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Abstract 

With the rising amount of digital technologies that we use on a daily basis, it is more important than ever to handle and 
process private data securely. Research and academic communities are becoming increasingly interested in multi-party 
computation, with a focus on the field of Private Set Intersection (PSI). In this regard, this work introduces a novel technique 
that successfully converts the Cid-Davidson Private Set Intersection protocol into a Threshold Private Set Intersection. It 
achieves this conversion by introducing two new protocols, TPSI-1 and TPSI-2, and utilizing two previously developed 
methodologies while the Reed-Solomon codes and the Shamir-secret sharing scheme are the foundations of TPSI-1, whereas 
Secure Comparison Protocols serve as the foundation for TPSI-2. Specifically, our suggested protocols perform better 
asymptotically than previous threshold PSI protocols because they have a fixed number of rounds and linear 
communication and computation complexity that increase with data set size. This study adds to the continuous effort to 
strengthen the security and effectiveness of private data calculations, highlighting how safe data processing is changing in 
an era where digital technologies are ingrained in every aspect of our lives. 
Keywords: Homomorphic Encryption, Multi-party Computation, Private Set Intersection, Secure Comparison Protocols, 
Secret Sharing 

YENİ EŞİKLİ ÖZEL KÜME KESİŞİM PROTOKOLLERİ 

Özet 

Günlük olarak kullandığımız dijital teknolojilerin miktarının artmasıyla birlikte, özel verilerin güvenli bir şekilde ele 
alınması ve işlenmesi her zamankinden daha önemlidir. Araştırma ve akademik topluluklar, Özel Küme Kesişimi (PSI) 
alanına odaklanarak çok partili hesaplamaya giderek daha fazla ilgi duymaktadır. Bu bağlamda, bu çalışma Cid-Davidson 
Özel Küme Kesişimi protokolünü başarılı bir şekilde Eşik Özel Küme Kesişimi'ne dönüştüren yeni bir teknik sunmaktadır. 
Bu dönüşümü, TPSI-1 ve TPSI-2 olmak üzere iki yeni protokol sunarak ve daha önce geliştirilmiş olan iki metodolojiyi 
kullanarak gerçekleştirmektedir, Reed-Solomon kodları ve Shamir-gizli paylaşım şeması TPSI-1'in temellerini 
oluştururken, Güvenli Karşılaştırma Protokolleri TPSI-2'nin temelini oluşturmaktadır. Özellikle, önerdiğimiz protokoller, 
sabit sayıda tura ve veri kümesi boyutuyla artan doğrusal iletişim ve hesaplama karmaşıklığına sahip oldukları için 
asimptotik olarak önceki eşik PSI protokollerinden daha iyi performans göstermektedir. Bu çalışma, özel veri 
hesaplamalarının güvenliğini ve etkinliğini güçlendirmeye yönelik sürekli çabalara katkıda bulunmakta ve dijital 
teknolojilerin hayatımızın her alanına girdiği bir çağda güvenli veri işlemenin nasıl değiştiğini vurgulamaktadır. 
Anahtar Kelimeler: Homomorfik Şifreleme, Çok Taraflı Hesaplama, Özel Küme Kesişimi, Güvenli Karşılaştırma Protokolleri, 
Gizli Paylaşım 
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1. Introduction 

Recent years have seen a lot of interest in private set 
intersection (PSI) protocoIs. In PSI protocols, two 

parties, denoted as 𝑃1 and 𝑃2, holding their private data 
sets 𝑆1 and 𝑆2 and compute their intersection, 𝑆1  ∩ 𝑆2 
without disclosing any additional information. 

Due to significant advancements in digital technology, 
several applications have begun employing PSI 
protocols. For instance, for advertising efficiency, 
companies like Facebook utilize PSI protocols to 
compare customer merchant lists and adviser lists [1]. 
Another application is password check-up, which uses 

PSIs to ascertain whether the password has been 
compromised. In this way, users can compare their 
credentials with millions of entries in breached 
databases without revealing any part of their passwords. 

In some scenarios, the intersection of two data sets can 
only be made public if its size is larger than or equal to a 
predetermined threshold value. This is called a threshold 
private set intersection (TPSI) in which 𝑆1 ∩ 𝑆2 is 
privately computed if |𝑆1 ∩ 𝑆2| ≥ 𝑡. For example, two 
bikers might want to share their routes if their routes 
contain identical segments, as in a real-world scenario 
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known as route discovery [2, 3]. They compare their 
routes, and if there are enough shared route segments, 
they disclose their routes to each other. Another 
situation is the usage of online dating services, where 
users hope to make acquaintances by disclosing personal 
information on social media websites [4]. A friend 
selection is better done methodically to make the 
relationship more realistic. In other words, friendship is 
feasible when there are enough shared interests 
between two people. 
1.1 Related Work 

Yao [5] offers the first secure multiparty computation 
(MPC) protocol to address the question of which of two 
millionaires is wealthier. Since then, MPC and in 
particular, private set intersection (PSI) has gained 
popularity among researchers. There are thousands of 
works that offer various PSI solutions. To the best of the 
authors’ knowledge, PSI protocols can be categorized as 
follows: 

 Oblivious Polynomial Evaluation (OPE) based 
PSI: In OPE problem, the sender's input is a 
polynomial P and the receiver's input is 𝑥. The 
receiver can take the value of 𝑃(𝑥) for any value 
of 𝑥 without getting any other information 
about 𝑃 or revealing any information about 𝑥 to 
the sender. OPE was first proposed in PSIs by 
Freedman et al. [6] where data sets were 
defined by polynomials. Then, Kissner and Song 
[7] propose another solution which is also based 
on an additive homomorphic Public-key 
Encryption scheme. After, Camenish and 
Zaverucha [8] propose another OPE-based PSI 
that requires inputs to be approved by a third 
party. Hazay and Nissim then improve 
Freedman et al. protocol [6], however, both 
protocols only let one party compute the 
intersection (one-way). Contrary to [6], [7,8] are 
two-way PSIs which means that two parties 
learn the result of the intersection at the end. 
About their complexities, the aforementioned 
protocols do not have linear complexities. 

 Oblivious Pseudorandom Function (OPRF) based 
PSI: A two-party OPRF-based PSI where the 
sender has a private key k and the receiver has a 
private input 𝑥 evaluates a pseudorandom 
function (PRF) 𝑓𝑘(𝑥) privately. In this context, 
Hazay and Lindell [9] first propose a PSI 
protocol that only provides one-way 
computations of the intersection. Later Jarecki 
and Liu [10] extend the work of Hazay and 
Lindell with additive homomorphic public-key 
encryption and provide PSI in the malicious 
setting. Both constructions mentioned above 
are one-way and have linear complexity. 
Differently, the work by Debnath and Dutta [11] 
is a two-way PSI protocol that also having linear 
complexity. 

