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Abstract. In this article, we adopt the tempered fractional integral opera-
tors to develop some novel Minkowski and Hermite-Hadamard type integral

inequalities. Thus, we give several special cases of the integral inequalities for

tempered fractional integrals obtained in the earlier works.

1. Introduction

The theory of convexity plays a vital role in different fields of pure and applied sci-
ences. Consequently, the classical concepts of convex sets and convex functions have
been generalized in different directions. The concept of function is one of the ba-
sic structures of mathematics, and many researchers have focused on new function
classes and have made efforts to classify the space of functions. One of important
class of functions defined as a product of this intense effort is the convex function,
which has applications in statistics, inequality theory, convex programming, and
numerical analysis. This interesting class of functions is defined as follows ( men-
tioned in ([6]).

Definition 1. Let H be an interval in R. Then f : H → R is said to be convex if

f (ξa+ (1− ξ) b) ≤ ξf (a) + (1− ξ) f(b)

for all a, b ∈ H and ξ ∈ [0, 1] .

For more information, see the papers [1-5] and [22]- [24].
Another aspect due to which the convexity theory has attracted many researchers
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is its close relationship with theory of inequalities. Many famous inequalities can be
obtained using the concept of convex functions. For details related to convexity, in-
terested readers are referred to [6,7]. Among these inequalities, Hermite–Hadamard
inequality, which provides us a necessary and sufficient condition for a convex func-
tion, is one of the most studied results. This result of Hermite and Hadamard reads
as follows:

Let f : I ⊆ R → R be a convex mapping defined on the interval I of real numbers
and a, b ∈ I, with a < b. The following double inequality holds:

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f (a) + f (b)

2
(1)

This double inequality is known in the literature as the Hermite-Hadamard inequal-
ity for convex functions.

Definition 2. ([17-18]) Let f ∈ L1(a, b). The Riemann Liouville integrals Iαa+f
and Iαb−f of order α > 0 with a ≥ 0 are defined by

Iαa+f (x) =
1

Γ (α)

∫ x

a

f (ξ) (x− ξ)
α−1

dξ, x > a (2)

and

Iαb−f(x) =
1

Γ (α)

∫ b

x

f (ξ) (ξ − x)
α−1

dξ, b > x (3)

The tempered fractional integral was first studied by Buschman [8], but Liu et al.
[9], Meerschaert et al. [10] and Fernandez et al. [12] have described the associated
tempered fractional calculus more explicitly.

Definition 3. ([10]) Let [a, b] be a real interval and ζ ≥ 0, α > 0. Then, for
a function f ∈ L1[a, b], the left and right tempered fractional integral, respectively,
defined by

a+Jα,ζf (x) =
1

Γ(α)

∫ x

a

(x− ξ)
α−1

e−ζ(x−ξ)f (ξ) dξ (4)

and

b−J
α,ζf (x) =

1

Γ(α)

∫ b

x

(ξ − x)
α−1

e−ζ(ξ−x)f (ξ) dξ, (5)

where Γ(α) is the Gamma function defined by Γ(α) =
∫∞
0

tz−1e−tdt.

For any ζ > 0, the positive one-sided tempered fractional operator of a suitable
function f(x) can be given by;

τJα,ζx f (x) =
1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)f (ξ) dξ.
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Remark 1. If we take ζ = 0 in the equations (4) and (5), then we have the left
and right R-L operators (2) and (3) respectively.

First of all, we define the new incomplete Gamma function following definition
as in [11].

Definition 4. For the real numbers , α > 0 and , x, ζ ≥ 0, we define the ζ-
incomplete Gamma function by

Iα(α, b) =
1

Γ(α)

b∫
0

xα−1e−ζtdx

If ζ = 1, it reduces to the incomplete Gamma function

Iα(α, b) =
1

Γ(α)

b∫
0

xα−1e−xdx.

