated on 16
test problems created using real-music archives via Spotify API. While the model reached the optimal solution in
some of these test problems, it reached the best possible solution in others. Based on this, we proposed a greedy
heuristic. The heuristic method generated playlists at least 7 times faster than the mathematical model in test
problems. In addition to its short execution time, the heuristic had an average gap of 13.84% across all test
problems compared to the mathematical model. The heuristic algorithm provided promising solutions in a short
time. Future research could explore metaheuristic algorithms, such as genetic algorithms, to solve this problem
more efficiently. Additionally, a decision support system could be developed to help DJs generate playlists easily.

Contribution of authors

 Zülkar Karakaya was responsible for data collection, data curation, writing, software development, validation,
and visualization. Zeliha Ergül Aydın was responsible for methodology, software development, validation, data
curation, supervision, and writing.

Acknowledgement

This study was supported by the Scientific and Technological Research Council of Türkiye (TÜBİTAK) 2209/A
Program and Eskisehir Technical University Scientific Research Projects Commission under grant no: 22LÖP394.

Conflicts of interest

There is no conflict of interest in this study.

Karakaya,	Ergül	Aydın	 	 												 					 	 																																																JTOM(8)2,	487-496,	2024	

496

References

Bittner, R. M., Gu, M., Hernandez, G., Humphrey, E. J., Jehan, T., McCurry, H., & Montecchio, N. (2017,
October). Automatic Playlist Sequencing and Transitions. In ISMIR (pp. 442-448).

Bonnin, G., & Jannach, D. (2014). Automated generation of music playlists: Survey and experiments. ACM
Computing Surveys (CSUR), 47(2), 1-35. https://dl.acm.org/doi/10.1145/2652481

Dias, R., Gonçalves, D., & Fonseca, M. J. (2017). From manual to assisted playlist creation: a survey. Multimedia
Tools and Applications, 76, 14375-14403. https://doi.org/10.1007/s11042-016-3836-x

Fields, B., Lamere, P., & Hornby, N. (2010, August). Finding a path through the juke box: The playlist tutorial.
In 11th International Society for Music Information Retrieval Conference (ISMIR).

Gabbolini, G., & Bridge, D. (2024). Surveying More Than Two Decades of Music Information Retrieval Research
on Playlists. ACM Transactions on Intelligent Systems and Technology. https://doi.org/10.1145/3688398

Gebhardt, R., Davies, M., & Seeber, B. (2016). Psychoacoustic Approaches for Harmonic Music Mixing. Applied
Sciences, 6(5), 123. https://doi.org/10.3390/app6050123

Hartono, P., & Yoshitake, R. (2013). Automatic playlist generation from self-organizing music map. Journal of
Signal Processing, 17(1), 11-19. https://doi.org/10.2299/jsp.17.11

Hsu, J. L., & Lai, Y. C. (2014). Automatic playlist generation by applying tabu search. International Journal of
Machine Learning and Cybernetics, 5, 553-568. https://doi.org/10.1007/s13042-013-0151-y

Kahanda, I., & Kanewala, U. (2007) PlayGen: A HYBRID PLAYLIST GENERATOR, in Annual Technical
Conference 2007 of IET-YMS

Mocholi, J. A., Martinez, V., Jaen, J., & Catala, A. (2012). A multicriteria ant colony algorithm for generating
music playlists. Expert Systems with Applications, 39(3), 2270-2278. https://doi.org/10.1016/j.eswa.2011.07.131

Pauws, S., Verhaegh, W., & Vossen, M. (2008). Music playlist generation by adapted simulated
annealing. Information Sciences, 178(3), 647-662. https://doi.org/10.1016/j.ins.2007.08.019

Pohle, T., Pampalk, E., & Widmer, G. (2005, September). Generating similarity-based playlists using traveling
salesman algorithms. In Proceedings of the 8th International Conference on Digital Audio Effects (DAFx-05) (pp.
220-225).

Pohle, T., Knees, P., Schedl, M., Pampalk, E., & Widmer, G. (2007). “Reinventing the wheel”: a novel approach
to music player interfaces. IEEE Transactions on Multimedia, 9(3), 567-575.
https://doi.org/10.1109/TMM.2006.887991

Shuhendler, R., & Rabin, N. (2024). Dynamic artist-based embeddings with application to playlist generation.
Engineering Applications of Artificial Intelligence, 129, 107604. https://doi.org/10.1016/j.engappai.2023.107604

SpotifyWebAPI, Spotify for developers, 2023. Available a https://developer.spotify.com/documentation/web-api