 Bloom filter-based PSI: Bloom filters are 

probabilistic structures that compactly 
represent data sets using bits, often 0s and 1s. 
They are efficient to use, especially with bigger 
data sets. In [12] Bloom filters are first used and 
combined by AND operator. However, their 
method is not secure due to the privacy leakage 
of private set elements. Later, Kerchbaum [13] 
proposes a Bloom-Filter-based PSI solution that 
makes use of Goldwasser-Micali public-key 
encryption scheme [14]. Similarly, Dong et al. 
[15] combine (garbled) Bloom filters with 
oblivious transfer computation. Later, the 
protocol by Cid- Davidson that we consider in 
this work is also based on Bloom filters and an 
additive homomorphic public-key encryption 
scheme and has linear complexities. Other PSIs 
based on Bloom filters are in [16–18]. 

 Bit-set data representation-based PSI: in this 
representation, the sets are chosen from a fixed 
and ordered domain and represented with a 
fixed vector consisting of 0’s and 1’s. That is, the 
length of this vector is the same as the length of 
the domain. Ruan et al. [19] firstly make use of 
bit-set representation and additive 
homomorphic encryption to propose PSI and 
PSI-like protocols. Their protocols are more 
efficient than existing ones when the private 
data sets are small like with ≤ 212 elements. 

 Others: The intersection of two data sets can be 
found by using circuits to compare them. If a 
naive way is used, we require 𝒪(𝑛2) time 
complexity for comparison of the data sets. To 
reduce this complexity, some different 
techniques are proposed: a merge-sort network 
[20] requiring 𝒪(𝑛𝑙𝑜𝑔𝑛) comparisons. In [21], 
they combine the Cuckoo hashing with circuits 
to further reduce computational complexity. In 
[22], Pinkas et al. propose a new type of circuit-
based protocol for computing PSI protocols that 
requires almost linear comparisons. Recently, 
Ruan-Mao [23] release the PSI protocol using 
point-value polynomial representation. This 
way, they avoid using encryption to secure data 
that makes their protocol very efficient. 

Threshold Private Set Intersections (TPSI): Threshold 
PSI functionality differs from PSI in that a TPSI gives the 
intersection if the intersection’s size is larger than or   

 

 

 

 

 



 

Table 1. TPSIs in a semi-honest environment. 
Protocol Communication (bits) Computation (operations) 
[2] 𝒪(𝜆𝑛)   𝒪(𝑛2)   
[29] 𝒪(𝜆𝑛𝑙𝑜𝑔(𝑘 + 1))   𝜔(𝑙𝑜𝑔𝜆)𝒪(𝑛)   
[25] 𝒪(𝑡)   𝒪((𝑛 − 𝑡)4)   
[27] 𝒪( 𝜆𝑛𝑘)   𝒪(𝑛𝑙𝑜𝑔𝑛)   
TPSI-1 (Section 3.1) 𝒪( 𝑙𝑜𝑔|𝑋|𝑘𝑛)   𝒪(𝑘𝑛)   
TPSI-2 (Section 3.2) 𝒪(𝑚𝑎𝑥 (𝑙𝑜𝑔|𝑋| 𝑘𝑛, 𝑙𝑜𝑔|𝑋| 𝑘𝑛𝑙𝑜𝑔𝑛)   𝒪(𝑚𝑎𝑥(𝑛𝑘, 𝑛𝑙𝑜𝑔𝑛))   

equal to a specific positive integer known as a threshold t. 
To clarify more, the intersection 𝑆1 ∩ 𝑆2 of 𝑆1 and 𝑆2 is 
released if  |𝑆1 ∩ 𝑆2| ≥ 𝑡. We direct the reader to Fig. 3 for 
a more comprehensive definition. 

There are a few TPSI protocols, and the majority of them 
compute the intersection’s cardinality first before 
deciding if it is larger than or equal to the threshold 
number [2, 4, 6, 22, 24]. Namely, Freedman et al. [6] use 
private matching to compute set cardinality for 
outputting the intersection if |𝑆1 ∩ 𝑆2| ≥ 𝑡. Pinkas et al. 
[22] present a PSI-CAT protocol that outputs "1" if the 
intersection's cardinality exceeds a threshold t. 
Extending this to TPSI involves a minor update to their 
PSI-CAT circuit to include a key release condition based 
on intersection size, and utilizing this key for symmetric 
encryption of the final message in any linear-complexity 
PSI protocol. In this way, they can outperform the TPSI 
protocol in [2] which has quadratic computation 
complexity. They securely compute privacy-preserving 
ride-sharing functionality, however, their TPSI works for 
small data sets as the secret reconstruction requires 
quadratic time complexity. 

As our protocols are two-party and their security is 
assumed in the semi-honest setting, we only compare 
our protocols with that of two-party TPSI in the semi-
honest setting. Zhao and Chow [25] propose two 
different types of TPSIs such that the intersection is 
released when |𝑆1 ∩ 𝑆2| ≥ 𝑡 or when |𝑆1 ∩ 𝑆2| ≤ 𝑡, where 
𝑆1 and 𝑆2  are private data sets of two parties. The 
advantage of implementing the two types of TPSI 
protocols is obvious when we consider the online dating 
platform. On this platform, when a user wants to match 
with other users of desired properties, |𝑆1 ∩ 𝑆2| ≥ 𝑡 
helps, and when a user wants to match with others who 
do not have some undesired properties, such as smoking 
or drinking alcohol, |𝑆1 ∩ 𝑆2| ≤ 𝑡 works. Ghosh and 
Nilges [26] propose threshold multi-party PSI which is 
used in the malicious setting.  Zhang et al. [27] propose a 
threshold scheme from the DCW protocol [15]. To 
achieve the threshold and hence to reduce the time 
complexity of reconstructing the secret, they make use of 
the Reed-Solomon coding algorithm. Their protocol 
supports larger data sets compared to previous TPSIs. 
Although their protocol’s communication complexity is 
linear in the size of data sets n, its computational 
complexity is logarithmic in terms of n. Lastly, it is 
important to highlight that there are two generic Circuit-
based PSI protocols referenced as [28] and [29], which 
possess the flexibility to be seamlessly transformed into 
TPSIs.  