Remark 2. For the real numbers α > 0 and x, ζ ≥ 0, we have

a. Iζ(b−a) (α, 1) =
∫ 1

0
xα−1 e−ζ(b−a)xdx = 1

(b−a)α Iα (α,b− a)

b.
∫ 1

0
Iα(b−a) (α, x) dx = Iα(α ,b−a)

(b−a)α − Iα(α+1 ,b−a)

(b−a)α+1

Recently, Nisar et al. [13] established some inequalities via fractional con-
formable integral operators. In [14,15], various researchers established Minkowski
inequalities involving fractional calculus with general analytic kernels and some
novel estimations of Hadamard type inequalities for different kinds of convex func-
tions via tempered fractional integral operator, the Hermite–Hadamard type in-
equalities for k-fractional conformable integrals are found in [16].
This paper is organized in the following way: In Section 2, the main results, the
reverse Minkowski and related Hermite-Hadamard integral inequalities, are estab-
lished using tempered fractional integral operators. The concluding remarks are
given in Section 3.

2. Main Results

In this section, the reverse Minkowski and Hermite-Hadamard type integral in-
equalities are developed using the tempered integral operator.

Theorem 1. Let ζ ≥ 0, α > 0, p≥1 and let there be two positive functions
f1 and f2 on [0,∞) such that for all x> a, τJα,ζx f1

p (x)<∞, τJα,ζx f2
p (x)<∞. If

0 <τ1≤ f1(ξ)
f2(ξ)

≤τ2, holds for τ1, τ2 ∈ R+ and ξ∈[0,x], then we have:(
τJα,ζx f1

p (x)
) 1

p

+
(
τJα,ζx f2

p (x)
) 1

p≤ 1+τ2 (τ1+2)

(τ1+1) (τ2+1)

(
τJα,ζx (f1 + f2)

p
(x)

) 1
p

. (6)
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Proof. Under the given condition f1(ξ)
f2(ξ)

≤τ2, ξ∈[0,x], it can be written as

(τ2+1)
p
f1

p (ξ) ≤ τ2
p(f1 + f2)

p
(ξ) . (7)

Multiplying both sides of (7) by (x−ξ)α−1

Γ(α)eζ(x−ξ) , then integrating the resulting inequality

with respect to ξ over [0,x], we obtain,

(τ2+1)
p 1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)f1
p (ξ) dξ

≤ τp2
1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)(f1 + f2)
p
(ξ)dξ.

(8)

Consequently, we obtain

(τ2+1)
pτJα,ζx f1

p (x) ≤ τ2
pτJα,ζx (f1 + f2)

p
(x) . (9)

Hence, we can write[
τJα,ζx f1

p (x)
] 1

p ≤ τ2
(τ2 + 1)

[
τJα,ζx (f1 + f2)

p
(x)

] 1
p

. (10)

In contrast, as τ1f2(ξ)≤f1(ξ), it follows that(
1 +

1

τ1

)p

f2
p (ξ) ≤ 1

τ1p
[f1 (ξ)+f2 (ξ)]

p
. (11)

Again, if we multiplying both sides of (11) by (x−ξ)α−1

Γ(α)eζ (x−ξ) , then integrating the

resulting inequality with respect to ξ over [0,x], we obtain,[
τJα,ζx f2

p (x)
] 1

p ≤ 1

(τ1 + 1)

[
τJα,ζx (f1 + f2)

p
(x)

] 1
p

. (12)

Adding the inequalities (10) and (12) yields the desired inequality. □

Remark 3. By setting Theorem 1 for α = 1, ζ = 0 and for an arbitrary choice of
function, we obtain Theorem 1.2 in [20].

Remark 4. In Theorem 1, if we choose ζ = 0, we obtain Theorem 2.1 in [19].

Inequality (6) is referred to as the reverse Minkowski inequality for the tempered
fractional integral operator.

