

Mugla Journal of Science and Technology

NEW THRESHOLD PRIVATE SET INTERSECTION PROTOCOLS

ASLI BAY*, Department of Computer Engineering, Antalya Bilim University, Türkiye, asli.bay@antalya.edu.tr

(https://orcid.org/ 0000-0002-3820-1778)

Received: 07.11.2023, Accepted: 04.04.2024
*Corresponding author

Research Article

DOI: 10.22531/muglajsci.1387499

Abstract

With the rising amount of digital technologies that we use on a daily basis, it is more important than ever to handle and
process private data securely. Research and academic communities are becoming increasingly interested in multi-party
computation, with a focus on the field of Private Set Intersection (PSI). In this regard, this work introduces a novel technique
that successfully converts the Cid-Davidson Private Set Intersection protocol into a Threshold Private Set Intersection. It
achieves this conversion by introducing two new protocols, TPSI-1 and TPSI-2, and utilizing two previously developed
methodologies while the Reed-Solomon codes and the Shamir-secret sharing scheme are the foundations of TPSI-1, whereas
Secure Comparison Protocols serve as the foundation for TPSI-2. Specifically, our suggested protocols perform better
asymptotically than previous threshold PSI protocols because they have a fixed number of rounds and linear
communication and computation complexity that increase with data set size. This study adds to the continuous effort to
strengthen the security and effectiveness of private data calculations, highlighting how safe data processing is changing in
an era where digital technologies are ingrained in every aspect of our lives.
Keywords: Homomorphic Encryption, Multi-party Computation, Private Set Intersection, Secure Comparison Protocols,
Secret Sharing

YENİ EŞİKLİ ÖZEL KÜME KESİŞİM PROTOKOLLERİ

Özet

Günlük olarak kullandığımız dijital teknolojilerin miktarının artmasıyla birlikte, özel verilerin güvenli bir şekilde ele
alınması ve işlenmesi her zamankinden daha önemlidir. Araştırma ve akademik topluluklar, Özel Küme Kesişimi (PSI)
alanına odaklanarak çok partili hesaplamaya giderek daha fazla ilgi duymaktadır. Bu bağlamda, bu çalışma Cid-Davidson
Özel Küme Kesişimi protokolünü başarılı bir şekilde Eşik Özel Küme Kesişimi'ne dönüştüren yeni bir teknik sunmaktadır.
Bu dönüşümü, TPSI-1 ve TPSI-2 olmak üzere iki yeni protokol sunarak ve daha önce geliştirilmiş olan iki metodolojiyi
kullanarak gerçekleştirmektedir, Reed-Solomon kodları ve Shamir-gizli paylaşım şeması TPSI-1'in temellerini
oluştururken, Güvenli Karşılaştırma Protokolleri TPSI-2'nin temelini oluşturmaktadır. Özellikle, önerdiğimiz protokoller,
sabit sayıda tura ve veri kümesi boyutuyla artan doğrusal iletişim ve hesaplama karmaşıklığına sahip oldukları için
asimptotik olarak önceki eşik PSI protokollerinden daha iyi performans göstermektedir. Bu çalışma, özel veri
hesaplamalarının güvenliğini ve etkinliğini güçlendirmeye yönelik sürekli çabalara katkıda bulunmakta ve dijital
teknolojilerin hayatımızın her alanına girdiği bir çağda güvenli veri işlemenin nasıl değiştiğini vurgulamaktadır.
Anahtar Kelimeler: Homomorfik Şifreleme, Çok Taraflı Hesaplama, Özel Küme Kesişimi, Güvenli Karşılaştırma Protokolleri,
Gizli Paylaşım
Cite
Bay, A., (2024). “New Threshold Private Set Intersection Protocols”, Mugla Journal of Science and Technology, 10(1), 51-60.

1. Introduction

Recent years have seen a lot of interest in private set
intersection (PSI) protocoIs. In PSI protocols, two

parties, denoted as 𝑃1 and 𝑃2, holding their private data
sets 𝑆1 and 𝑆2 and compute their intersection, 𝑆1 ∩ 𝑆2
without disclosing any additional information.

Due to significant advancements in digital technology,
several applications have begun employing PSI
protocols. For instance, for advertising efficiency,
companies like Facebook utilize PSI protocols to
compare customer merchant lists and adviser lists [1].
Another application is password check-up, which uses

PSIs to ascertain whether the password has been
compromised. In this way, users can compare their
credentials with millions of entries in breached
databases without revealing any part of their passwords.

In some scenarios, the intersection of two data sets can
only be made public if its size is larger than or equal to a
predetermined threshold value. This is called a threshold
private set intersection (TPSI) in which 𝑆1 ∩ 𝑆2 is
privately computed if |𝑆1 ∩ 𝑆2| ≥ 𝑡. For example, two
bikers might want to share their routes if their routes
contain identical segments, as in a real-world scenario

Aslı Bay
New Threshold Private Set Intersection Protocols

52

known as route discovery [2, 3]. They compare their
routes, and if there are enough shared route segments,
they disclose their routes to each other. Another
situation is the usage of online dating services, where
users hope to make acquaintances by disclosing personal
information on social media websites [4]. A friend
selection is better done methodically to make the
relationship more realistic. In other words, friendship is
feasible when there are enough shared interests
between two people.
1.1 Related Work

Yao [5] offers the first secure multiparty computation
(MPC) protocol to address the question of which of two
millionaires is wealthier. Since then, MPC and in
particular, private set intersection (PSI) has gained
popularity among researchers. There are thousands of
works that offer various PSI solutions. To the best of the
authors’ knowledge, PSI protocols can be categorized as
follows:

 Oblivious Polynomial Evaluation (OPE) based
PSI: In OPE problem, the sender's input is a
polynomial P and the receiver's input is 𝑥. The
receiver can take the value of 𝑃(𝑥) for any value
of 𝑥 without getting any other information
about 𝑃 or revealing any information about 𝑥 to
the sender. OPE was first proposed in PSIs by
Freedman et al. [6] where data sets were
defined by polynomials. Then, Kissner and Song
[7] propose another solution which is also based
on an additive homomorphic Public-key
Encryption scheme. After, Camenish and
Zaverucha [8] propose another OPE-based PSI
that requires inputs to be approved by a third
party. Hazay and Nissim then improve
Freedman et al. protocol [6], however, both
protocols only let one party compute the
intersection (one-way). Contrary to [6], [7,8] are
two-way PSIs which means that two parties
learn the result of the intersection at the end.
About their complexities, the aforementioned
protocols do not have linear complexities.

 Oblivious Pseudorandom Function (OPRF) based
PSI: A two-party OPRF-based PSI where the
sender has a private key k and the receiver has a
private input 𝑥 evaluates a pseudorandom
function (PRF) 𝑓𝑘(𝑥) privately. In this context,
Hazay and Lindell [9] first propose a PSI
protocol that only provides one-way
computations of the intersection. Later Jarecki
and Liu [10] extend the work of Hazay and
Lindell with additive homomorphic public-key
encryption and provide PSI in the malicious
setting. Both constructions mentioned above
are one-way and have linear complexity.
Differently, the work by Debnath and Dutta [11]
is a two-way PSI protocol that also having linear
complexity.

 Bloom filter-based PSI: Bloom filters are

probabilistic structures that compactly
represent data sets using bits, often 0s and 1s.
They are efficient to use, especially with bigger
data sets. In [12] Bloom filters are first used and
combined by AND operator. However, their
method is not secure due to the privacy leakage
of private set elements. Later, Kerchbaum [13]
proposes a Bloom-Filter-based PSI solution that
makes use of Goldwasser-Micali public-key
encryption scheme [14]. Similarly, Dong et al.
[15] combine (garbled) Bloom filters with
oblivious transfer computation. Later, the
protocol by Cid- Davidson that we consider in
this work is also based on Bloom filters and an
additive homomorphic public-key encryption
scheme and has linear complexities. Other PSIs
based on Bloom filters are in [16–18].