1.2. Contribution 

This study makes valuable contributions to the fields of 
threshold private set intersection (TPSI) and secure data 
computing. We have extended the capabilities of the Cid-
Davidson protocol by utilizing the techniques presented 
by Bay et al. [30] and Zhang et al. [27]. This has led to the 
development of two new secure TPSI protocols. These 
innovations not only expand the toolkit for safe data 
intersection, but also provide practitioners looking for 
secure and private data computing methods with useful 
options. The security proofs are based on simulations for 
both protocols, confirming their reliability in situations 
with semi-honest adversaries. Moreover, the 
comprehensive asymptotic complexity analysis shows 
that these procedures have remarkable computational 
efficiency. To summarize: 

 We apply two previously known methods of Bay 
et al. [27] and Zhang et al. [30] to the Cid-
Davidson protocol.  Therefore, in this study, we 
present two variants of secure TPSIs based on the 
Cid-Davidson protocol.  

 For both of our protocols, we provide their 
security analysis by providing a formal 
simulation-based security proof in the semi-
honest adversary model. 

 We present an asymptotic complexity analysis of 
our protocols. Compared to the previous designs 
depicted in the first three protocols in Table 1, 
our protocol is much faster in computation. 
Compared to the protocol of Zhang et al., our TPSI 
has a better computational cost when 𝑘 < 𝑙𝑜𝑔𝑛. 
However, we cannot analyze that much data in 
our protocols, as usually 𝑘 is larger than 𝑙𝑜𝑔𝑛,  to 
be more precise, the complexity of our protocols 
and theirs are very similar. 

The remainder of the paper is structured as follows: in 
Section 2, we provide preliminaries and notations. Our 
first novel TPSI protocol (TPSI-1) based on secret-
sharing and the Reed-Solomon Codes is presented in 
Section 3.1. Later in Section 3.2, we propose our second 
novel TPSI protocol (TPSI-2) based on the Secure 
Comparison protocols. Finally, Section 4 is where we 
wrap up our work. 

2. Preliminaries and Notations 

Table 2 contains a list of the notations used 
throughout the text. 
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Table 2. Notations. 
𝑃1                   a client 
𝑃2                                      a server 
𝑆𝑖                                 private data set of i-th party, 𝑖 ∈ {1,2}  
𝑛𝑖                                     size of 𝑆𝑖 , 𝑖 ∈ {1,2} 
𝑛                      𝑛 = 𝑚𝑎𝑥{𝑛1 , 𝑛2}  
PSI                    private set intersection 
TPSI                 threshold private set intersection 
 𝜆                                   A security parameter 
 𝑆                                      intersection of 𝑆1 and 𝑆2 , 𝑆 = 𝑆1 ∩ 𝑆2 
ℎ𝑖                          ℎ𝑖: {0,1}∗ → {0,1}𝑚, 1 ≤  𝑖 ≤ 𝑘   
𝑝𝑘, 𝑠𝑘         a pair of public and private key 
𝑠𝑒𝑒𝑑𝑃𝑖     a seed for database 𝑆𝑖 , for 𝑖 ∈ {1,2} 

𝑠𝑒𝑒𝑑       a seed for PRNG, 𝑠𝑒𝑒𝑑 = 𝑠𝑒𝑒𝑑𝑃1 ⊕  𝑠𝑒𝑒𝑑𝑃2  

𝑠ℎ𝑗               j-th secret share of a secret s among 2𝑛 −
𝑡 elements 

 
2.1. Bloom Filters 

A Bloom Filter is first proposed in [30] which is a way of 
doing efficient data representation. The formal definition 
of a Bloom Filter can be as follows: 
Bloom Filter: A Bloom Filter encodes a data set S of 
maximum size n into a m bit string as 
𝐁𝐅[0], … , 𝐁𝐅[𝑗], … , 𝐁𝐅[𝑚 − 1]. The elements of S are 
represented in a Bloom Filter with the help of 𝑘 
randomly chosen hash functions (ℎ1, ℎ2, … , ℎ𝑘), where 
ℎ𝑖: {0,1}∗ → [0,1, … , 𝑚 − 1]. To insert every element of S 
into a Bloom Filter, first all bins (equivalently, indices) of 
the Bloom Filter is filled with 0, then for each element 𝑥 ∈
𝑆, we update the indices ℎ1(𝑥), ℎ2(𝑥), … ℎ𝑘(𝑥) to 1. If the 
bin already stores 1, then it will remain as 1. The details 
can be found in [32,33]. 

In the Cid-Davidson PSI protocol [34], they use the 
inverted and encrypted Bloom filters as follows: 

Definition 1. If  BF is a Bloom filter representing the data 
set S, then the inverted Bloom filter of BF is IBF, where 
IBF[j] = BF[j] + 1 mod 2. 

Definition 2. If BF is a Bloom filter representing the 
data set S, then the encrypted Bloom filter is defined as 
EBF[j] = E(BF[j]). 

 
2.2. Shamir Secret Sharing Scheme and the Reed-

Solomon Codes 

The creation of contemporary cryptographic protocols 
can benefit greatly from the usage of secret-sharing 
systems. A secret s is divided into n shares in a secret-
sharing scheme so that the secret can be reconstructed if 
enough shares, more than a threshold number t, are 
joined. One of the very useful schemes belongs to [35] 
called (t,n)-Shamir Secret Sharing Scheme (SSS). The 
Lagrange interpolation Theorem serves as the 
foundation for SSS, where the threshold value is t and 𝑡 ≤

𝑛. The ideal functionality  ℱ𝑆𝑆𝑆 for SSS  is shown in Fig.  
1.  

Reed-Solomon codes [36] are a family of error-
correcting codes that are widely used in digital 
communications and storage, as they admit efficient 
encoding/decoding algorithms. The Reed-Solomon 

decoding algorithms can be used to find the shared 
secret of SSS when there exist errors in some of the 
shares. The decoding algorithm based on Fourier 
Transforms proposed in [37] will be considered in our 
protocol. 

 

Parameters: Two integers are  𝑛 and 𝑡 such that 𝑛 <
𝑡 and Ϝ is the finite field. Let 𝑖𝑛𝑑1, 𝑖𝑛𝑑2, … , 𝑖𝑛𝑑𝑛 be 
fixed and distinct points from Ϝ. 
Secret Sharing: An input 𝑠 from Ϝ is shared with a 
random polynomial 𝑓 of degree t such that 𝑓(0) = s 
and the shares of  𝑠 is 𝑂 = {𝑓(𝑖𝑛𝑑1) =
𝑠ℎ1, … , 𝑓(𝑖𝑛𝑑𝑛) = 𝑠ℎ𝑛}. 
Secret Reconstruction: For a subset of 𝑅 ⊂ 𝑂 of size 
𝑡 + 1, by Lagrange interpolation formula, the 
polynomial 𝑓 is reconstructed as 𝑓′ such that 

𝑓′(𝑖𝑛𝑑𝑗) = 𝑠ℎ𝑗
′ and 𝑓′(0) = 𝑠′ where 𝑠ℎ𝑖

′ ∈ 𝑅 

Figure 1. Ideal Functionality ℱ𝑆𝑆𝑆 for SSS. 