Theorem 2. Let ζ ≥ 0, α > 0, p≥1 and let there be two positive functions
f1 and f2 on [0,∞) such that for all x> a, τJα,ζx f1

p (x)<∞, τJα,ζx f2
p (x)<∞. If

0 <τ1≤ f1(ξ)
f2(ξ)

≤τ2, holds for τ1, τ2 ∈ R+ and ξ∈[0,x], then we have:(
τJα,ζx f1

p (x)
) 2

p

+
(
τJα,ζx f2

p (x)
) 2

p

≥
(
(1+τ2) (τ1+1)

τ2
−2

)[
τJα,ζx f1

p (x)
] 1

p
[
τJα,ζx f2

p (x)
] 1

p

.

(13)



INTEGRAL INEQUALITIES THROUGH TEMPERED FRACTIONAL INTEGRAL 403

Proof. The product of inequalities (10) and (12) yields

(1+τ2) (τ1+1)

τ2

[
τJα,ζx f1

p (x)
] 1

p
[
τJα,ζx f2

p (x)
] 1

p ≤
[
τJα,ζx (f1 + f2)

p
(x)

] 2
p

. (14)

Now, utilizing the Minkowski inequality to the right hand side of (14), one obtains(
τJα,ζx (f1 + f2)

p
(x)

) 2
p ≤

([
τJα,ζx f1

p (x)
] 1

p

+
[
τJα,ζx f2

p (x)
] 1

p

)2

.

Then, we have(
τJα,ζx (f1 + f2)

p
(x)

) 2
p ≤

[
τJα,ζx f1

p (x)
] 2

p

+
[
τJα,ζx f2

p (x)
] 2

p

+ 2
[
τJα,ζx f1

p (x)
] [

τJα,ζx f2
p (x)

]
.

(15)

Thus, from the above inequalities, we obtain the inequality (13).
□

Remark 5. By setting Theorem 2 for α = 1, ζ = 0 and for an arbitrary choice of
function, we obtain Theorem 2.2 in [21].

Remark 6. In Theorem 2, if we choose ζ = 0, we obtain Theorem 2.3 in [19].

Lemma 1. ([19]) Let G be a concave function on [a, b]. Then the following double
inequality holds:

G (a) + G (b) ≤ G (b+ a− x) + G (x) ≤ 2G
(
a+ b

2

)
. (16)

Theorem 3. Let ζ ≥ 0, α > 0, p ≥ 1 and let there be two positive functions ℏ and
L on [0,∞). If ℏp and Lq are two concave functions on [0,∞), then we have:

2−p−q
(
ℏ(0) + ℏ(x)

)p(L(0)+L(x)
)q[τJα,ζx (xα−1)

]2
≤ τJα,ζx

(
xα−1ℏp (x)

)
τJα,ζx

(
xα−1Lq (x)

)
.

(17)

Proof. Since the ℏp and Lq are two concave functions on [0,∞), then by Lemma 1,
for any ξ > 0 we obtain,

ℏ p (0) + ℏp (x) ≤ ℏp (x− ξ) + ℏp (ξ) ≤ 2ℏp
(x
2

)
, (18)

and

Lq (0) + Lq (x) ≤ Lq (x− ξ) + Lq (ξ) ≤ 2Lq
(x
2

)
. (19)
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Multiplying both sides of (18) and (19) by (x−ξ)α−1ξα−1

Γ(α)eζ (x−ξ) , then integrating the re-

sulting inequality with respect to ξ over [0,x], we obtain,

ℏp (0) + ℏp (x)
Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−α dξ

≤ 1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−α ℏp (x− ξ) dξ

+
1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−α ℏp (ξ) dξ

≤
2ℏp

(
x
2

)
Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−α dξ,

(20)

and

Lq (0) + Lq (x)

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−α dξ

≤ 1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−α Lq (x− ξ) dξ

+
1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−α Lq (ξ) dξ

≤
2Lq

(
x
2

)
Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−α dξ.