 Bit-set data representation-based PSI: in this
representation, the sets are chosen from a fixed
and ordered domain and represented with a
fixed vector consisting of 0’s and 1’s. That is, the
length of this vector is the same as the length of
the domain. Ruan et al. [19] firstly make use of
bit-set representation and additive
homomorphic encryption to propose PSI and
PSI-like protocols. Their protocols are more
efficient than existing ones when the private
data sets are small like with ≤ 212 elements.

 Others: The intersection of two data sets can be
found by using circuits to compare them. If a
naive way is used, we require 𝒪(𝑛2) time
complexity for comparison of the data sets. To
reduce this complexity, some different
techniques are proposed: a merge-sort network
[20] requiring 𝒪(𝑛𝑙𝑜𝑔𝑛) comparisons. In [21],
they combine the Cuckoo hashing with circuits
to further reduce computational complexity. In
[22], Pinkas et al. propose a new type of circuit-
based protocol for computing PSI protocols that
requires almost linear comparisons. Recently,
Ruan-Mao [23] release the PSI protocol using
point-value polynomial representation. This
way, they avoid using encryption to secure data
that makes their protocol very efficient.

Threshold Private Set Intersections (TPSI): Threshold
PSI functionality differs from PSI in that a TPSI gives the
intersection if the intersection’s size is larger than or

Table 1. TPSIs in a semi-honest environment.
Protocol Communication (bits) Computation (operations)
[2] 𝒪(𝜆𝑛) 𝒪(𝑛2)
[29] 𝒪(𝜆𝑛𝑙𝑜𝑔(𝑘 + 1)) 𝜔(𝑙𝑜𝑔𝜆)𝒪(𝑛)
[25] 𝒪(𝑡) 𝒪((𝑛 − 𝑡)4)
[27] 𝒪(𝜆𝑛𝑘) 𝒪(𝑛𝑙𝑜𝑔𝑛)
TPSI-1 (Section 3.1) 𝒪(𝑙𝑜𝑔|𝑋|𝑘𝑛) 𝒪(𝑘𝑛)
TPSI-2 (Section 3.2) 𝒪(𝑚𝑎𝑥 (𝑙𝑜𝑔|𝑋| 𝑘𝑛, 𝑙𝑜𝑔|𝑋| 𝑘𝑛𝑙𝑜𝑔𝑛) 𝒪(𝑚𝑎𝑥(𝑛𝑘, 𝑛𝑙𝑜𝑔𝑛))

equal to a specific positive integer known as a threshold t.
To clarify more, the intersection 𝑆1 ∩ 𝑆2 of 𝑆1 and 𝑆2 is
released if |𝑆1 ∩ 𝑆2| ≥ 𝑡. We direct the reader to Fig. 3 for
a more comprehensive definition.

There are a few TPSI protocols, and the majority of them
compute the intersection’s cardinality first before
deciding if it is larger than or equal to the threshold
number [2, 4, 6, 22, 24]. Namely, Freedman et al. [6] use
private matching to compute set cardinality for
outputting the intersection if |𝑆1 ∩ 𝑆2| ≥ 𝑡. Pinkas et al.
[22] present a PSI-CAT protocol that outputs "1" if the
intersection's cardinality exceeds a threshold t.
Extending this to TPSI involves a minor update to their
PSI-CAT circuit to include a key release condition based
on intersection size, and utilizing this key for symmetric
encryption of the final message in any linear-complexity
PSI protocol. In this way, they can outperform the TPSI
protocol in [2] which has quadratic computation
complexity. They securely compute privacy-preserving
ride-sharing functionality, however, their TPSI works for
small data sets as the secret reconstruction requires
quadratic time complexity.

As our protocols are two-party and their security is
assumed in the semi-honest setting, we only compare
our protocols with that of two-party TPSI in the semi-
honest setting. Zhao and Chow [25] propose two
different types of TPSIs such that the intersection is
released when |𝑆1 ∩ 𝑆2| ≥ 𝑡 or when |𝑆1 ∩ 𝑆2| ≤ 𝑡, where
𝑆1 and 𝑆2 are private data sets of two parties. The
advantage of implementing the two types of TPSI
protocols is obvious when we consider the online dating
platform. On this platform, when a user wants to match
with other users of desired properties, |𝑆1 ∩ 𝑆2| ≥ 𝑡
helps, and when a user wants to match with others who
do not have some undesired properties, such as smoking
or drinking alcohol, |𝑆1 ∩ 𝑆2| ≤ 𝑡 works. Ghosh and
Nilges [26] propose threshold multi-party PSI which is
used in the malicious setting. Zhang et al. [27] propose a
threshold scheme from the DCW protocol [15]. To
achieve the threshold and hence to reduce the time
complexity of reconstructing the secret, they make use of
the Reed-Solomon coding algorithm. Their protocol
supports larger data sets compared to previous TPSIs.
Although their protocol’s communication complexity is
linear in the size of data sets n, its computational
complexity is logarithmic in terms of n. Lastly, it is
important to highlight that there are two generic Circuit-
based PSI protocols referenced as [28] and [29], which
possess the flexibility to be seamlessly transformed into
TPSIs.

1.2. Contribution

This study makes valuable contributions to the fields of
threshold private set intersection (TPSI) and secure data
computing. We have extended the capabilities of the Cid-
Davidson protocol by utilizing the techniques presented
by Bay et al. [30] and Zhang et al. [27]. This has led to the
development of two new secure TPSI protocols. These
innovations not only expand the toolkit for safe data
intersection, but also provide practitioners looking for
secure and private data computing methods with useful
options. The security proofs are based on simulations for
both protocols, confirming their reliability in situations
with semi-honest adversaries. Moreover, the
comprehensive asymptotic complexity analysis shows
that these procedures have remarkable computational
efficiency. To summarize:

 We apply two previously known methods of Bay
et al. [27] and Zhang et al. [30] to the Cid-
Davidson protocol. Therefore, in this study, we
present two variants of secure TPSIs based on the
Cid-Davidson protocol.

 For both of our protocols, we provide their
security analysis by providing a formal
simulation-based security proof in the semi-
honest adversary model.

 We present an asymptotic complexity analysis of
our protocols. Compared to the previous designs
depicted in the first three protocols in Table 1,
our protocol is much faster in computation.
Compared to the protocol of Zhang et al., our TPSI
has a better computational cost when 𝑘 < 𝑙𝑜𝑔𝑛.
However, we cannot analyze that much data in
our protocols, as usually 𝑘 is larger than 𝑙𝑜𝑔𝑛, to
be more precise, the complexity of our protocols
and theirs are very similar.

The remainder of the paper is structured as follows: in
Section 2, we provide preliminaries and notations. Our
first novel TPSI protocol (TPSI-1) based on secret-
sharing and the Reed-Solomon Codes is presented in
Section 3.1. Later in Section 3.2, we propose our second
novel TPSI protocol (TPSI-2) based on the Secure
Comparison protocols. Finally, Section 4 is where we
wrap up our work.

2. Preliminaries and Notations

Table 2 contains a list of the notations used
throughout the text.

