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Abstract

The aim of this paper is to determine the eigenvalue intervals of µk, 1≤ k≤ n for which
an iterative systems of a class of fractional-order differential equations with parameterized
integral boundary conditions (BCs) has at least one positive solution by means of standard
fixed point theorem of cone type. To the best of our knowledge, this will be the first time
that we attempt to reach such findings for the topic at hand in the literature. The obtained
results in the paper are illustrated with an example for their feasibility.

1. Introduction

There is a strong impetus for the study of nonlinear fractional systems, and significant research efforts have been made undertaken lately
for these systems with the aim of implementing findings on the existence of positive solutions in related fields. At this point, differential
calculus expanded its scope to include the dynamics of the complex real world, and new theories began to be put into effect and assessed on
real data [1]. A variety of materials and processes with characteristics of heredity and memory can be accurately described by the nonlocal
nature of fractional calculus [2, 3]. There are numerous applications in a variety of scientific disciplines, including biomathematics [4],
viscoelasticity [5], non-Newtonian fluid mechanics [6], and characterization of anomalous diffusion [7].
Progressively, distinctive scientific advances and tools are created specifically for fractional differential equations (FDEqs). Due to this, a
significant amount of scientists concentrate on boundary value problems (BVPs) for FDEqs involving various derivatives, such as Riemann–
Liouville or Caputo, as well as some novel derivatives, including conformable fractional derivatives [8]. The literature on FDEqs of the
conformable type is not enriched yet. The conformable fractional derivative was first proposed in 2014. The conformable derivative can be
utilized for modeling many physical problems as DEqs with conformable fractional derivatives are easier to solve numerically in comparison
to those with Riemann–Liouville or Caputo fractional derivatives. A new concept, known as the conformable fractional derivative, has
recently [9, 10] been defined. Indeed, several researchers have previously applied conformable fractional derivatives to a wide range of
domains, and numerous replicating methodologies have been established, see [11]. In different industries, such as telecommunication
equipment, synthetic chemicals, automobiles, and pharmaceuticals, BVPs are frequently used. In these processes, positive solutions seem to
be beneficial. In these contexts, the existence of positive solutions is often advantageous. For instance, in [12], the authors established the
existence of multiple positive solutions for a coupled system of Riemann–Liouville FBVPs by means of an Avery generalization of the
Leggett–Williams FPT. Subsequently, in [13], the same authors determined the eigenvalue intervals of the parameters leading to a positive
solution for an iterative system of nonlinear Sturm–Liouville FBVPs by utilizing the Guo–Krasnosel’skii FPT on a cone. Additionally,
in [14], the authors examined p-Laplacian fractional higher-order BVPs, establishing criteria for determining parameter values ensuring at
least one positive solution. Furthermore, they derived sufficient conditions for the existence of an even number of positive solutions for
FBVPs using an Avery–Henderson functional FPT. Moreover, in [15], the authors established the existence of at least three positive solutions
to a system of FBVPs by employing a five-functionals FPT. Lastly, in [16], the authors investigated the eigenvalue intervals of parameters
guaranteeing at least one positive solution for an iterative system of four-point FBVPs under suitable conditions.
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Recently, Zhou et al. [17] the existence, uniqueness, and multiplicity of findings associated with positive solutions to various types of
conformable FBVPs. By using conventional fixed point theorems (FPTs) in conjunction with the theory of the cosine family of linear
operators, Bouaouid [18] showed the existence and continuous dependence of mild solutions for a class of conformable FDEqs with nonlocal
initial conditions. In their study of conformable stochastic functional DEqs of the neutral type, Xiao et al. [19] examined the existence and
stability outcomes. A mild solution to a conformable FBVP was introduced by Jaiswal et al. [20] and the existence, uniqueness of solutions
to the considered problem employing the contraction principle have been proven.
Conformable FDEqs with integral BCs provide a more flexible framework for modeling complex systems that exhibit non-local or memory-
dependent behavior. Many real-world processes, such as heat conduction in non-homogeneous materials or transport phenomena in porous
media, can be better described using fractional calculus. Gokdogan et al. demonstrated the uniqueness of solutions for sequential linear
conformable FDEqs in [21]. Khuddush et al. [22] obtained the existence of positive solutions for an iterative system of conformable fractional
dynamic BVPs on time scales by an application of FPT on a Banach space. Zhong and Wang in [23], where they studied the existence of
positive solutions to the FBVP

Dqu(z)+ f
(
z,u(z)

)
= 0, z ∈ (0,1),

u(0) = 0, u(1) = λ

∫ 1

0
u(z)dz,

where q∈ (1,2], λ is a constant and Dq is the conformable derivative. By utilizing the solution-tube approach and Schauder’s FPT, Bendouma
et al. [24] investigated the existence of solutions to systems of conformable FDEqs concerning periodic conditions.
In [25], Haddouchi used the Kernel characteristics along with the FPT in a cone to investigate the existence of positive solutions to
conformable FBVPs