(21)

Using the change of variables x− ξ = y, we have

1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−α ℏp (x− ξ) dξ = τJα,ζx

(
xα−1ℏp (x)

)
, (22)

and

1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−α Lq (x− ξ) dξ = τJα,ζx

(
xα−1Lq (x)

)
. (23)

Thus, by using (20) and (22) yields,

ℏp (0) + ℏp (x)
(
τJα,ζx

(
xα−1

))
≤ 2τJα,ζx

(
xα−1ℏp (x)

)
≤ ℏp

(x
2

)(
τJα,ζx

(
xα−1

))
,

(24)

Similarly, the use of (21) and (23) yields,

ℏq (0) + Lq (x)
(
τJα,ζx

(
xα−1

))
≤ 2τJα,ζx

(
xα−1Lq (x)

)
≤ Lq

(x
2

)(
τJα,ζx

(
xα−1

))
.

(25)
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The inequalities (24) and (25) imply that

(ℏp (0) + ℏp (x)) (Lq (0) + Lq (x))
(
τJα,ζx

(
xα−1

))2

≤ 4τJα,ζx

(
xα−1ℏp (x)

)
τJα,ζx

(
xα−1Lq (x)

)
.

(26)

Since ℏ and L are positive functions, therefore for any x > 0, p ≥ 1, and q ≥ 1,
we have (

ℏp (0) + ℏp (x)
2

) 1
p

≥ 2−1 (ℏ(0) + ℏ(x)) ,

and (
Lq (0) + ℏp (x)

2

) 1
p

≥ 2−1 (L (0) + L (x)) .

Hence, it follows that

(ℏp (0) + ℏp (x))
2

τJα,ζx

(
xα−1

)
≥ 2−p(ℏ (0) + ℏ (x))pτJα,ζx

(
xα−1

)
, (27)

(Lq (0) + Lq (x))

2
τJα,ζx

(
xα−1

)
≥ 2−q(L (0) + L (x))

qτJα,ζx

(
xα−1

)
. (28)

The inequalities (27) and (28) imply

1

4
(ℏp (0) + ℏp (x)) (Lq (0) + Lq (x))

[
τJα,ζx

(
xα−1

)]2
≥ 2−p−q(ℏ (0) + ℏ (x))p(L (0) + L (x))

q
[
τJα,ζx

(
xα−1

)]2
.

(29)

Thus, by combining (21) and (24), we get the desired result. □

Remark 7. By considering Theorem 3, for α = 1, ζ = 0 and for an arbitrary
choice of function, we obtain Theorem 2.3 in [21].

Remark 8. In Theorem 3, if we choose ζ = 0, we obtain Theorem 2.5 in [19].

Theorem 4. Let ζ ≥ 0, α, β > 0, p≥1 and let there be two positive functions ℏ
and L on [0,∞). If ℏp and Lq are two concave functions on [0,∞), then we have:

22−p−q(ℏ (0)+ℏ (x))p(L (0) + L (x))
q
[
τJα,ζx

(
xβ−1

)]2
≤

[
Γ (β)

Γ (α)
βτJα,ζx

(
xα−1ℏp (x)

)
+ τJα,ζx

(
xβ−1ℏp (x)

)]
×
[
Γ (β)

Γ (α)
βτJα,ζx

(
xα−1Lq (x)

)
+ τJα,ζx

(
xβ−1Lq (x)

)]
.

(30)



406 E. GÜL, A. YALÇIN

Proof. Multiplying both sides of (18) and (19) by (x−ξ)α−1ξβα−1

Γ(α)eζ (x−ξ) , then integrating

the resulting inequality with respect to ξ over [0,x], we obtain

ℏp (0) + ℏp (x)
Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−βα
dξ

≤ 1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−βα
ℏp (x− ξ) dξ

+
1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−βα
ℏp (ξ) dξ

≤
2ℏp

(
x
2

)
Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−βα
dξ,

(31)

and

Lq (0) + Lq (x)

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−βα
dξ

≤ 1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−βα
Lq (x− ξ) dξ

+
1

Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−βα
Lq (ξ) dξ

≤
2Lq

(
x
2

)
Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−βα
dξ.