Aslı Bay
New Threshold Private Set Intersection Protocols

54

Table 2. Notations.
𝑃1 a client
𝑃2 a server
𝑆𝑖 private data set of i-th party, 𝑖 ∈ {1,2}
𝑛𝑖 size of 𝑆𝑖 , 𝑖 ∈ {1,2}
𝑛 𝑛 = 𝑚𝑎𝑥{𝑛1 , 𝑛2}
PSI private set intersection
TPSI threshold private set intersection
 𝜆 A security parameter
 𝑆 intersection of 𝑆1 and 𝑆2 , 𝑆 = 𝑆1 ∩ 𝑆2
ℎ𝑖 ℎ𝑖: {0,1}∗ → {0,1}𝑚, 1 ≤ 𝑖 ≤ 𝑘
𝑝𝑘, 𝑠𝑘 a pair of public and private key
𝑠𝑒𝑒𝑑𝑃𝑖 a seed for database 𝑆𝑖 , for 𝑖 ∈ {1,2}

𝑠𝑒𝑒𝑑 a seed for PRNG, 𝑠𝑒𝑒𝑑 = 𝑠𝑒𝑒𝑑𝑃1 ⊕ 𝑠𝑒𝑒𝑑𝑃2

𝑠ℎ𝑗 j-th secret share of a secret s among 2𝑛 −
𝑡 elements

2.1. Bloom Filters

A Bloom Filter is first proposed in [30] which is a way of
doing efficient data representation. The formal definition
of a Bloom Filter can be as follows:
Bloom Filter: A Bloom Filter encodes a data set S of
maximum size n into a m bit string as
𝐁𝐅[0], … , 𝐁𝐅[𝑗], … , 𝐁𝐅[𝑚 − 1]. The elements of S are
represented in a Bloom Filter with the help of 𝑘
randomly chosen hash functions (ℎ1, ℎ2, … , ℎ𝑘), where
ℎ𝑖: {0,1}∗ → [0,1, … , 𝑚 − 1]. To insert every element of S
into a Bloom Filter, first all bins (equivalently, indices) of
the Bloom Filter is filled with 0, then for each element 𝑥 ∈
𝑆, we update the indices ℎ1(𝑥), ℎ2(𝑥), … ℎ𝑘(𝑥) to 1. If the
bin already stores 1, then it will remain as 1. The details
can be found in [32,33].

In the Cid-Davidson PSI protocol [34], they use the
inverted and encrypted Bloom filters as follows:

Definition 1. If BF is a Bloom filter representing the data
set S, then the inverted Bloom filter of BF is IBF, where
IBF[j] = BF[j] + 1 mod 2.

Definition 2. If BF is a Bloom filter representing the
data set S, then the encrypted Bloom filter is defined as
EBF[j] = E(BF[j]).

2.2. Shamir Secret Sharing Scheme and the Reed-

Solomon Codes

The creation of contemporary cryptographic protocols
can benefit greatly from the usage of secret-sharing
systems. A secret s is divided into n shares in a secret-
sharing scheme so that the secret can be reconstructed if
enough shares, more than a threshold number t, are
joined. One of the very useful schemes belongs to [35]
called (t,n)-Shamir Secret Sharing Scheme (SSS). The
Lagrange interpolation Theorem serves as the
foundation for SSS, where the threshold value is t and 𝑡 ≤

𝑛. The ideal functionality ℱ𝑆𝑆𝑆 for SSS is shown in Fig.
1.

Reed-Solomon codes [36] are a family of error-
correcting codes that are widely used in digital
communications and storage, as they admit efficient
encoding/decoding algorithms. The Reed-Solomon

decoding algorithms can be used to find the shared
secret of SSS when there exist errors in some of the
shares. The decoding algorithm based on Fourier
Transforms proposed in [37] will be considered in our
protocol.

Parameters: Two integers are 𝑛 and 𝑡 such that 𝑛 <
𝑡 and Ϝ is the finite field. Let 𝑖𝑛𝑑1, 𝑖𝑛𝑑2, … , 𝑖𝑛𝑑𝑛 be
fixed and distinct points from Ϝ.
Secret Sharing: An input 𝑠 from Ϝ is shared with a
random polynomial 𝑓 of degree t such that 𝑓(0) = s
and the shares of 𝑠 is 𝑂 = {𝑓(𝑖𝑛𝑑1) =
𝑠ℎ1, … , 𝑓(𝑖𝑛𝑑𝑛) = 𝑠ℎ𝑛}.
Secret Reconstruction: For a subset of 𝑅 ⊂ 𝑂 of size
𝑡 + 1, by Lagrange interpolation formula, the
polynomial 𝑓 is reconstructed as 𝑓′ such that

𝑓′(𝑖𝑛𝑑𝑗) = 𝑠ℎ𝑗
′ and 𝑓′(0) = 𝑠′ where 𝑠ℎ𝑖

′ ∈ 𝑅

Figure 1. Ideal Functionality ℱ𝑆𝑆𝑆 for SSS.

2.3. Secure Comparison Protocols

A secure comparison protocol (SCP) is a secure way of
comparing two private numbers in such a way that there
are two parties, 𝑃1 and 𝑃2, and their respective private
integers are 𝑥 and 𝑦, respectively, and both parties want
to find out which of their integers is the largest while
keeping its value a secret from the other. Yao [38] first
describes this issue in the literature, known as the
millionaires’ problem.

Veugen et al. [39] propose using different SCPs in the
setting mentioned above where the compared numbers
are encrypted and held by only one party. One of their
protocols is composed of three phases: (1) they first
transform their encrypted inputs 𝑥 and 𝑦 into two
privately held inputs 𝑐 and 𝑟, (2) then they employ an
SCP which outputs the secret shares of the comparison
result of these privately shared 𝑐 and 𝑟, (3) they then use
another transformation to find the encrypted result of
the comparison 𝑥 and 𝑦. Note that in [39], for the second
step they utilize three different protocols based on
homomorphic encryption (Pailler PKE) or linear secret
sharing. For our TPSI-2, we choose the NO protocol [40]
as it has constant round complexity.
The NO Secure Comparison Protocol, having 𝒪(𝑙) secure
multiplications and a constant number of rounds which
is 7, is in charge of the protocol's overall complexity.
Note that each secure shared multiplication has three
local multiplications for two parties and three
ciphertexts are communicated. Also, in shared
multiplication for the precomputation phase, one has to
make two encryptions and one decryption. Therefore,
one execution of the protocol needs the communication
of 𝒪(𝑙) ciphertexts and the same number of encryptions
as time complexity, where 𝑙 is the bit length of 𝑥 and 𝑦.
Due to the page limitation, we skip the details of the
protocol which can be found in [39].

Aslı Bay
New Threshold Private Set Intersection Protocols

55

2.4. Private Set Intersection (PSI) and Threshold PSI

(TPSI)

In PSIs, there are two parties 𝑃1 and 𝑃2 having respective
private data sets 𝑆1 and 𝑆2 wanting to compute the
intersection 𝑆1 ∩ 𝑆2 without disclosing any additional
elements. On the other hand, TPSI provides a feature that
allows the intersection to be calculated by the server
when the intersection size meets |𝑆1 ∩ 𝑆2| ≥ 𝑡, where 𝑡 is
the threshold parameter. For these protocols, their
functionality is given in Fig. 2 and Fig. 3, respectively.

Parameters: The server P2 and the client P1 have two
secret data sets 𝑆1 = {𝑥1, 𝑥2, … , 𝑥𝑛1

} and 𝑆2 =

{𝑦1, 𝑦2, … , 𝑦𝑛2
} of the sizes 𝑛1 and 𝑛2, respectively, 𝜆 is

the security parameter.
Input: Wait the inputs from both the server 𝑃2 and the
client 𝑃1.
Computation: Ideal functionality ℱPSI computes 𝑆1 ∩
𝑆2.
Output: ℱPSI sends the result to the server.

Figure 2. Ideal Functionality ℱPSI for PSI.