Dqu(z)+ f
(
z,u(z)

)
= 0, z ∈ (0,1),

u(0) = 0, u(1) = λ

∫
η

0
u(z)dz,

where q ∈ (1,2], η ∈ (0,1], λ is a constant and Dq is the conformable derivative.
Through the use of various FPTs found in the literature, numerous authors have explored the existence of positive solutions to a variety
BVPs for ordinary, FDEqs during the past few years. Motivated and inspired by above highly decorated topics, by employing the Guo–
Krasnosel’skii FPT of cone compression and expansion of norm kind (see [26, 27]) to the considered problem. More explicitly, we construct
the Kernel for the associated linear FBVP, and estimate the bounds of this Kernel in more detail since they are essential for finding suitable
fixed points for the newly indicated operator on a cone in a Banach space. Furthermore, it was explained how to utilize the fixed point
technique and the bootstrapping argument to establish the existence of positive solutions to the iterative system. To the best of our knowledge,
in this work, we attempt for the first time to determine the eigenvalue intervals of parameters that have positive solutions for the following
iterative systems of conformable FDEqs

Dquk(z)+µkpk(z)gk
(
uk+1(z)

)
= 0

un+1(z) = u1(z), z ∈ (0,1),

}
(1.1)

with parameterized integral BCs

uk(0) = 0, uk(1) = ϑ

∫
ξ

0
uk(z)dz,

for 1≤ k≤ n,

 (1.2)

where q∈ (1,2], ξ ∈ (0,1], ϑ ∈R+ is constant and Dq is the conformable fractional derivative. Iterative FDEqs have a variety of applications,
which makes studying them preferable to non-iterative DEqs. For instance, IFDEqs are the most suitable for studying problems associated
with infectious models and the kinetics of particles that are charged with delayed contact and can’t be employed to study such problems via
ordinary non-iterative DEqs. Iterative DEqs model dynamic systems where a variable’s rate of change depends not only on its current value
but also on its past values. These equations capture the influence of a system’s history on its current state, often in a nonlinear fashion. They
find applications across various fields, including modeling object motion, fluid dynamics, disease spread, chemical reactions, population
growth, control systems, electrical circuits, and economic systems. The equation (1.1) relates a diffusion phenomena with source or reaction
term. For example, in thermal conduction, it can be understood as a one dimensional heat conduction equation modeling steady states of a
heating rod of length c with the controller at r= c, while the left end is held at 0◦C and h is function of source distribution temperature over
time delays in thermal conduction [28, 29]. The main advantage of studying IFDEqs over non-iterative DEqs exist in its various applications.
For example, the problems related to infectious models and the motion of charge particles with retarded interaction are best described using
IFDEqs and cannot be studied by general non DEqs.
We provide varied conditions for the functions g1,g2, · · · ,gn and the intervals of µ1,µ2, · · · ,µn ensuring that positive solutions to the iterative
system of FBVP (1.1)–(1.2). A positive solution of the problem (1.1)–(1.2), we mean

(
u1(z),u2(z), · · · ,un(z)

)
∈
(
C2[0,1]

)n satisfying
(1.1) and (1.2) with uk(z)> 0,k= 1,2, · · · ,n,∀ z ∈ (0,1].
Throughout the article, we propose the following hypotheses:

(H1) ∆ = 2−ϑξ 2 > 0.
(H2) pk : [0,1]→ R+ is continuous and pk does not vanish identically on any closed subinterval of [0,1], for k= 1,n.
(H3) gk : R+→ R+ is continuous, for k= 1,n.

(H4) each of gk0 = lim
x→0+

gk(x)

x
and gk∞ = lim

x→∞

gk(x)

x
, for 1≤ k≤ n, exists as positive real numbers.

The paper is arranged as follows: The preliminary results presented in Sect. 2 serve as foundations for the subsequent sections that follow.
This covers the solution to the corresponding linear problem, an investigation of the characteristics of Kernels, and other pertinent information.
The key existence theorems for the problem (1.1)–(1.2) are the focus of Sect. 3. In Sect. 4, an example is coined in support of validity of the
findings concerning the earlier sections.
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2. Preliminaries, Kernel and Bounds

In order to move on to the key results in the subsequent sections, the necessary results are provided here.

Definition 2.1. [8] The conformable derivative of h : [0,∞)→ R is defined as

D
ζ

0h(r) = lim
ε→0

[
h(r+ εr1−ζ )−h(r)

ε

]
, r > 0, ζ ∈ (0,1],

and

D
ζ

0h(0) = lim
r→0+

D
ζ

0h(r).

If h is differentiable then D
ζ

0h(r) = r1−ζh′(r).