(32)

Using the change of variables x− ξ = y, we have

Γ(β)

Γ(β)Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−βα
ℏp (x− ξ) dξ

=
Γ(β)

Γ(α)
βτJ

α,ζ

x

(
xα−1ℏp (x)

)
,

(33)

and

Γ(β)

Γ(β)Γ(α)

∫ x

0

(x− ξ)
α−1

e−ζ(x−ξ)

ξ1−βα
Lq (x− ξ) dξ

=
Γ(β)

Γ(α)
βτJ

α,ζ

x

(
xα−1Lq (x)

)
.

(34)
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Thus, from (31) and (33), we write

(ℏp (0) + ℏp (x)) τJαβ,ζx

(
xα−1

)
≤ Γ (β)

Γ (α)
βτJ

α,ζ

x

(
xα−1ℏp (x)

)
+ τJα,ζx

(
xβ−1ℏp (x)

)
≤ 2ℏp

(x
2

)
τJα,ζx

(
xβ−1

)
,

(35)

and with (32) and (34), we can write,

(Lq (0) + Lq (x)) τJαβ,ζx

(
xα−1

)
≤ Γ (β)

Γ (α)
βτJα,ζx

(
xα−1Lq (x)

)
+ τJα,ζx

(
xβ−1Lq (x)

)
≤ 2Lq

(x
2

)
τJα,ζx

(
xβ−1

)
.

(36)

From (30) and (31), it follows that

(ℏp (0) + ℏp (x)) (Lq (0) + Lq (x))
[
τJα,ζx

(
xβ−1

)]2
≤

[
Γ (β)

Γ (α)
βτJα,ζx

(
xα−1ℏp (x)

)
+ τJα,ζx

(
xβ−1ℏp (x)

)]
×
[
Γ (β)

Γ (α)
βτJα,ζx

(
xα−1Lq (x)

)
+ τJα,ζx

(
xβ−1Lq (x)

)]
.

(37)

Since ℏ and L are positive functions, therefore for any x > 0, p ≥ 1, and q ≥ 1,
we have

(ℏp (0) + ℏp (x))
2

τJα,ζx

(
xβ−1

)
≥ 2−p(ℏ (0) + ℏ (x))pτJα,ζx

(
xβ−1

)
, (38)

and

(Lq (0) + Lq (x))

2
τJα,ζx

(
xβ−1

)
≥ 2−q(L (0) + L (x))

qτJα,ζx

(
xβ−1

)
. (39)

Thus from (38) and (39) it follows that

1

4
(ℏp (0) + ℏp (x)) (Lq (0) + Lq (x))

[
τJα,ζx

(
xβ−1

)]2
≥ 2−p−q(ℏ (0) + ℏ (x))p(L (0) + L (x))

q
[
τJα,ζx

(
xβ−1

)]2
.

(40)

Combining inequalities (37) and (40), we get the desired proof.

□

Remark 9. By considering Theorem 4 for α = 1, ζ = 0 and for an arbitrary choice
of function, we obtain Theorem 2.4 in [21].

Remark 10. In Theorem 4, if we choose , ζ = 0, we obtain Theorem 2.8 in [19].

Remark 11. In Theorem 4, if we choose α = β, we obtain Theorem 2.4.
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3. Conclusion

The Minkowski and Hermite-Hadamard inequalities for the tempered fractional
integral operator have been newly established in this paper. Not only do we prove
that the results obtained are mathematically more valuable, but similar inequali-
ties can also be constructed, for example with the help of the incomplete Gamma
function used in Remark 2. We hope that our results can stimulate further research
in various fields of pure and applied science.
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