Parameters: The server 𝑃2 and the client 𝑃1 have two
secret data sets 𝑆1 = {𝑥1, 𝑥2, … , 𝑥𝑛1

} and 𝑆2 =

{𝑦1, 𝑦2, … , 𝑦𝑛2
} of the sizes 𝑛1 and 𝑛2, respectively, 𝜆 is

the security parameter, t is the threshold number.
Input: Wait the inputs from both the server 𝑃2 and the
client P1 and also wait for the threshold t.
Computation: Ideal functionality ℱTPSI computes
𝑆1 ∩ 𝑆2 and |𝑆1 ∩ 𝑆2|.
Output: ℱTPSI sends the result to the server if
|𝑆1 ∩ 𝑆2| ≥ 𝑡. Otherwise the server obtains nothing.

Figure 3. Ideal Functionality ℱTPSI for TPSI.

2.5. Security Setting

The security of the threshold version of the Cid-Davidson
PSI protocol that is proposed in this work is again
assumed in the semi-honest security model. The parties
adhere to the protocol in this security model honestly
and do not stray from it. Additionally, we consider the
corrupted party as a static adversary where the number
of corrupted parties is fixed before the protocol starts.

2.6. Additive Homomorphic Encryption

A public key encryption system is defined as being
additively homomorphic if 𝐸𝑝𝑘(𝑀1 + 𝑀2) can be

efficiently computed using only two ciphertexts, 𝑐1 =
𝐸(𝑀1) and 𝑐2 = 𝐸(𝑀2), without having access to the
secret key. That is,

𝐷𝑠𝑘 (𝐸𝑝𝑘(𝑀1)+𝐻𝐸𝑝𝑘(𝑀2)) = 𝑀1 + 𝑀2,

 𝑎𝑛𝑑 𝐷𝑠𝑘 (𝛼𝐸𝑝𝑘(𝑀1)) = 𝛼𝑀1,

where 𝛼 is an arbitrary scalar value.

Finally, a ReRand function, which enables us to
rerandomize the ciphertext by having only the public
key, is a valuable approach that we employ in this study
for an additively homomorphic scheme.

2.7. The Cid-Davidson PSI protocol

The Cid-Davidson PSI protocol [34] is a Bloom Filter-
based PSI protocol using additively homomorphic PKI.
Parties namely 𝑃1 and 𝑃2 agreed on k hash functions
{ℎ1, … , ℎ𝑘}. 𝑃1 has a (𝑝𝑘, 𝑠𝑘) key pair for the
homomorphic PKI and let pk be available to 𝑃2. They
jointly compute the intersection of their private sets 𝑆1
and 𝑆2 without any information leakage except the
intersection and the size of the sets which are given to
the parties in advance. The protocol steps are
enumerated as follows.

1. 𝑃1 computes the corresponding Bloom filter BF1 as
a representation of his data set 𝑆1 and invert them
to obtain IBF1.

2. 𝑃1 encrypts IBF1 and gets EIBF1. He then sends
EIBF1 to 𝑃2.

3. 𝑃2 computes 𝑘 hash values of each element 𝑦𝑖 ∈ 𝑆2,

and for each 𝑖, obtains{𝐶1
(𝑗)

, … , 𝐶𝑘
(𝑗)

}, where 𝐶𝑑
(𝑗)

=

𝐄𝐈𝐁𝐅𝟏[ℎ𝑑(𝑦𝑗)] for all 𝑗 ∈ {1, … , 𝑛2}.

4. 𝑃2 computes 𝑐𝑗 = 𝐶1
(𝑗)

+𝐻 ∙∙∙ +𝐻𝐶𝑘
(𝑗)

 and randomizes

it by 𝑟𝑗 ∙ 𝑐𝑗 , where 𝑟𝑗 ∈ ℤR N.

5. Then, 𝑃2 computes 𝑝𝑗 = 𝑅𝑒𝑅𝑎𝑛𝑑((𝑟𝑗 ∙ 𝑐𝑗)+𝐻𝐸𝑝𝑘(𝑦𝑗))

and 𝑐�̃� = ReRand(𝑐𝑗) and sends (𝑝𝑗, 𝑐�̃�), 𝑗 ∈ {1, … , 𝑚}

to 𝑃1.

6. 𝑃1 first checks whether 𝐷𝑠𝑘(𝑐�̃�) = 0. If yes, he adds

𝑦𝑗 = 𝐷𝑠𝑘(𝑝𝑗) to the intersection 𝑆.

To make the protocol visualized, the depiction of the

protocol is given in Fig. S1.

3. The Proposed TPSI Protocols

This section includes our proposed threshold private set

intersection protocols namely TPSI-1 and TPSI-2.

3.1 TPSI-1 by Secret-Sharing and Reed-Solomon

Codes

TPSI stipulates that the intersection can only be obtained
by the server (or client) if its size is larger than or equal
to a threshold value t. (see Fig. 3). To achieve threshold
intersection from the Cid-Davidson protocol, we make
use of both the Reed-Solomon Codes and the Shamir-
Secret Sharing Scheme. A similar method is also used in
[27], where they transfer the PSI protocol of DCW [15]
into TPSI. Although the idea is similar, its application is
different due to the differences between the DCW and
the Cid-Davidson protocols. Due to page restrictions, we
recommend users visit [27] for the details of their
protocol.
Our protocol relies on a secret sharing mechanism to
determine the relationship between the intersection of
two datasets and a threshold value, denoted as t. This
process guarantees that there are enough valid shares to
reconstruct the secret, denoted as s. Thus, the client can
calculate the polynomial of the secret sharing scheme as
long as the intersection contains a sufficient number of
elements. Access to the intersection is granted only

Aslı Bay
New Threshold Private Set Intersection Protocols

56

when the necessary criteria are met. Additionally, our
approach incorporates the Reed-Solomon decoding
algorithm to reconstruct the secret, bypassing the need
to compute every potential combination of shares.
By adapting the Cid-Davidson PSI protocol into a TPSI
protocol, we will demonstrate how we design TPSI-1 in
the manner that is described below.
Input: The client 𝑃1 has a pair of public-key and a secret-
key (𝑝𝑘, 𝑠𝑘) of an additively homomorphic PKI and the
server 𝑃2 is only given to 𝑝𝑘. The size of the private sets
has to be the same size which is |𝑆1| = |𝑆2| = 𝑛.
Initialization: A set of hash functions {ℎ1, ℎ2, … , ℎ𝑘} ∈ ℋ
is randomly chosen and sent to the client 𝑃1 by the server
𝑃2. By using the functionality of SSS, the server generates

𝑠ℎ𝑗′𝑠 where 𝑓(𝑖𝑛𝑑𝑗) = 𝑠ℎ𝑗 for 𝑗 ∈ {1, … ,2𝑛 − 𝑡}.

Dummy Variable Generation: To produce the same
𝑑 = 𝑛 − 𝑡 dummy variables, 𝑃1 and 𝑃2 individually
generate two random seeds 𝑠𝑒𝑒𝑑𝑃1

 and 𝑠𝑒𝑒𝑑𝑃2
 of length 𝜆,

respectively, namely 𝑠𝑒𝑒𝑑𝑃1
, 𝑠𝑒𝑒𝑑𝑃2

∈ {0,1}𝜆 ,
respectively. They then exchange and combine them as
𝑠𝑒𝑒𝑑 = 𝑠𝑒𝑒𝑑𝑃1

⊕ 𝑠𝑒𝑒𝑑𝑃2
 to agree on the same seed for

the random number generator. Afterward, 𝑃1 and 𝑃2
individually compute 𝑑 = 𝑛 − 𝑡 number of (same)
dummy elements and add them to their data sets 𝑆1 and
𝑆2 to obtain updated data sets 𝑆1

′ and 𝑆2
′ . Here, 𝑆1

′ =
{𝑥1, 𝑥2, … , 𝑥𝑛 , 𝑥𝑛+1, … , 𝑥2𝑛−𝑡} and 𝑆2

′ =
{𝑦1, 𝑦2, … , 𝑦𝑛 , 𝑦𝑛+1, … , 𝑦2𝑛−𝑡}.