Definition 2.2. [8] The conformable fractional integral of a function of order ζ is defined for h : [0,∞)→ R as

I
ζ

0h(r) =
∫ r

0
sζ−1h(s)ds, s> 0, ζ ∈ (0,1].

Lemma 2.3. [30] Let ζ ∈ (0,1] and h : (0,∞)→ R be differentiable. Then

I
ζ

0D
ζ

0h(r) = h(r)−h(0), ∀ r > 0.

Lemma 2.4. Suppose (H1) holds, let h(z) ∈ C
(
[0,1],R

)
. Then u1(z) ∈ C

(
[0,1],R

)
is a solution of the FBVP

HD
q
1+u1(z)+h(z) = 0, z ∈ (0,1), (2.1)

u1(0) = 0, u1(1) = ϑ

∫
ξ

0
u1(z)dz, (2.2)

has a unique solution

u1(z) =
∫ 1

0
ℵ(z,y)h(y)dy,

where

ℵ(z,y) = ℵ1(z,y)+
ϑz

∆
ℵ2(ξ ,y), (2.3)

ℵ1(z,y) =

{
(1−z)yq−1, 0≤ y≤ z≤ 1,
z(1−y)yq−2, 0≤ z≤ y≤ 1,

ℵ2(z,y) =

{
(2z−z2−y)yq−1, y≤ z,

z2(1−y)yq−2, z≤ y.

Proof. Let u1(z) ∈ C2[0,1] be a solution of FBVP (2.1)-(2.2) and is uniquely expressed as

u1(z) =
2

∑
k=1

ckz
2−k−

∫ z

1
(z−y)yq−2h(y)dy.

By the condition (2.2), we get c2 = 0 and c1 = Iqh(1)+u1(1). Hence the unique solution of FBVP (2.1)-(2.2) is

u1(z) =



∫ z

0
(1−z)yq−1h(y)dy+

∫ 1

z
z(1−y)yq−2h(y)dy+

ϑz

∆

∫
ξ

0
yq−2

[
ξ

2(1−y)− (ξ −y)2
]
h(y)dy+

ϑz

∆

∫ 1

ξ

ξ
2(1−y)yq−2h(y)dy

=


∫ 1

0
ℵ1(z,y)h(y)dy+

ϑz

∆

∫
ξ

0
yq−1(2ξ −ξ

2−y
)
h(y)dy+

ϑz

∆

∫ 1

ξ

ξ
2(1−y)yq−2h(y)dy

=
∫ 1

0
ℵ1(z,y)h(y)dy+

ϑz

∆

∫ 1

0
ℵ2(ξ ,y)h(y)dy

=
∫ 1

0
ℵ(z,y)h(y)dy,

where ℵ(z,y) is given in (2.3). The proof is completed.
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Lemma 2.5. The Kernel ℵ(z,y) given in (2.3) is nonnegative, for all z,y ∈ [0,1].

Proof. The Kernel ℵ(z,y) is given in (2.3). Let 0≤ z≤ y≤ 1. Then:

ℵ1(z,y) = z(1−y)yq−2 ≥ 0.

Let 0≤ y≤ z≤ 1. Then:

ℵ1(z,y) = (1−z)yq−1 ≥ 0.

On the other hand, let 0≤ ξ ≤ y≤ 1. Then:

ℵ2(ξ ,y) = ξ
2(1−y)yq−2 ≥ 0.

Let 0≤ y≤ ξ ≤ 1. Then:

ℵ2(ξ ,y) = (2ξ −ξ
2−y)yq−1 ≥ 0.

Hence ℵ(z,y)≥ 0.

Lemma 2.6. Let σ ∈
(
0, 1

2
)
. The Kernel ℵ1(z,y) has the properties:

(1) ℵ1(z,y)≤ℵ1(y,y), ∀ z,y ∈ (0,1],

(2) ℵ1(z,y)≥ z(1−z)ℵ1(y,y),∀ z,y ∈ (0,1],

(3) ℵ1(z,y)≥ σ2ℵ1(y,y),∀ z ∈ [σ ,1−σ ],y ∈ (0,1].

Proof. We prove (1). Let 0≤ z≤ y≤ 1. Then:

ℵ1(z,y) = z(1−y)yq−2

≤ (1−y)yq−1

= ℵ1(y,y).

Let 0≤ y≤ z≤ 1. Then:

ℵ1(z,y) = (1−z)yq−1

≤ (1−y)yq−1

= ℵ1(y,y).

Hence the inequality (1). We establish the inequality (2). Let 0≤ z≤ y≤ 1. Then:

ℵ1(z,y) = z(1−y)yq−2

≥ (1−z)yq−1

≥ z(1−z)ℵ1(y,y).