2.3. Secure Comparison Protocols 

A secure comparison protocol (SCP) is a secure way of 
comparing two private numbers in such a way that there 
are two parties, 𝑃1 and 𝑃2, and their respective private 
integers are 𝑥 and 𝑦, respectively, and both parties want 
to find out which of their integers is the largest while 
keeping its value a secret from the other. Yao [38] first 
describes this issue in the literature, known as the 
millionaires’ problem. 

Veugen et al. [39] propose using different SCPs in the 
setting mentioned above where the compared numbers 
are encrypted and held by only one party. One of their 
protocols is composed of three phases: (1) they first 
transform their encrypted inputs 𝑥 and 𝑦 into two 
privately held inputs 𝑐 and 𝑟, (2) then they employ an 
SCP which outputs the secret shares of the comparison 
result of these privately shared 𝑐 and 𝑟, (3) they then use 
another transformation to find the encrypted result of 
the comparison 𝑥 and 𝑦. Note that in [39], for the second 
step they utilize three different protocols based on 
homomorphic encryption (Pailler PKE) or linear secret 
sharing. For our TPSI-2, we choose the NO protocol [40] 
as it has constant round complexity. 
The NO Secure Comparison Protocol, having 𝒪(𝑙) secure 
multiplications and a constant number of rounds which 
is 7, is in charge of the protocol's overall complexity. 
Note that each secure shared multiplication has three 
local multiplications for two parties and three 
ciphertexts are communicated. Also, in shared 
multiplication for the precomputation phase, one has to 
make two encryptions and one decryption. Therefore, 
one execution of the protocol needs the communication 
of 𝒪(𝑙) ciphertexts and the same number of encryptions 
as time complexity, where 𝑙  is the bit length of 𝑥  and 𝑦. 
Due to the page limitation, we skip the details of the 
protocol which can be found in [39]. 
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2.4. Private Set Intersection (PSI) and Threshold PSI 

(TPSI) 

In PSIs, there are two parties 𝑃1 and 𝑃2  having respective 
private data sets 𝑆1 and 𝑆2 wanting to compute the 
intersection 𝑆1 ∩ 𝑆2 without disclosing any additional 
elements. On the other hand, TPSI provides a feature that 
allows the intersection to be calculated by the server 
when the intersection size meets |𝑆1 ∩ 𝑆2| ≥ 𝑡, where 𝑡 is 
the threshold parameter. For these protocols, their 
functionality is given in Fig. 2 and Fig. 3, respectively.  

Parameters: The server P2 and the client P1 have two 
secret data sets  𝑆1 = {𝑥1, 𝑥2, … , 𝑥𝑛1

} and 𝑆2 =

{𝑦1, 𝑦2, … , 𝑦𝑛2
} of the sizes 𝑛1 and 𝑛2, respectively, 𝜆 is 

the security parameter. 
Input: Wait the inputs from both the server 𝑃2 and the 
client 𝑃1. 
Computation: Ideal functionality ℱPSI computes 𝑆1 ∩
𝑆2. 
Output: ℱPSI sends the result to the server. 

Figure 2. Ideal Functionality ℱPSI for PSI. 

 

Parameters: The server 𝑃2 and the client 𝑃1 have two 
secret data sets  𝑆1 = {𝑥1, 𝑥2, … , 𝑥𝑛1

} and 𝑆2 =

{𝑦1, 𝑦2, … , 𝑦𝑛2
} of the sizes 𝑛1 and 𝑛2, respectively, 𝜆 is 

the security parameter, t is the threshold number.  
Input: Wait the inputs from both the server 𝑃2 and the 
client P1 and also wait for the threshold t. 
Computation: Ideal functionality ℱTPSI computes 
𝑆1 ∩ 𝑆2 and |𝑆1 ∩ 𝑆2|. 
Output: ℱTPSI sends the result to the server if 
|𝑆1 ∩ 𝑆2| ≥ 𝑡. Otherwise the server obtains nothing. 

Figure 3. Ideal Functionality ℱTPSI for TPSI. 

 
2.5.  Security Setting 

The security of the threshold version of the Cid-Davidson 
PSI protocol that is proposed in this work is again 
assumed in the semi-honest security model. The parties 
adhere to the protocol in this security model honestly 
and do not stray from it. Additionally, we consider the 
corrupted party as a static adversary where the number 
of corrupted parties is fixed before the protocol starts. 

2.6.  Additive Homomorphic Encryption 

A public key encryption system is defined as being 
additively homomorphic if 𝐸𝑝𝑘(𝑀1 + 𝑀2) can be 

efficiently computed using only two ciphertexts, 𝑐1 =
𝐸(𝑀1) and 𝑐2 = 𝐸(𝑀2), without having access to the 
secret key.  That is, 

𝐷𝑠𝑘 (𝐸𝑝𝑘(𝑀1)+𝐻𝐸𝑝𝑘(𝑀2))  = 𝑀1 + 𝑀2,                    

 𝑎𝑛𝑑  𝐷𝑠𝑘 (𝛼𝐸𝑝𝑘(𝑀1)) = 𝛼𝑀1, 

where 𝛼 is an arbitrary scalar value. 

Finally, a ReRand function, which enables us to 
rerandomize the ciphertext by having only the public 
key, is a valuable approach that we employ in this study 
for an additively homomorphic scheme. 

2.7. The Cid-Davidson PSI protocol 

The Cid-Davidson PSI protocol [34] is a Bloom Filter-
based PSI protocol using additively homomorphic PKI. 
Parties namely 𝑃1  and 𝑃2 agreed on k hash functions 
{ℎ1, … , ℎ𝑘}. 𝑃1 has a (𝑝𝑘, 𝑠𝑘) key pair for the 
homomorphic PKI and let pk be available to 𝑃2. They 
jointly compute the intersection of their private sets 𝑆1 
and 𝑆2 without any information leakage except the 
intersection and the size of the sets which are given to 
the parties in advance. The protocol steps are 
enumerated as follows. 

1. 𝑃1 computes the corresponding Bloom filter BF1 as 
a representation of his data set 𝑆1 and invert them 
to obtain IBF1. 