Local EIBF generation:
The client 𝑃1

• represents his data sets 𝑆1
′ as a Bloom filter BF1 and

computes IBF1.

• computes the encrypted inverted Bloom filter EIBF1
and sends it to 𝑃2.

Set Intersection computation:

 The server 𝑃2 computes 𝑘 hash values of each

element 𝑦𝑖 ∈ 𝑆2 and generates {𝐶1
𝑗
, … , 𝐶𝑘

𝑗
},

where 𝐶𝑑
𝑗

= 𝐄𝐈𝐁𝐅𝟏[ℎ𝑑(𝑦𝑗)] for all 𝑗 ∈ {1, … ,2𝑛 −

𝑡} and 𝑑 ∈ {0, … , 𝑘}.

 𝑃2 computes 𝐶𝑗 = 𝐶1
𝑗
+𝐻 ∙∙∙ +𝐻𝐶𝑘

𝑗
 and

randomizes it by 𝑟𝑗 ∙ 𝐶𝑗, where 𝑟𝑗 ∈ ℤR N .

 𝑃2 calculates 𝑔𝑗 as 𝑅𝑒𝑅𝑎𝑛𝑑(𝑟𝑗 ∙

𝐶𝑗)+𝐻𝐸(𝑠ℎ𝑗||𝑖𝑛𝑑𝑗). He applies the first 𝜆-bit of

𝑠ℎ𝑗||𝑖𝑛𝑑𝑗 to 𝑠ℎ𝑗 , where the last 𝜆-bit corresponds

to 𝑖𝑛𝑑𝑗 .

 𝑃2 sends 𝑔𝑗 to 𝑃1, where 1 ≤ j ≤ 2n − t.

 𝑃1 decrypts 𝑔𝑗 ’s and obtains a secret 𝑠′ by the

Reed-Solomon Decoding Algorithm [35]. He
then computes and sends 𝐸(𝑠′) to 𝑃2.

 𝑃2 first encrypts his secret s as 𝐸(𝑠) and then
homomorphically computes 𝐸(𝑠′ − 𝑠), which
can be done by finding multiplicative inverse
𝐸(𝑠)−1of 𝐸(𝑠). He then computes

𝑝𝑗 = 𝑅𝑒𝑅𝑎𝑛𝑑((𝑟𝑗 ∙ 𝐶𝑗)+𝐻𝐸(𝑦𝑗)+𝐻𝐸 (𝑟(𝑗,1) ∙ (𝑠′ −

𝑠))) and 𝐶𝑗
′ = 𝑅𝑒𝑅𝑎𝑛𝑑((𝐶𝑗)+𝐻𝐸 (𝑟(𝑗,2) ∙ (𝑠′ − 𝑠))).

 For each 𝑗, 𝑃1 first determines whether 𝐷(𝐶𝑗
′) =

0. If so, he extends the intersection 𝑆 by adding
𝑦𝑗 = 𝐷(𝑝𝑗).

To ensure effective error correction with Reed-Solomon
coding, dummy elements must differ from private data.
For security reasons, the size of dummy elements
matches that of private data. Given the large domain of
private data sets compared to the number of symbols
(𝑛), the probability of collisions between dummy and
private elements is small. Consider a domain size of 2128.
In this scenario, the probability of collision can be
expressed as 𝑛(𝑛 − 𝑡)/2128. For a single dummy element,
the likelihood of collision with a set of n private elements
is 𝑛/2128. When considering 𝑛 − 𝑡 dummy elements, the
overall probability becomes 𝑛(𝑛 − 𝑡)/2128. Refer to Fig.
S2 for a visual depiction of the protocol.

Correctness: The protocol works correctly because it fully
adopts the Cid-Davidson PSI protocol and relies on the
correct use of the Reed-Solomon code. Indeed, the secret
𝑠′ is constructed correctly that is 𝑠 = 𝑠′ if and only if 𝑦𝑖 is

in the intersection of 𝑆1 and 𝑆2 and |𝑆1 ∩ 𝑆2| ≥ t.
Otherwise, the client will see nothing.
3.1.1 Security Proof

On the basis of the assumption that there exists a IND-
CPA-secure [41] additively homomorphic PKE scheme 𝜋,
the security of the protocol is going to be demonstrated.
We consider the corrupted protocol participant as the
adversary who is curious but honest. Before starting the
proof, we provide some notations: let the input of the
client be 𝐼𝑛𝑝1 = (𝑆1, |𝑆2|, 𝑝𝑘, 𝑠𝑘), and the server be

𝐼𝑛𝑝2 = (𝑆2, |𝑆1|, 𝑝𝑘, {𝑠ℎ𝑗||𝑖𝑛𝑑𝑗}
𝑗=1

2𝑛−𝑡
). The output of the

client 𝑃1 is 𝑆 = 𝑆1 ∩ 𝑆2, and of the server is nothing(∅).
We will consider two scenarios: (1) 𝑃2 is honest, and 𝑃1
is corrupted, (2) 𝑃2 is corrupted, and 𝑃1 is honest.
In the first scenario, the simulator 𝒮 is given 𝐼𝑛𝑝1 and the
output of the protocol 𝑆 = 𝑆1 ∩ 𝑆2 and he needs to
simulate the honest server towards the corrupted client.
The simulator 𝒮 starts with generating a simulated
(�̃�1, … �̃�2𝑛−𝑡) view which is indistinguishable from the
real (𝑔1, … , 𝑔2𝑛−𝑡) one. 𝒮 first chooses a random input
for the honest server that complies with what the
corrupted party knows the public hash functions
ℎ1, … , ℎ𝑘 , and the size of the private set of the honest
server. The simulated output has to agree with the
output of 𝑃1. Therefore, the simulator starts by choosing

set �̃�2, such that 𝑆1 ∩ �̃�2 = 𝑆,. He then chooses 𝑠𝑒𝑒�̃� and �̃�
for producing inputs and outputs of SSS. 𝒮 produces
dummy elements and random input elements for �̃�2

′ .
Then 𝒮 follows the protocol and produces (�̃�1, … �̃�2𝑛−𝑡)
from the EIBF of the corrupted client and random shares
of SSS. He then follows the protocol and generates
simulated tuple {(𝑝, �̃�𝑗

′)}𝑗=1
𝑛2 Assume that there is an

adversary Adv who can distinguish between
(�̃�1, … �̃�2𝑛−𝑡) and (𝑔1, … , 𝑔2𝑛−𝑡) and {(𝑝, �̃�𝑗

′)}𝑗=1
𝑛2 and

{(𝑝𝑗 , 𝐶𝑗
′)}𝑗=1

𝑛2 with non-negligible probability. Hence, each

of 𝑔𝑖 , �̃�𝑖, (𝑝, �̃�𝑗
′) 𝑎𝑛𝑑 (𝑝𝑗𝐶𝑗

′) look like fresh encryptions of

IND-CPA secure scheme Π due to the fact that they are

Aslı Bay
New Threshold Private Set Intersection Protocols

57

rerandomized homorphic sums. Therefore, one can
easily built an adversary 𝐴𝑑𝑣Π from 𝐴𝑑𝑣 breaks the IND-
CPA-security of Π.

In the second scenario where the server 𝑃2 is corrupted

and the client 𝑃1 is honest, the simulator 𝒮 is given to the

input of the server 𝐼𝑛𝑝2 and no output (as the server

produces has no output.) The simulator 𝒮 generates a

random input set for the honest client 𝑃1. Similarly, he

chooses a random 𝑠𝑒𝑒�̃� to generate and 𝑆1
′ and 𝑆2

′ , and

selects a random share 𝑠′̃ for 𝑃1. He generates simulated

𝐄𝐈𝐁𝐅�̃� by encrypting it with 𝑝𝑘. He then follows the

protocol and generates the simulated view

𝐸𝑝𝑘(�̃�′). Similarly, to the first case, distinguishing 𝐄𝐈𝐁𝐅�̃�

and 𝐸𝑝𝑘(�̃�′) from the real view helps to break the IND-

CPA-security of Π.