Let 0≤ y≤ z≤ 1. Then:

ℵ1(z,y) = (1−z)yq−1

≥ (1−z)(1−y)yq−1

≥ z(1−z)ℵ1(y,y).

Hence the inequality (2). On the other hand, if σ ∈
(

0,
1
2

)
, then ℵ1(z,y) satisfies

ℵ1(z,y)≥ σ
2
ℵ1(y,y),∀ z ∈ [σ ,1−σ ],y ∈ (0,1].

Lemma 2.7. Let σ ∈
(
0, 1

2
)
. The Kernels ℵ1(z,y) and ℵ2(z,y) have the properties:

(1) ℵ2(z,y)≤ℵ1(y,y), ∀ z,y ∈ (0,1],

(2) ℵ2(z,y)≥ θ(z)ℵ1(y,y),∀ z,y ∈ (0,1],

where θ(z) = min
{
z2,z(1−z)

}
=

{
z2, z≤ 1

2 ,

z(1−z), z> 1
2 ,

(3) ℵ2(z,y)≥ σ2ℵ1(y,y),∀ z ∈ [σ ,1−σ ],y ∈ (0,1].
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Proof. Let 0≤ z≤ y≤ 1. Then:

ℵ2(z,y) = z2(1−y)yq−2

≤ z(1−y)yq−2

≤ (1−y)yq−1

= ℵ1(y,y).

Let 0≤ y≤ z≤ 1. Then:

ℵ2(z,y) = (2z−z2−y)yq−1

≤
[
(1−y)− (1−z)2]yq−1

≤ (1−y)yq−1

= ℵ1(y,y).

Hence the inequality (1). Let 0≤ z≤ y≤ 1. Then:

ℵ2(z,y) = z2(1−y)yq−2

≥ z2y(1−y)yq−2

= z2(1−y)yq−1

= z2
ℵ1(y,y).

Let 0≤ y≤ z≤ 1. Then:

ℵ2(z,y) = (2z−z2−y)yq−1

=
[
z(1−z)+(z−y)

]
yq−1

≥ z(1−z)yq−1

≥ z(1−z)(1−y)yq−1

≥ z(1−z)ℵ1(y,y).

Therefore ℵ2(z,y)≥ θ(z)ℵ1(y,y),∀ z,y ∈ (0,1], where

θ(z) = min
{
z2,z(1−z)

}
=

{
z2, z≤ 1

2 ,

z(1−z), z> 1
2 .

Hence the inequality (2). On the other hand, if σ ∈
(
0, 1

2
)
, then it follows immediately from (2):

ℵ2(z,y)≥ σ
2
ℵ1(y,y),∀ z ∈ [σ ,1−σ ],y ∈ (0,1].

3. Existence of Positive Solutions

An n-tuple
(
u1(z),u2(z), · · · ,un(z)

)
is a solution of the FBVP (1.1)-(1.2) if and only if uk(z) ∈ C2[0,1], k= 1,2, · · · ,n satisfies:

u1(z) =



µ1

∫ 1

0

[
ℵ1(z,y1)+

ϑz

∆
ℵ2(ξ ,y1)

]
p1(y1)

g1

(
µ2

∫ 1

0

[
ℵ1(y1,y2)+

ϑy1

∆
ℵ2(ξ ,y2)

]
p2(y2) · · ·

gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

)
· · ·dy2

)
dy1,

and 

u2(z) = µ2

∫ 1

0

[
ℵ1(z,y)+

ϑz

∆
ℵ2(ξ ,y)

]
p2(y)g2

(
u3(y)

)
dy,

u3(z) = µ3

∫ 1

0

[
ℵ1(z,y)+

ϑz

∆
ℵ2(ξ ,y)

]
p3(y)g3

(
u4(y)

)
dy,

· · ·

un(z) = µn

∫ 1

0

[
ℵ1(z,y)+

ϑz

∆
ℵ2(ξ ,y)

]
pn(y)gn

(
un+1(y)

)
dy,
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where un+1(z) = u1(z), 0 < z< 1. By a positive solution of the FBVP (1.1)-(1.2), we mean
(
u1(z),u2(z), · · · ,un(z)

)
∈
(
C2[0,1]

)n
which satisfying the FDEq (1.1) and BCs (1.2) with uk(z)> 0,k= 1,n ∀ z ∈ [0,1].
Let B=

{
x : x ∈ C[0,1]

}
be the Banach space endowed with the norm

‖x‖= max
z∈[0,1]

|x(z)|

and P⊂ B be a cone defined as

P=

{
x ∈ B : x(z)≥ 0 on [0,1] and min

z∈
[

σ ,1−σ

]x(z)≥ σ
2‖x‖

}
,

where σ ∈
(
0, 1

2
)
. Construct an integral operator T : P→ B, for u1 ∈ P, as

Tu1(z) =


µ1

∫ 1

0

[
ℵ1(z,y1)+

ϑz

∆
ℵ2(ξ ,y1)

]
p1(y1)g1

(
µ2

∫ 1

0

[
ℵ1(y1,y2)+

ϑy1

∆
ℵ2(ξ ,y2)

]
p2(y2) · · ·gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

)
· · ·dy2

)
dy1.