2. 𝑃1 encrypts IBF1 and gets EIBF1. He then sends 
EIBF1 to 𝑃2. 

3. 𝑃2 computes 𝑘  hash values of each element 𝑦𝑖 ∈ 𝑆2, 

and for each 𝑖, obtains{𝐶1
(𝑗)

, … , 𝐶𝑘
(𝑗)

}, where 𝐶𝑑
(𝑗)

=

𝐄𝐈𝐁𝐅𝟏[ℎ𝑑(𝑦𝑗) ] for all 𝑗 ∈ {1, … , 𝑛2}. 

4. 𝑃2 computes 𝑐𝑗 = 𝐶1
(𝑗)

+𝐻 ∙∙∙ +𝐻𝐶𝑘
(𝑗)

 and randomizes 

it by 𝑟𝑗 ∙ 𝑐𝑗 , where 𝑟𝑗 ∈ ℤR N. 

5. Then, 𝑃2 computes 𝑝𝑗 = 𝑅𝑒𝑅𝑎𝑛𝑑((𝑟𝑗 ∙ 𝑐𝑗)+𝐻𝐸𝑝𝑘(𝑦𝑗)) 

and 𝑐�̃� = ReRand(𝑐𝑗) and sends (𝑝𝑗, 𝑐�̃�), 𝑗 ∈ {1, … , 𝑚}  

to 𝑃1. 

6. 𝑃1  first checks whether 𝐷𝑠𝑘(𝑐�̃�) = 0. If yes, he adds 

𝑦𝑗 = 𝐷𝑠𝑘(𝑝𝑗) to the intersection 𝑆. 

To make the protocol visualized, the depiction of the 

protocol is given in Fig. S1. 

     
3. The Proposed TPSI Protocols 

This section includes our proposed threshold private set 

intersection protocols namely TPSI-1 and TPSI-2. 

3.1 TPSI-1 by Secret-Sharing and Reed-Solomon 

Codes 

TPSI stipulates that the intersection can only be obtained 
by the server (or client) if its size is larger than or equal 
to a threshold value t. (see Fig.  3). To achieve threshold 
intersection from the Cid-Davidson protocol, we make 
use of both the Reed-Solomon Codes and the Shamir-
Secret Sharing Scheme. A similar method is also used in 
[27], where they transfer the PSI protocol of DCW [15] 
into TPSI. Although the idea is similar, its application is 
different due to the differences between the DCW and 
the Cid-Davidson protocols. Due to page restrictions, we 
recommend users visit [27] for the details of their 
protocol. 
Our protocol relies on a secret sharing mechanism to 
determine the relationship between the intersection of 
two datasets and a threshold value, denoted as t. This 
process guarantees that there are enough valid shares to 
reconstruct the secret, denoted as s. Thus, the client can 
calculate the polynomial of the secret sharing scheme as 
long as the intersection contains a sufficient number of 
elements. Access to the intersection is granted only 
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when the necessary criteria are met. Additionally, our 
approach incorporates the Reed-Solomon decoding 
algorithm to reconstruct the secret, bypassing the need 
to compute every potential combination of shares.  
By adapting the Cid-Davidson PSI protocol into a TPSI 
protocol, we will demonstrate how we design TPSI-1 in 
the manner that is described below. 
Input: The client 𝑃1 has a pair of public-key and a secret-
key (𝑝𝑘, 𝑠𝑘) of an additively homomorphic PKI and the 
server 𝑃2  is only given to 𝑝𝑘. The size of the private sets 
has to be the same size which is |𝑆1| = |𝑆2| = 𝑛. 
Initialization: A set of hash functions {ℎ1, ℎ2, … , ℎ𝑘} ∈ ℋ 
is randomly chosen and sent to the client 𝑃1 by the server 
𝑃2. By using the functionality of SSS, the server generates 

𝑠ℎ𝑗′𝑠  where 𝑓(𝑖𝑛𝑑𝑗) = 𝑠ℎ𝑗  for 𝑗 ∈ {1, … ,2𝑛 − 𝑡}. 

Dummy Variable Generation: To produce the same 
𝑑 = 𝑛 − 𝑡 dummy variables, 𝑃1  and 𝑃2  individually 
generate two random seeds 𝑠𝑒𝑒𝑑𝑃1

 and 𝑠𝑒𝑒𝑑𝑃2
 of length 𝜆, 

respectively, namely 𝑠𝑒𝑒𝑑𝑃1
, 𝑠𝑒𝑒𝑑𝑃2

∈ {0,1}𝜆 , 
respectively. They then exchange and combine them as  
𝑠𝑒𝑒𝑑 = 𝑠𝑒𝑒𝑑𝑃1

⊕ 𝑠𝑒𝑒𝑑𝑃2
 to agree on the same seed for 

the random number generator. Afterward, 𝑃1 and 𝑃2 
individually compute 𝑑 = 𝑛 − 𝑡 number of (same) 
dummy elements and add them to their data sets 𝑆1 and 
𝑆2 to obtain updated data sets 𝑆1

′  and 𝑆2
′ . Here, 𝑆1

′ =
{𝑥1, 𝑥2, … , 𝑥𝑛 , 𝑥𝑛+1, … , 𝑥2𝑛−𝑡} and 𝑆2

′ =
{𝑦1, 𝑦2, … , 𝑦𝑛 , 𝑦𝑛+1, … , 𝑦2𝑛−𝑡}. 

Local EIBF generation:  
The client 𝑃1 

• represents his data sets 𝑆1
′  as a Bloom filter BF1 and 

computes IBF1. 

• computes the encrypted inverted Bloom filter EIBF1 
and sends it to 𝑃2. 

Set Intersection computation: 

 The server 𝑃2 computes 𝑘 hash values of each 

element 𝑦𝑖 ∈ 𝑆2 and generates {𝐶1
𝑗
, … , 𝐶𝑘

𝑗
}, 

where 𝐶𝑑
𝑗

= 𝐄𝐈𝐁𝐅𝟏[ℎ𝑑(𝑦𝑗)] for all 𝑗 ∈ {1, … ,2𝑛 −

𝑡} and 𝑑 ∈ {0, … , 𝑘}. 

 𝑃2 computes 𝐶𝑗 = 𝐶1
𝑗
+𝐻 ∙∙∙ +𝐻𝐶𝑘

𝑗
 and 

randomizes it by 𝑟𝑗 ∙ 𝐶𝑗, where 𝑟𝑗 ∈ ℤR N . 