3.1.2. Complexity Analysis

Communicational Complexity: In TPSI-1 protocol, there is
a constant number of rounds. In the set-up phase, each
party sends their seed 𝑠𝑒𝑒𝑑𝑃𝑖

 of size 𝜆-bit to the other

party. During the execution of the protocol data sent is
dependent on the size of the Bloom Filter which is 𝑚.
The communication complexity of the execution of the
protocol can be computed as follows: in the first round,
𝑃1 sends the encrypted Bloom filter to 𝑃2. Note that the
encrypted Bloom filter has the size of ciphertexts. We
know that for an optimal Bloom filter size, 𝑚 has to be at
least 𝑘𝑛𝑙𝑜𝑔𝑒 bit-long. Therefore, to do a fair comparison
with other protocols, the complexity can be defined in
terms of the size of the data set 𝑛, hence we say 𝑃1 sends
𝒪(𝑘𝑛)ciphertexts to the server 𝑃2, where 𝑘 is a number
of hash functions. In the second and the last rounds, the
server sends 2𝑛 − 𝑡 and 2(2𝑛 − 𝑡) ciphertexts to the
client, respectively. In the third round, the client sends a
ciphertext to the server. Hence, while the server’s
communicational complexity is 𝒪(𝑛)ciphertexts, the
client’s one dominates the server’s and is 𝒪(𝑘𝑛)
ciphertexts. Note that to write in bits, we multiply the
number of ciphertext with log |𝑋|.
Computational Complexity: The computational
complexity for the client 𝑃1 is in the first round is 𝒪(𝑘𝑛)
encryptions and hash computations. In the third round
he first decrypts 2𝑛 − 𝑡 ciphertexts. Then he applies the

Reed-Solomon decoding algorithm for 2𝑛 − 𝑡 codewords
which requires 𝒪(𝑛𝑙𝑜𝑔𝑛) multiplications. In the final
part he does 𝒪(𝑛) decryptions. Therefore, the dominated
complexity of the client 𝒪(𝑘𝑛) encryptions. On the
server-side, 𝑃2 computes 𝑘 hash evaluations to retrieve
the values from the encrypted Bloom filter which needs
𝒪(𝑘𝑛) hash computations. 𝑃2 then makes
𝒪(𝑛𝑘) homomorphic additions. In round 3, he then
computes, 𝒪(𝑛)homomorphic additions and one inverse
operation. Hence the computational complexity of the
server is 𝒪(𝑘𝑛) homomorphic additions.

Note that in this work we consider the concrete
instantiation from the Paillier or Elgamal schemes,
where multiplication in 𝒵𝑁 is the homomorphic addition.

3.2. TPSI-2 by Secure Comparison Protocols

By calling a Secure Comparison protocol (SCP) [40] as a
sub-protocol, we have upgraded the Cid-Davidson PSI
protocol in TPSI-2 protocol for the threshold feature. In
this scenario, we employ an SCP (Secure Computation
Protocol) to evaluate the presence of an adequate
quantity of items at the intersection. Essentially, the SCP
runs first in parallel for each element within 𝑆1,
determining its intersection status. Utilizing the
homomorphic property of encryption, the sum is
computed without disclosing any specific data, and then
compared by the SCP against a predetermined threshold
value. Subsequently, the encrypted result of the SCP acts
as a mask over the intersection, only revealing it if the
count of intersecting elements meets or exceeds the
threshold.

For Multi-party TPSI of the Cid- Davidson Protocol, [30]
also makes use of a related concept. The functionality of
the TPSI-2 protocol is going to be clarified as follows.
Prior to adding the following steps, the same steps 1 ∼ 4
from the original Cid-Davidson Protocol (see Section 2.7)
are first carried out. Afterwards,

• 𝑃2 initializes simultaneous 𝑛2 SCPs to check the
decryption of 𝐶𝑗 ’s is 0 (smaller than 1) or not, for

every 𝑦𝑗 . That is, 𝑃2 gets the results 𝐸(𝛼𝑗)’s from SCPs.

In this case, 𝐸(𝛼𝑗) is the encryption of 1 if the

decrypted value of �̃�𝑗 = ReRand(𝐶𝑗) is smaller than 1

and will be the encryption of 0 if the decrypted value
of �̃�𝑗 is bigger than or equal to 1.

• 𝑃2 computes 𝐸(𝛼) = ReRand(𝐸(𝛼1)+𝐻 ∙∙∙

+𝐻𝐸(𝛼𝑛2
)). Note that according to the SCP, the

output of the protocol will only be obtained by 𝑃2 .

• 𝑃2 runs once more a SCP with P1 and checks 𝐸(𝛼) to

a fresh encryption 𝐸(𝑡). In this case, the output 𝐸(𝛽)

is obtained where 𝛽 is 1 if 𝛼 < 𝑡, or it is 0 if 𝛼 ≥ 𝑡.

• 𝑃2 computes 𝑝𝑗 = ReRand((𝑟𝑗 ∙ 𝐶𝑗)+𝐻𝐸(𝑦𝑗)+𝐻 (𝑟𝑗
′ ∙

𝐸(𝛽))) and 𝑇�̃�𝑗 = 𝑅𝑒𝑅𝑎𝑛𝑑(𝐶𝑗+𝐻(𝑟𝑗
′ ∙ 𝐸(𝛽)) and sends

(𝑝𝑗 , 𝑇�̃�𝑗), 𝑗 ∈ {1, … , 𝑛2} to 𝑃1.

• Then 𝑃1 decrypts (𝑝𝑗, 𝑇�̃�𝑗), and decides the

intersection by first checking whether 𝐷(𝑠𝑘, 𝑇�̃�𝑗) = 0.

If yes, he adds 𝑦𝑗 = 𝐷(𝑠𝑘, 𝑝𝑗) to the intersection 𝑆 𝑗 ∈

{1, … , 𝑛2}. Otherwise, 𝑃1 outputs ⊥.

Please refer to Fig. S3 for an illustration of the protocol.
Correctness: TPSI-2 perfectly outputs that 𝑦𝑖 is in the

intersection when the total number of intersection elements

α satisfies 𝛼 ≥ 𝑡. When this is satisfied, 𝛽 becomes 0. The

rest continues as the Cid-Davidson PSI. In the other case, the

intersection will be empty.
3.2.1. Security Proof

The security of the TPSI-2 protocol will be shown under
the presumption that there is an additively
homomorphic PKE scheme Π that is IND-CPA-secure and
a secure SCP in the semi-honest setting. Similar to the