Notice from (H1) and Lemma 2.5 that, for u1 ∈ P, Tu1(z)≥ 0 on [0,1]. In addition, we have

Tu1(z)≤



µ1

∫ 1

0

[
ℵ1(y1,y1)+

ϑ

∆
ℵ2(ξ ,y1)

]
p1(y1)

g1

(
µ2

∫ 1

0

[
ℵ1(y1,y2)+

ϑy1

∆
ℵ2(ξ ,y2)

]
p2(y2) · · ·

gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

)
· · ·dy2

)
dy1

so that

‖Tu1‖ ≤ µ1

∫ 1

0

[
ℵ1(y1,y1)+

ϑ

∆
ℵ2(ξ ,y1)

]
p1(y1)

g1

(
µ2

∫ 1

0

[
ℵ1(y1,y2)+

ϑy1

∆
ℵ2(ξ ,y2)

]
p2(y2) · · ·gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆

ℵ2(ξ ,yn)
]
pn(yn)gn

(
u1(yn)

)
dyn

)
· · ·dy2

)
dy1.


(3.1)

If u1 ∈ P, from Lemmas 2.6, 2.7 and (3.1), we deduce that

min
z∈
[

σ ,1−σ

]Tu1(z) =



min
z∈
[

σ ,1−σ

]µ1

∫ 1

0

[
ℵ1(z,y1)+

ϑz

∆
ℵ2(ξ ,y1)

]
p1(y1)g1

(
µ2

∫ 1

0

[
ℵ1(y1,y2)+

ϑy1

∆
ℵ2(ξ ,y2)

]
p2(y2) · · ·gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆

ℵ2(ξ ,yn)
]
pn(yn)gn

(
u1(yn)

)
dyn

)
· · ·dy2

)
dy1

≥



µ1σ
2
∫ 1

0

[
ℵ1(y1,y1)+

ϑ

∆
ℵ2(ξ ,y1)

]
p1(y1)g1

(
µ2

∫ 1

0

[
ℵ1(y1,y2)+

ϑy1

∆
ℵ2(ξ ,y2)

]
p2(y2) · · ·gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆

ℵ2(ξ ,yn)
]
pn(yn)gn

(
u1(yn)

)
dyn

)
· · ·dy2

)
dy1

≥ σ
2‖Tu1‖.

Therefore min
z∈
[

σ ,1−σ

]Tu1(z)≥ σ
2‖Tu1‖. Hence Tu1 ∈ P and so T : P→ P. An application of the Arzela–Ascoli Theorem indicates that the

operator T remains completely continuous.
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3.1. Notations

We introduce:

σ1 = max



[
σ

2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p1(y)dyg1∞

]−1

,[
σ

2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p2(y)dyg2∞

]−1

,

· · ·[
σ

2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
pn(y)dygn∞

]−1


,

σ2 = min



[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p1(y)dyg10

]−1

,[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p2(y)dyg20

]−1

,

· · ·[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
pn(y)dygn0

]−1


.

Theorem 3.1. Suppose (H1)-(H4) hold. Then for each µk,k= 1,n satisfying

σ1 < µk < σ2, k= 1,n, (3.2)

there exists an n-tuple
(
u1,u2, · · · ,un

)
satisfying the FBVP (1.1)-(1.2) s.t. uk(z)> 0, k= 1,n on (0,1).

Proof. Let µk, k= 1,n be found as in (3.2). Now let ε > 0 be chosen s.t.

max



[
σ

2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p1(y)dy(g1∞− ε)

]−1

,[
σ

2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p2(y)dy(g2∞− ε)

]−1

,

· · ·[
σ

2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
pn(y)dy(gn∞− ε)

]−1


≤min



µ1,
µ2,
·
·
·

µn



and

max



µ1,
µ2,
·
·
·

µn


≤min



[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p1(y)dy(g10 + ε)

]−1

,[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p2(y)dy(g20 + ε)

]−1

,

· · ·[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
pn(y)dy(gn0 + ε)

]−1


.

Furthermore, according to gk0, k= 1,n, there exists an N1 > 0 s.t., for each 1≤ k≤ n, gk(x)≤ (gk0 + ε)x, 1 < x≤ N1.