 𝑃2 calculates 𝑔𝑗   as 𝑅𝑒𝑅𝑎𝑛𝑑(𝑟𝑗 ∙

𝐶𝑗)+𝐻𝐸(𝑠ℎ𝑗||𝑖𝑛𝑑𝑗). He applies the first 𝜆-bit of  

𝑠ℎ𝑗||𝑖𝑛𝑑𝑗  to 𝑠ℎ𝑗 , where the last 𝜆-bit corresponds 

to 𝑖𝑛𝑑𝑗 . 

 𝑃2 sends 𝑔𝑗  to 𝑃1, where 1 ≤ j ≤ 2n − t. 

 𝑃1 decrypts 𝑔𝑗 ’s and obtains a secret 𝑠′ by the 

Reed-Solomon Decoding Algorithm [35]. He 
then computes and sends 𝐸(𝑠′) to 𝑃2. 

 𝑃2 first encrypts his secret s as 𝐸(𝑠) and then 
homomorphically computes 𝐸(𝑠′ − 𝑠), which 
can be done by finding multiplicative inverse 
𝐸(𝑠)−1of 𝐸(𝑠). He then computes  

𝑝𝑗 = 𝑅𝑒𝑅𝑎𝑛𝑑((𝑟𝑗 ∙ 𝐶𝑗)+𝐻𝐸(𝑦𝑗)+𝐻𝐸 (𝑟(𝑗,1) ∙ (𝑠′ −

𝑠))) and 𝐶𝑗
′ = 𝑅𝑒𝑅𝑎𝑛𝑑((𝐶𝑗)+𝐻𝐸 (𝑟(𝑗,2) ∙ (𝑠′ − 𝑠))). 

 For each 𝑗, 𝑃1  first determines whether 𝐷(𝐶𝑗
′) =

0. If so, he extends the intersection 𝑆 by adding 
𝑦𝑗 = 𝐷(𝑝𝑗). 

To ensure effective error correction with Reed-Solomon 
coding, dummy elements must differ from private data. 
For security reasons, the size of dummy elements 
matches that of private data. Given the large domain of 
private data sets compared to the number of symbols 
(𝑛), the probability of collisions between dummy and 
private elements is small. Consider a domain size of 2128. 
In this scenario, the probability of collision can be 
expressed as 𝑛(𝑛 − 𝑡)/2128. For a single dummy element, 
the likelihood of collision with a set of n private elements 
is 𝑛/2128. When considering 𝑛 − 𝑡 dummy elements, the 
overall probability becomes 𝑛(𝑛 − 𝑡)/2128. Refer to Fig. 
S2 for a visual depiction of the protocol.  

Correctness: The protocol works correctly because it fully 
adopts the Cid-Davidson PSI protocol and relies on the 
correct use of the Reed-Solomon code. Indeed, the secret 
𝑠′ is constructed correctly that is 𝑠 = 𝑠′ if and only if 𝑦𝑖  is 

in the intersection of 𝑆1 and 𝑆2 and  |𝑆1 ∩ 𝑆2| ≥ t. 
Otherwise, the client will see nothing. 
3.1.1 Security Proof  

On the basis of the assumption that there exists a IND-
CPA-secure [41] additively homomorphic PKE scheme 𝜋, 
the security of the protocol is going to be demonstrated. 
We consider the corrupted protocol participant as the 
adversary who is curious but honest. Before starting the 
proof, we provide some notations: let the input of the 
client be 𝐼𝑛𝑝1 = (𝑆1, |𝑆2|, 𝑝𝑘, 𝑠𝑘), and the server be 

𝐼𝑛𝑝2 = (𝑆2, |𝑆1|, 𝑝𝑘, {𝑠ℎ𝑗||𝑖𝑛𝑑𝑗}
𝑗=1

2𝑛−𝑡
). The output of the 

client 𝑃1  is 𝑆 = 𝑆1 ∩ 𝑆2, and of the server is nothing(∅). 
We will consider two scenarios: (1)  𝑃2 is honest, and 𝑃1  
is corrupted, (2) 𝑃2 is corrupted, and 𝑃1  is honest. 
In the first scenario, the simulator 𝒮 is given 𝐼𝑛𝑝1 and the 
output of the protocol 𝑆 = 𝑆1 ∩ 𝑆2 and he needs to 
simulate the honest server towards the corrupted client. 
The simulator 𝒮 starts with generating a simulated 
(�̃�1, … �̃�2𝑛−𝑡) view which is indistinguishable from the 
real (𝑔1, … , 𝑔2𝑛−𝑡 ) one. 𝒮 first chooses a random input 
for the honest server that complies with what the 
corrupted party knows the public hash functions 
ℎ1, … , ℎ𝑘 , and the size of the private set of the honest 
server. The simulated output has to agree with the 
output of 𝑃1. Therefore, the simulator starts by choosing 

set �̃�2, such that 𝑆1 ∩ �̃�2 = 𝑆,. He then chooses 𝑠𝑒𝑒�̃� and �̃� 
for producing inputs and outputs of SSS. 𝒮 produces 
dummy elements and random input elements for �̃�2

′ . 
Then 𝒮 follows the protocol and produces (�̃�1, … �̃�2𝑛−𝑡) 
from the EIBF of the corrupted client and random shares 
of SSS. He then follows the protocol and generates 
simulated tuple {(𝑝, �̃�𝑗

′)}𝑗=1
𝑛2 Assume that there is an 

adversary Adv who can distinguish between 
(�̃�1, … �̃�2𝑛−𝑡) and (𝑔1, … , 𝑔2𝑛−𝑡 )  and {(𝑝, �̃�𝑗

′)}𝑗=1
𝑛2  and 

{(𝑝𝑗 , 𝐶𝑗
′)}𝑗=1

𝑛2  with non-negligible probability. Hence, each 

of 𝑔𝑖 , �̃�𝑖, ( 𝑝, �̃�𝑗
′) 𝑎𝑛𝑑 (𝑝𝑗𝐶𝑗

′) look like fresh encryptions of 

IND-CPA secure scheme Π due to the fact that they are 
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rerandomized homorphic sums. Therefore, one can 
easily built an adversary 𝐴𝑑𝑣Π from 𝐴𝑑𝑣 breaks the IND-
CPA-security of Π. 