Aslı Bay
New Threshold Private Set Intersection Protocols

58

proof of TPSI-1, we offer the following notations in
advance: Let the server’s input be 𝐼𝑛𝑝2 = (𝑆2, |𝑆1|, 𝑝𝑘)
and the client’s input be 𝐼𝑛𝑝1 = (𝑆1, |𝑆2|, 𝑝𝑘, 𝑠𝑘), the
output of the server 𝑃2 is nothing (∅), whereas the
output of the client 𝑃1 is 𝑆 = 𝑆1 ∩ 𝑆2. We think about two
scenarios: (1) 𝑃2 is honest, and 𝑃1 is corrupted, (2) 𝑃2 is
corrupted, and 𝑃1 is honest.
In the first scenario, the simulator 𝒮 is required to
simulate the honest server in relation to the corrupted
client. He is supplied Inp1 and the result of the protocol
𝑆 = 𝑆1 ∩ 𝑆2. The corrupted client receives simulated �̃�𝑗
as input in the SCP protocol, which the simulator must
first build. Therefore, the honest server’s input is first
chosen at random by 𝒮 in order to satisfy the corrupted
party’s knowledge of the public hash functions ℎ1, … , ℎ𝑘
and the size of the honest server’s private set. Also, the
simulated output and the output of 𝑃1 must coincide. The
simulator then begins by selecting set S, �̃�2, where 𝑆1 ∩
�̃�2 = 𝑆. Then 𝒮 adheres to the protocol and generates �̃�𝑗
from EIBF. Then 𝒮 simulates the conduct of the honest
parties throughout the first execution of the SCP
procedure. Essentially, there is one comparison against a
brand-new encryption of 𝐸(1) using an instantaneous
SCP for each �̃�𝑗 . Here, 𝒮 participates in the execution of
the SCP protocol by simulating the role of the honest
parties. Then, he combines the result of SCPs and
participates once again in the SCP to compare the 𝐸(𝛼)
with 𝐸(𝑡). He then follows the protocol to compute the

simulated 𝑝𝑗 and 𝑇�̃�
𝑗

 for all j. Finally, he decrypts the

results by 𝑃1’s 𝑠𝑘 to obtain S. Everything that the
corrupted parties receive from the simulator is
rerandomized, making it impossible to tell it apart from
new encryption. As a result, the underlying IND-CPA
security can be compromised by an opponent who can
tell the difference between the real run and the
simulation run.
The simulator is provided the input of the server 𝐼𝑛𝑑2
and no output in the second scenario, where the server
𝑃2 is corrupted and the client 𝑃1 is honest (as the server
produces has no output). As in the security proof of TPSI-
1, for the honest client P1, the simulator creates a
random input set �̃�1 for 𝑆1. He generates simulated 𝐸𝐼𝐵�̃�1
by encrypting it with pk. In a manner similar to the first
part, distinguishing EIBF1 from the real view aids in
compromising Π’s IND-CPA-security.
3.2.2. Complexity Analysis

Communication Complexity: The number of rounds in the
second TPSI is also constant. In the first round, 𝑃1 sends
the encrypted Bloom filter to 𝑃2 of size 𝒪(𝑘𝑛)
ciphertexts, where (𝑛 = 𝑚𝑎𝑥(𝑛1, 𝑛2)). There are 𝑛2
(equivalently 𝑛) parallel SCPs in Round 2, and one SCP in
Round 3. The communicational complexity of SCPs will be
𝒪(𝑛𝑙) ciphertexts. Here, as 𝑙 is the bit-length of threshold
value 𝑡 which has to be less than 𝑛, one can safely replace
𝑙 with log2 𝑛 as 𝑡 < 𝑛. In the last round, 𝒪(𝑛) ciphertexts
are sent to 𝑃1. Therefore, communication complexity of
the protocol is 𝒪(max (𝑘𝑛, 𝑛𝑙𝑜𝑔2𝑛)) ciphertexts.

Computational Complexity: In the first round 𝑃1 makes 𝑘

hash values of his elements to build his Bloom filter then
encrypts it. Hence, this round requires 𝒪(kn) hash
computations and encryptions to build and compute his
encrypted Bloom filter. Then, in the second round, 𝑃2
computes 𝑘 hash evaluations to retrieve the values from
the encrypted Bloom filter which needs 𝒪(kn) hash
computations. 𝑃2 then makes 𝒪(kn) homomorphic
additions. In rounds 3 and 4, there are 𝑛 + 1 executions
of SCP which needs 𝒪(𝑛𝑙𝑜𝑔2𝑛) encryptions. In the final
round, there is the decryption of 𝒪(𝑛) ciphertexts.
Hence total computational complexity is
𝒪(max (𝑘𝑛, 𝑛𝑙𝑜𝑔2𝑛)) encryptions.

4. Conclusions and Future Works

This work has advanced the field of threshold private set
intersection (TPSI) protocols, which has attracted a lot of
interest due to the growing need for secure applications.
The research has incorporated a threshold feature into
the Cid-Davidson PSI protocol, resulting in the
development of two new protocols: TPSI-1 and TPSI-2.
TPSI-2 utilizes Secure Comparison Protocols, while TPSI-
1 is founded on Shamir-Secret Sharing and Reed-
Solomon Coding. These protocols stand out due to their
performance, which exceed those that are currently in
the literature. They achieve both computing and
communication complexity that scales linearly with the
size of the data sets, and they notably display a constant
number of rounds, which greatly improves their practical
utility in safe data intersection applications.

Additionally, the Cid-Davidson protocol is successfully
enhanced with threshold functionality by the study,
motivating further research into the viability of
comparable improvements for other effective PSI
procedures. Hence, our future study aims to expand the
set of secure data intersection protocols by including
threshold functionality when appropriate.

5. References

[1] “The Disconcerting Details: How Facebook Teams Up
With Data Brokers to
Show You Targeted Ads.”
https://www.eff.org/deeplinks/2013/04/
disconcerting-details-how-facebook-teams-data-
brokers-show-you-targeted-ads, 2013. Accessed: 2021-
11-25.

[2] Hallgren, P., Orlandi, C. and Sabelfeld, A.,
“Privatepool: Privacy-preserving ridesharing,” in 2017
IEEE 30th Computer Security Foundations Symposium
(CSF), pp. 276–291, 2017.

[3] Sherif, A. B. T., Rabieh, K., Mahmoud, . M. E. A. and
Liang, X., “Privacy-preserving ride sharing
scheme for autonomous vehicles in big data era,” IEEE
Internet of Things Journal, vol. 4, no. 2,
pp. 611–618, 2017.

[4] Zhao, Y. and. Chow, S. S. M, “Can you find the one for
me? privacy-preserving matchmaking via
threshold psi.” Cryptology ePrint Archive, Report
2018/184, 2018. https://ia.cr/2018/
184.

Aslı Bay
New Threshold Private Set Intersection Protocols

59

[5] Yao, A. C.-C. , “Protocols for secure computations
(extended abstract),” in FOCS, pp. 160–164,
IEEE Computer Society, 1982.

[6] Freedman, M. J. , Nissim, K. and Pinkas, B. , “Efficient
private matching and set intersection,” in Advances in
Cryptology- EUROCRYPT 2004, International Conference
on the Theory and Applications of Cryptographic
Techniques, Interlaken, Switzerland, May 2-6, 2004,
Proceedings(C.Cachin and J. Camenisch, eds.), vol. 3027
of Lecture Notes in Computer Science, pp. 1–19, Springer,
2004.

[7] Kissner, L. and Song, D. X., “Privacy-preserving set
operations,” in Advances in Cryptology -
CRYPTO 2005: 25th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 14-
18, 2005, Proceedings (V. Shoup, ed.), vol. 3621 of
Lecture Notes in Computer
Science, pp. 241–257, Springer, 2005.

[8] Camenisch, J., and Zaverucha, G. M., “Private
intersection of certified sets,” in Financial Cryptography
and Data Security (R. Dingledine and P. Golle, eds.),
(Berlin, Heidelberg), pp. 108–127, Springer Berlin
Heidelberg, 2009.

[9] Hazay, C., and Lindell, Y., “Efficient protocols for set
intersection and pattern matching with Security against
malicious and covert adversaries,” in Theory of
Cryptography (R. Canetti, ed.),(Berlin, Heidelberg), pp.
155–175, Springer Berlin Heidelberg, 2008.

[10] Jarecki, S. and Liu, X., “Efficient oblivious
pseudorandom function with applications to adaptive ot
and secure computation of set intersection,” in Theory of
Cryptography (O. Reingold, ed.), (Berlin, Heidelberg), pp.
577–594, Springer Berlin Heidelberg, 2009.