Let u1 ∈ P with ‖u1‖= N1. By Lemmas 2.6, 2.7 and the choice of ε , for 0≤ yn−1 ≤ 1,

µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

≤ µn

∫ 1

0

[
ℵ1(y,yn)+

ϑ

∆
ℵ2(ξ ,yn)

]
pn(yn)

(
gn0 + ε

)
u1(yn)dyn

≤ µn

∫ 1

0

[
ℵ1(y,yn)+

ϑ

∆
ℵ2(ξ ,yn)

]
pn(yn)dyn

(
gn0 + ε

)
‖u1‖

≤ ‖u1‖= N1.
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It follows from Lemmas 2.6, 2.7 in the same way, for 0≤ yn−2 ≤ 1,

µn−1

∫ 1

0

[
ℵ1(yn−2,yn−1)+

ϑyn−2

∆
ℵ2(ξ ,yn−1)

]
pn−1(yn−1)

gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

)
dyn−1


≤

 µn−1

∫ 1

0

[
ℵ1(y,yn−1)+

ϑ

∆
ℵ2(ξ ,yn−1)

]
pn−1(yn−1)dyn−1

(
gn−10 + ε

)
‖u1‖

≤ ‖u1‖= N1.

Proceeding with the bootstrapping assertion, for 0≤ z≤ 1,

µ1

∫ 1

0

[
ℵ1(z,y1)+

ϑz

∆
ℵ2(ξ ,y1)

]
p1(y1)

g1

(
µ2

∫ 1

0

[
ℵ1(y1,y2)+

ϑy1

∆
ℵ2(ξ ,y2)

]
p2(y2) · · ·

gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

)
· · ·dy2

)
dy1


≤ N1,

so that, for 0≤ z≤ 1, Tu1(z)≤ N1. Hence ‖Tu1‖ ≤ N1 = ‖u1‖. If we set E1 =
{
x ∈ B : ‖x‖< N1

}
, then

‖Tu1‖ ≤ ‖u1‖, for u1 ∈ P∩∂E1. (3.3)

Additionally, according to gk∞, k= 1,n, there exists N2 > 0 s.t., for each 1≤ k≤ n, gk(x)≥ (gk∞−ε)x, x≥ N2. Choose N2 = max
{

2N1,
N2

σ2

}
.

Let u1 ∈ P and ‖u1‖= N2. Then

min
z∈
[

σ ,1−σ

]u1(z)≥ σ
2‖u1‖ ≥ N2.

Based on Lemmas 2.6, 2.7 and choice of ε , for 0≤ yn−1 ≤ 1, we have:

µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

≥σ
2
µn

∫ 1−σ

σ

[
ℵ1(y,yn)+

ϑ

∆
ℵ2(ξ ,yn)

]
pn(yn)

(
gn∞− ε

)
u1(yn)dyn

≥σ
2
µn

∫ 1−σ

σ

[
ℵ1(y,yn)+

ϑ

∆
ℵ2(ξ ,yn)

]
pn(yn)dyn

(
gn∞− ε

)
‖u1‖

≥‖u1‖= N2.

It stems in the same way from Lemmas 2.6, 2.7 and choice of ε , for 0≤ yn−2 ≤ 1:

µn−1

∫ 1

0

[
ℵ1(yn−2,yn−1)+

ϑyn−2

∆
ℵ2(ξ ,yn−1)

]
pn−1(yn−1)

gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

)
dyn−1


≥

 σ
2
µn−1

∫ 1−σ

σ

[
ℵ1(y,yn−1)+

ϑ

∆
ℵ2(ξ ,yn−1)

]
pn−1(yn−1)dyn−1

(
gn−1∞

− ε
)
‖u1‖

≥ ‖u1‖= N2.

By bootstrapping argument, we discover:

µ1

∫ 1

0

[
ℵ1(z,y1)+

ϑz

∆
ℵ2(ξ ,y1)

]
p1(y1)

g1

(
µ2

∫ 1

0

[
ℵ1(y1,y2)+

ϑy1

∆
ℵ2(ξ ,y2)

]
p2(y2) · · ·

gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

)
· · ·dy2

)
dy1


≥ N2,
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so that Tu1(z)≥ N2 = ‖u1‖. Hence ‖Tu1‖ ≥ ‖u1‖. So if we set E2 =
{
x ∈ B : ‖x‖< N2

}
, then

‖Tu1‖ ≥ ‖u1‖, for u1 ∈ P∩∂E2. (3.4)

By utilizing (3.3), (3.4) and Guo–Krasnosel’skii FPT (see [26, 27]), we discover that T has a fixed point u1 ∈ P∩ (E2\E1). Setting u1 = un+1
yields a positive solution

(
u1,u2, · · · ,un

)
of the FBVP (1.1)–(1.2) iteratively indicated by:

uk(z) = µk

∫ 1

0

[
ℵ1(z,y)+

ϑz

∆
ℵ2(ξ ,y)

]
pk(y)gk

(
uk+1(y)

)
dy,

k= n,n−1, · · · ,1.