In the second scenario where the server 𝑃2 is corrupted 

and the client 𝑃1 is honest, the simulator 𝒮 is given to the 

input of the server 𝐼𝑛𝑝2 and no output (as the server 

produces has no output.) The simulator 𝒮 generates a 

random input set for the honest client 𝑃1. Similarly, he 

chooses a random 𝑠𝑒𝑒�̃� to generate and 𝑆1
′  and 𝑆2

′ , and 

selects a random share 𝑠′̃ for 𝑃1.  He generates simulated 

𝐄𝐈𝐁𝐅�̃� by encrypting it with 𝑝𝑘. He then follows the 

protocol and generates the simulated view 

𝐸𝑝𝑘(�̃�′). Similarly, to the first case, distinguishing 𝐄𝐈𝐁𝐅�̃� 

and 𝐸𝑝𝑘(�̃�′)  from the real view helps to break the IND- 

CPA-security of Π. 

3.1.2. Complexity Analysis 

Communicational Complexity: In TPSI-1 protocol, there is 
a constant number of rounds. In the set-up phase, each 
party sends their seed 𝑠𝑒𝑒𝑑𝑃𝑖

 of size 𝜆-bit to the other 

party. During the execution of the protocol data sent is 
dependent on the size of the Bloom Filter which is 𝑚. 
The communication complexity of the execution of the 
protocol can be computed as follows: in the first round, 
𝑃1 sends the encrypted Bloom filter to 𝑃2. Note that the 
encrypted Bloom filter has the size of ciphertexts. We 
know that for an optimal Bloom filter size, 𝑚 has to be at 
least 𝑘𝑛𝑙𝑜𝑔𝑒 bit-long. Therefore, to do a fair comparison 
with other protocols, the complexity can be defined in 
terms of the size of the data set 𝑛, hence we say 𝑃1 sends 
𝒪(𝑘𝑛)ciphertexts to the server 𝑃2, where 𝑘 is a number 
of hash functions. In the second and the last rounds, the 
server sends 2𝑛 − 𝑡 and 2(2𝑛 − 𝑡) ciphertexts to the 
client, respectively. In the third round, the client sends a 
ciphertext to the server. Hence, while the server’s 
communicational complexity is 𝒪(𝑛)ciphertexts, the 
client’s one dominates the server’s and is 𝒪(𝑘𝑛) 
ciphertexts. Note that to write in bits, we multiply the 
number of ciphertext with log |𝑋|.  
Computational Complexity: The computational 
complexity for the client 𝑃1 is in the first round is 𝒪(𝑘𝑛) 
encryptions and hash computations. In the third round 
he first decrypts 2𝑛 − 𝑡 ciphertexts. Then he applies the 

Reed-Solomon decoding algorithm for 2𝑛 − 𝑡 codewords 
which requires 𝒪(𝑛𝑙𝑜𝑔𝑛) multiplications. In the final 
part he does 𝒪(𝑛) decryptions. Therefore, the dominated 
complexity of the client 𝒪(𝑘𝑛) encryptions. On the 
server-side, 𝑃2 computes 𝑘 hash evaluations to retrieve 
the values from the encrypted Bloom filter which needs 
𝒪(𝑘𝑛) hash computations. 𝑃2 then makes 
𝒪(𝑛𝑘) homomorphic additions. In round 3, he then 
computes, 𝒪(𝑛)homomorphic additions and one inverse 
operation. Hence the computational complexity of the 
server is 𝒪(𝑘𝑛) homomorphic additions. 

Note that in this work we consider the concrete 
instantiation from the Paillier or Elgamal schemes, 
where multiplication in 𝒵𝑁 is the homomorphic addition. 

3.2. TPSI-2 by Secure Comparison Protocols 

By calling a Secure Comparison protocol (SCP) [40] as a 
sub-protocol, we have upgraded the Cid-Davidson PSI 
protocol in TPSI-2 protocol for the threshold feature. In 
this scenario, we employ an SCP (Secure Computation 
Protocol) to evaluate the presence of an adequate 
quantity of items at the intersection. Essentially, the SCP 
runs first in parallel for each element within 𝑆1, 
determining its intersection status. Utilizing the 
homomorphic property of encryption, the sum is 
computed without disclosing any specific data, and then 
compared by the SCP against a predetermined threshold 
value. Subsequently, the encrypted result of the SCP acts 
as a mask over the intersection, only revealing it if the 
count of intersecting elements meets or exceeds the 
threshold.  

For Multi-party TPSI of the Cid- Davidson Protocol, [30] 
also makes use of a related concept. The functionality of 
the TPSI-2 protocol is going to be clarified as follows. 
Prior to adding the following steps, the same steps 1 ∼ 4 
from the original Cid-Davidson Protocol (see Section 2.7) 
are first carried out. Afterwards, 

• 𝑃2 initializes simultaneous 𝑛2 SCPs to check the 
decryption of 𝐶𝑗 ’s is 0 (smaller than 1) or not, for 

every 𝑦𝑗 . That is, 𝑃2 gets the results 𝐸(𝛼𝑗)’s from SCPs. 

In this case, 𝐸(𝛼𝑗) is the encryption of  1 if the 

decrypted value of �̃�𝑗 = ReRand(𝐶𝑗) is smaller than 1 

and will be the encryption of  0 if the decrypted value 
of �̃�𝑗  is bigger than or equal to 1. 

• 𝑃2 computes 𝐸(𝛼) = ReRand(𝐸(𝛼1)+𝐻 ∙∙∙

+𝐻𝐸(𝛼𝑛2
)). Note that according to the SCP, the 

output of the protocol will only be obtained by 𝑃2 . 

• 𝑃2 runs once more a SCP with P1 and checks 𝐸(𝛼) to 

a fresh encryption 𝐸(𝑡). In this case, the output 𝐸(𝛽) 

is obtained where 𝛽 is 1 if 𝛼 < 𝑡, or it is 0 if 𝛼 ≥ 𝑡.  

• 𝑃2 computes 𝑝𝑗 = ReRand((𝑟𝑗 ∙ 𝐶𝑗)+𝐻𝐸(𝑦𝑗)+𝐻 (𝑟𝑗
′ ∙

𝐸(𝛽))) and 𝑇�̃�𝑗 = 𝑅𝑒𝑅𝑎𝑛𝑑(𝐶𝑗+𝐻(𝑟𝑗
′ ∙ 𝐸(𝛽)) and sends 

(𝑝𝑗 , 𝑇�̃�𝑗), 𝑗 ∈ {1, … , 𝑛2} to 𝑃1. 

• Then 𝑃1  decrypts (𝑝𝑗, 𝑇�̃�𝑗),  and decides the 

intersection by first checking whether 𝐷(𝑠𝑘, 𝑇�̃�𝑗) = 0. 

If yes, he adds 𝑦𝑗 = 𝐷(𝑠𝑘, 𝑝𝑗) to the intersection 𝑆 𝑗 ∈

{1, … , 𝑛2}. Otherwise, 𝑃1  outputs ⊥. 