[11] Debnath, S. K. and Dutta, R.,“Towards fair mutual
private set intersection with linear complexity,” Security
and Communication Networks, vol. 9, no. 11, pp. 1589–
1612, 2016.

[12] Burkhart, M. and Fontas, X. D. , “Fast private set
operations with sepia,” 2012.

[13] Kerschbaum, F., “Outsourced private set
intersection using homomorphic encryption,” in 7th ACM
Symposium on Information, Compuer and
Communications Security, ASIACCS ’12, Seoul, Korea,
May 2-4, 2012 (H. Y. Youm and Y. Won, eds.), pp. 85–86,
ACM, 2012.

[14] Goldwasser S. and Micali, S.,“Probabilistic
encryption,” Journal of Computer and System Sciences vol.
28, no. 2, pp. 270–299, 1984.

[15] Dong, C., Chen, L. and Wen, Z. , “When private set
intersection meets big data: an efficient and
scalable protocol,” in 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS’13, Berlin,
Germany, November 4-8, 2013 (A. Sadeghi, V. D. Gligor,
and M. Yung, eds.), pp. 789–800, ACM, 2013.

[16] Kiss, A., Liu, J. Schneider, T., Asokan, N. and Pinkas,
B., “Private set intersection for unequal set sizes with

mobile applications,” Proceedings on Privacy Enhancing
Technologies, vol. 2017, no. 4, pp. 177–197, 2017.

[17] Debnath, S. K. and. Dutta, R ,“Efficient private set
intersection cardinality in the presence of ma
licious adversaries,” in Provable Security (M.-H. Au and A.
Miyaji, eds.), (Cham), pp. 326–339,
Springer International Publishing, 2015.

[18]. Zhang, X, Zhu, H., Chen, M., Sun, M. , Liao, X. and Hu,
L., “Outsourcing set intersection compu-
tation based on bloom filter for privacy preservation in
multimedia processing,” Secur. Commun. Networks,
Hindawi, vol., 2018.

[19] Ruan, O., Wang, Z., Mi, J. and Zhang, M., “New
approach to set representation and practical private set-
intersection protocols,” IEEE Access, vol. 7, pp. 64897–
64906, 2019.

[20] Huang, Y.,Evans, D. and Katz, J. “Private set
intersection: Are garbled circuits better than custom
protocols?,” in 19th Annual Network and Distributed
System Security Symposium, NDSS 2012, San Diego,
California, USA, February 5-8, 2012, The Internet Society,
2012.

[21] Pinkas, B. , Schneider, T., Segev, G. and Zohner, M.,
“Phasing: Private set intersection using
permutation-based hashing,” in 24th USENIX Security
Symposium, USENIX Security 15, Washington, D.C., USA,
August 12-14, 2015. (J. Jung and T. Holz, eds.), pp. 515–
530, USENIX Association, 2015.

[22] Pinkas, B. , Schneider, T. , Weinert, C. and Wieder, U.
, “Efficient circuit-based psi via cuckoo hashing,” in
Advances in Cryptology – EUROCRYPT 2018 (J. B. Nielsen
and V. Rijmen, eds.), (Cham), pp. 125–157, Springer
International Publishing, 2018.

[23] Ruan, O. and Mao, H., “Efficient private set
intersection using point-value polynomial
representation,” Security and Communication Networks,
vol. 2020, pp. 8890677:1–8890677:12, 2020.

[24] Ghosh, S. and Nilges, T., “An algebraic approach to
maliciously secure private set intersection,”
vol. 11478, pp. 154–185, 2019.

[25] Zhao, Y. and Chow, S. S. M. ,“Are you the one to
share? secret transfer with access structure,” Proc. Priv.
Enhancing Technol., vol. 2017, no. 1, pp. 149–169, 2017.

[26] Ghosh, S. And Nilges, T. ,“An algebraic approach to
maliciously secure private set intersection.”
Cryptology ePrint Archive, Report 2017/1064, 2017.

[27] Zhang, E. , Chang, J. and Li, Y. ,“Efficient threshold
private set intersection,” IEEE Access, vol.9, pp. 6560–
6570, 2021.

[28] Chandran, N., Gupta, D., and Shah, Akash, “Circuit-
PSI with Linear Complexity via Relaxed Batch OPPRF”,
22nd Privacy Enhancing Technologies Symposium
(PETS 2022), 2022.

[29] Karakoç, F., Küpçü, A., “Enabling Two-Party Secure
Computation on Set Intersection” IACR Cryptol. ePrint
Arch. 2023: 609, 2023.

Aslı Bay
New Threshold Private Set Intersection Protocols

60

[30] Bay, A., Erkin, Z., Hoepman, J., Samardjiska, S. and
Vos, J., “Practical multi-party private set intersection
protocols,” IEEE Trans. Inf. Forensics Secur., vol. 17, pp. 1–
15, 2022.

[31] Zhao, Y., and Chow, S. S., “Can you find the one for
me?,” in Proceedings of the 2018 Workshop
on Privacy in the Electronic Society, WPES’18, (New York,
NY, USA), p. 54–65, Association for
Computing Machinery, 2018.

[32] Bloom, B. H., “Space/time trade-offs in hash coding
with allowable errors,” Communications of the ACM, vol.
13, pp. 422–426, 1970.

[33] Bose, P. , Guo, H. , Kranakis, E. , Maheshwari, A. ,
Morin, P., Morrison, J., Smid, M. H. M. and. Tang, Y. “On
the false-positive rate of bloom filters,” Inf. Process. Lett.,
vol. 108, no. 4, pp. 210–213, 2008.

[34] Davidson, A. and Cid, C., “An efficient toolkit for
computing private set operations,” in Information
Security and Privacy - 22nd Australasian Conference,
ACISP 2017, Auckland, New Zealand, July 3-5, 2017,
Proceedings, Part II (J. Pieprzyk and S. Suriadi, eds.), vol.
10343 of Lecture Notes in Computer Science, pp. 261–
278, Springer, 2017.

[35] Shamir, A., “How to share a secret.,”
Communications of the ACM, vol. 22, no. 11, pp. 612–613,
1979.

[36] Reed, I. S. and Solomon, “ G., Polynomial codes over
certain finite fields,” vol. 8, no. 2, pp. 300–304, 1960.

[37] Gao, S. , “A New Algorithm for Decoding Reed-
Solomon Codes”, pp. 55–68. Boston, MA: Springer, US,
2003.

[38] Yao, A. C., “Protocols for secure computations
(extended abstract),” in 23rd Annual Symposium on
Foundations of Computer Science, Chicago, Illinois, USA,
3-5 November 1982, pp. 160–164, IEEE Computer
Society, 1982.

[39] Veugen, T., Blom, F., Hoogh, S. J. A. de and Erkin, Z.,
“Secure comparison protocols in the semi-
honest model,” IEEE Journal of Selected Topics in Signal
Processing, vol. 9, no. 7, pp. 1217–1228,
2015.

[40] Garay, J. A., Schoenmakers, B. and Villegas, J.
“Practical and secure solutions for integer comparison,”
in Public Key Cryptography - PKC 2007, 10th
International Conference on Practice and Theory in
Public-Key Cryptography, Beijing, China, April 16-20,
2007, Proceedings (T. Okamoto and X. Wang, eds.), vol.
4450 of Lecture Notes in Computer Science, pp. 330–342,
Springer, 2007.

[41] Bellare, M., Desai, A. , Lokipii, E. and Rogaway, P. , “A
concrete security treatment of symmetric
encryption,” in Proceedings of the 38th Annual
Symposium on Foundations of Computer Science, FOCS ’97,
(USA), p. 394, IEEE Computer Society, 1997.