3.2. Notations

We introduce:

σ3 = max



[
σ

2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p1(y)dyg10

]−1

,[
σ

2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p2(y)dyg20

]−1

,

· · ·[
σ

2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
pn(y)dygn0

]−1


and

σ4 = min



[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p1(y)dyg1∞

]−1

,[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p2(y)dyg2∞

]−1

,

· · ·[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
pn(y)dygn∞

]−1


.

Theorem 3.2. Suppose (H1)-(H4) hold, then for each µk,k= 1,n satisfying

σ3 < µk < σ4, k= 1,n, (3.5)

there exists an n-tuple
(
u1,u2, · · · ,un

)
satisfying the FBVP (1.1)-(1.2) s.t. uk(z)> 0, k= 1,n on (0,1).

Proof. Let µk, k= 1,n be provided as in (3.5). Now let ε > 0 be chosen s.t.

max



[
σ

2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p1(y)dy(g10− ε)

]−1

,[
σ

2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p2(y)dy(g20− ε)

]−1

,

· · ·[
σ

2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
pn(y)dy(gn0− ε)

]−1


≤min



µ1,
µ2,
·
·
·

µn


and

max



µ1,
µ2,
·
·
·

µn


≤min



[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p1(y)dy(g1∞ + ε)

]−1

,[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
p2(y)dy(g2∞ + ε)

]−1

,

· · ·[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
pn(y)dy(gn∞ + ε)

]−1


.

Based on the rules of gk0, 1≤ k≤ n there exists N3 > 0 s.t., for each 1≤ k≤ n,

gk(x)≥
(
gk0− ε

)
x, 1 < x≤ N3.
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According to the definitions of gk0, it follows that gk0(1) = 0, 1≤ k≤ n and so there exist 1 < Θn < Θn−1 < · · ·< Θ2 < N3 s.t.

µkgk(z)≤
Θk−1∫ 1

0

[
ℵ1(y,yn)+

ϑ

∆
ℵ2(ξ ,yn)

]
pk(y)dy

, z ∈
[
1,Θk

]
,

3≤ k≤ n, and

µ2g2(z)≤
N3∫ 1

0

[
ℵ1(y,yn)+

ϑ

∆
ℵ2(ξ ,yn)

]
p2(y)dy

, z ∈
[
1,Θ2

]
.


Let u1 ∈ P with ‖u1‖= Θn. Then:

µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

≤ µn

∫ 1

0

[
ℵ1(y,yn)+

ϑ

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

≤

∫ 1
0

[
ℵ1(y,yn)+

ϑ

∆
ℵ2(ξ ,yn)

]
pn(yn)Θn−1dyn∫ 1

0

[
ℵ1(y,yn)+

ϑ

∆
ℵ2(ξ ,yn)

]
pn(yn)dyn

≤Θn−1.

Utilizing this bootstrapping technique, it implies that

µ2

∫ 1

0

[
ℵ1(y1,y2)+

ϑy1

∆
ℵ2(ξ ,y2)

]
p2(y2)

g2

(
µ3

∫ 1

0

[
ℵ1(y2,y3)+

ϑy2

∆
ℵ2(ξ ,y3)

]
p3(y3) · · ·

gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

)
· · ·dy2

)
dy1


≤ N3.

Then

Tu1(z) =



µ1

∫ 1

0

[
ℵ1(z,y1)+

ϑz

∆
ℵ2(ξ ,y1)

]
p1(y1)

g1

(
µ2

∫ 1

0

[
ℵ1(y1,y2)+

ϑy1

∆
ℵ2(ξ ,y2)

]
p2(y2) · · ·

gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

)
· · ·dy2

)
dy1

≥ σ
2
µ1

∫ 1−σ

σ

[
ℵ1(y,y1)+

ϑ

∆
ℵ2(ξ ,y1)

]
p1(y1)

(
g10− ε

)
‖u1‖dy1

≥ ‖u1‖.

So ‖Tu1‖ ≥ ‖u1‖. If we set E1 =
{
x ∈ B : ‖x‖< Θn

}
, then

‖Tu1‖ ≥ ‖u1‖, for u1 ∈ P∩∂E1. (3.6)

It follows that gk, 1≤ k≤ n is unbounded at ∞. Since each gk∞ is considered to be a positive real number. For each 1≤ k≤ n, set

g∗k(x) = sup
y∈[1,x]

gk(y).

Based on the definition of gk∞, 1≤ k≤ n, there exists N4 s.t., for each 1≤ k≤ n,

g∗k(x)≤
(
gk∞ + ε

)
x, x≥ N4.