Please refer to Fig. S3 for an illustration of the protocol. 
Correctness: TPSI-2 perfectly outputs that 𝑦𝑖  is in the 

intersection when the total number of intersection elements 

α satisfies 𝛼 ≥ 𝑡. When this is satisfied, 𝛽 becomes 0. The 

rest continues as the Cid-Davidson PSI. In the other case, the 

intersection will be empty. 
3.2.1. Security Proof  

The security of the TPSI-2 protocol will be shown under 
the presumption that there is an additively 
homomorphic PKE scheme Π that is IND-CPA-secure and 
a secure SCP in the semi-honest setting. Similar to the 
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proof of TPSI-1, we offer the following notations in 
advance: Let the server’s input be 𝐼𝑛𝑝2 = (𝑆2, |𝑆1|, 𝑝𝑘) 
and the client’s input be 𝐼𝑛𝑝1 = (𝑆1, |𝑆2|, 𝑝𝑘, 𝑠𝑘), the 
output of the server 𝑃2 is nothing (∅), whereas the 
output of the client 𝑃1 is 𝑆 = 𝑆1 ∩ 𝑆2. We think about two 
scenarios: (1) 𝑃2 is honest, and 𝑃1 is corrupted, (2) 𝑃2 is 
corrupted, and 𝑃1 is honest. 
In the first scenario, the simulator 𝒮 is required to 
simulate the honest server in relation to the corrupted 
client. He is supplied Inp1 and the result of the protocol 
𝑆 = 𝑆1 ∩ 𝑆2. The corrupted client receives simulated �̃�𝑗  
as input in the SCP protocol, which the simulator must 
first build. Therefore, the honest server’s input is first 
chosen at random by 𝒮 in order to satisfy the corrupted 
party’s knowledge of the public hash functions ℎ1, … , ℎ𝑘  
and the size of the honest server’s private set. Also, the 
simulated output and the output of 𝑃1 must coincide. The 
simulator then begins by selecting set S, �̃�2, where 𝑆1 ∩
�̃�2 = 𝑆. Then 𝒮 adheres to the protocol and generates �̃�𝑗   
from EIBF. Then 𝒮 simulates the conduct of the honest 
parties throughout the first execution of the SCP 
procedure. Essentially, there is one comparison against a 
brand-new encryption of 𝐸(1) using an instantaneous 
SCP for each �̃�𝑗 . Here, 𝒮 participates in the execution of 
the SCP protocol by simulating the role of the honest 
parties. Then, he combines the result of SCPs and 
participates once again in the SCP to compare the 𝐸(𝛼) 
with  𝐸(𝑡). He then follows the protocol to compute the 

simulated 𝑝𝑗 and 𝑇�̃�
𝑗

 for all j. Finally, he decrypts the 

results by 𝑃1’s 𝑠𝑘 to obtain S. Everything that the 
corrupted parties receive from the simulator is 
rerandomized, making it impossible to tell it apart from 
new encryption. As a result, the underlying IND-CPA 
security can be compromised by an opponent who can 
tell the difference between the real run and the 
simulation run. 
The simulator is provided the input of the server 𝐼𝑛𝑑2 
and no output in the second scenario, where the server 
𝑃2 is corrupted and the client 𝑃1 is honest (as the server 
produces has no output). As in the security proof of TPSI-
1, for the honest client P1, the simulator creates a 
random input set �̃�1 for 𝑆1. He generates simulated 𝐸𝐼𝐵�̃�1 
by encrypting it with pk. In a manner similar to the first 
part, distinguishing EIBF1 from the real view aids in 
compromising Π’s IND-CPA-security. 
3.2.2. Complexity Analysis 

Communication Complexity: The number of rounds in the 
second TPSI is also constant. In the first round, 𝑃1 sends 
the encrypted Bloom filter to 𝑃2 of size 𝒪(𝑘𝑛)  
ciphertexts, where (𝑛 = 𝑚𝑎𝑥(𝑛1, 𝑛2)).  There are 𝑛2 
(equivalently 𝑛) parallel SCPs in Round 2, and one SCP in 
Round 3. The communicational complexity of SCPs will be 
𝒪(𝑛𝑙) ciphertexts. Here, as 𝑙 is the bit-length of threshold 
value 𝑡 which has to be less than 𝑛, one can safely replace 
𝑙 with log2 𝑛 as 𝑡 < 𝑛. In the last round, 𝒪(𝑛) ciphertexts 
are sent to 𝑃1. Therefore, communication complexity of 
the protocol is 𝒪(max (𝑘𝑛, 𝑛𝑙𝑜𝑔2𝑛))  ciphertexts.  

Computational Complexity: In the first round 𝑃1 makes 𝑘 

hash values of his elements to build his Bloom filter then 
encrypts it. Hence, this round requires 𝒪(kn) hash 
computations and encryptions to build and compute his 
encrypted Bloom filter. Then, in the second round, 𝑃2 
computes 𝑘 hash evaluations to retrieve the values from 
the encrypted Bloom filter which needs 𝒪(kn) hash 
computations. 𝑃2 then makes 𝒪(kn) homomorphic 
additions. In rounds 3 and 4, there are 𝑛 + 1 executions 
of SCP which needs 𝒪(𝑛𝑙𝑜𝑔2𝑛)  encryptions. In the final 
round, there is the decryption of 𝒪(𝑛) ciphertexts. 
Hence total computational complexity is 
𝒪(max (𝑘𝑛, 𝑛𝑙𝑜𝑔2𝑛))  encryptions. 

4. Conclusions and Future Works 

This work has advanced the field of threshold private set 
intersection (TPSI) protocols, which has attracted a lot of 
interest due to the growing need for secure applications. 
The research has incorporated a threshold feature into 
the Cid-Davidson PSI protocol, resulting in the 
development of two new protocols: TPSI-1 and TPSI-2. 
TPSI-2 utilizes Secure Comparison Protocols, while TPSI-
1 is founded on Shamir-Secret Sharing and Reed-
Solomon Coding. These protocols stand out due to their 
performance, which exceed those that are currently in 
the literature. They achieve both computing and 
communication complexity that scales linearly with the 
size of the data sets, and they notably display a constant 
number of rounds, which greatly improves their practical 
utility in safe data intersection applications. 

Additionally, the Cid-Davidson protocol is successfully 
enhanced with threshold functionality by the study, 
motivating further research into the viability of 
comparable improvements for other effective PSI 
procedures. Hence, our future study aims to expand the 
set of secure data intersection protocols by including 
threshold functionality when appropriate. 
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