It follows that there exists N4 = max
{

2N3,N4

}
s.t., for each 1≤ k≤ n,

g∗k(x)≤ g∗k
(
N4
)
, 1 < x≤ N4.
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Choose u1 ∈ P with ‖u1‖= N4. Then, by using bootstrapping argument, we have:

Tu1(z) =



µ1

∫ 1

0

[
ℵ1(z,y1)+

ϑz

∆
ℵ2(ξ ,y1)

]
p1(y1)

g1

(
µ2

∫ 1

0

[
ℵ1(y1,y2)+

ϑy1

∆
ℵ2(ξ ,y2)

]
p2(y2) · · ·

gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

)
· · ·dy2

)
dy1

≤



µ1

∫ 1

0

[
ℵ1(y,y1)+

ϑ

∆
ℵ2(ξ ,y1)

]
p1(y1)

g∗1

(
µ2

∫ 1

0

[
ℵ1(y1,y2)+

ϑy1

∆
ℵ2(ξ ,y2)

]
p2(y2) · · ·

gn−1

(
µn

∫ 1

0

[
ℵ1(yn−1,yn)+

ϑyn−1

∆
ℵ2(ξ ,yn)

]
pn(yn)gn

(
u1(yn)

)
dyn

)
· · ·dy2

)
dy1

≤ µ1

∫ 1

0

[
ℵ1(y,y1)+

ϑ

∆
ℵ2(ξ ,y1)

]
p1(y1)g

∗
1
(
N4
)
dy1

≤ µ1

∫ 1

0

[
ℵ1(y,y1)+

ϑ

∆
ℵ2(ξ ,y1)

]
p1(y1)dy1

(
g1∞ + ε

)
N4

≤ N4 = ‖u1‖.

Thus ‖Tu1‖ ≤ ‖u1‖. So, if we let E2 =
{
x ∈ B : ‖x‖< N4

}
, then

‖Tu1‖ ≤ ‖u1‖, for u1 ∈ P∩∂E2. (3.7)

By utilizing (3.6), (3.7) and Guo–Krasnosel’skii FPT (see [26, 27]), we get that T has a fixed point u1 ∈ P∩ (E2\E1), which in turn with
u1 = un+1 yields an n-tuple

(
u1,u2, · · · ,un

)
satisfying the FBVP (1.1)-(1.2) for the chosen values of µk, k= 1,n.

4. Application

Let n = 2,p1(z) = z+ 1, p2(z) = z+ 2, ξ =
1
2
,ν = 4,σ =

1
4
, g1(u) = u

(
1− 19

20
e−u
)
, g2(u) = u− 39

40
sinu. Then ∆ = 1, g10 =

1
20

, g20 =
1

40
, g1∞ = g2∞ = 1.

σ1 = max
1≤i≤2


[

σ
2
∫ 1−σ

σ

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
pi(y)dygi∞

]−1


=max
{

22.67613805,13.41689359
}

=22.67613805.

σ2 = min
1≤i≤2


[∫ 1

0

[
ℵ1(y,y)+

ϑ

∆
ℵ2(ξ ,y)

]
pi(y)dygi0

]−1


= min
{

28.34517257,33.54223396
}

= 28.34517257.

Theorem 3.1’s requirements are all met. Therefore by Theorem 3.1 the following BVP

D1.5u1(z)+µ1(z+1)u2(z)

(
1− 19

20
eu2(z)

)
= 0 z ∈ (0,1),

D1.5u2(z)+µ2(z+2)
(
u1(z)−

39
40

sinu1(z)

)
= 0, z ∈ (0,1),



uk(0) = 0, uk(1) = 4
∫ 1/2

0
uk(z)dz, for k= 1,2,

has a positive solution if 22.67613805 < µk < 28.34517257 for k= 1,2.
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5. Conclusion

In conclusion, this paper effectively fulfills its objective of identifying the eigenvalue intervals of µk, 1 ≤ k ≤ n, for which an iterative
system of a class of fractional-order DEqs with parameterized integral BCs possesses at least one positive solution. This is accomplished
through the utilization of the standard fixed-point theorem of cone type. The significance of this work lies in its novelty; the authors assert
that it represents the inaugural endeavor in the literature to derive such insights for this specific domain.

6. Comparison

In comparison to existing approaches, our study explores the eigenvalue intervals of µk, 1≤ k≤ n for a class of FDEqs with parameterized
integral BCs. By employing standard FPT of cone and combining an incomplete ℵ-function with a broad category of polynomials, the
researchers devised generalized fractional calculus formulations [31]. Additionally, they utilized the natural transform method along with
graph-based approaches to represent solutions for the M-Sturm-Liouville problem [32]. Moreover, the MDLTM was applied to provide
analytic solutions for the fractional pseudo hyperbolic telegraph equation [33]. Notably, the existence and uniqueness of the model underlying
the Caputo-Fabrizio-fractal-fractional derivative were demonstrated using FPTs [34]. Furthermore, the fundamental properties of a new
integral transformation were elucidated, and its application to elementary functions was discussed in [35].
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