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ABSTRACT

We put into light some properties of statistical structures with Ricci and Hessian metrics and
provide some examples, relating them to Miao–Tam and Fischer–Marsden equations, and to
gradient solitons.
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1. Introduction

It is known that statistical structures constitute a link between information geometry and the general theory
of affine connections. Originating from probability theory, their study from the differential geometry point of
view has increased. A statistical manifold was originally defined as a differentiable manifold whose points
are probability distributions [1, 2, 23, 25]. The geometry of statistical manifolds has been lately applied
to different fields of information science, information theory, neural networks, machine learning, image
processing, statistical mechanics etc. We recall that a statistical model in information geometry admits as
Riemannian metric the Fisher–Rao metric and is equipped with an affine connection without torsion built
from the expectation of the probability distribution [2].

In the last two decades, special attention has been paid to the study of statistical manifolds endowed with
remarkable geometric structures, as well as their statistical submersions (see, e.g., [14, 18, 19, 21, 22, 31, 32,
36, 37, 39, 40]). In particular, the study of statistical submanifolds in such manifolds is a topic of high interest
[4, 5, 6, 11, 12, 18, 24, 27, 28, 29, 30, 33, 41]. Moreover, statistical solitons were recently investigated in [8, 9, 34].

We recall that a statistical structure [1] on a smooth manifold M is a pair (g,∇) of a pseudo-Riemannian metric
g and a torsion-free affine connection ∇ such that the tensor field ∇g is totally symmetric, i.e.,

(∇Xg)(Y, Z) = (∇Y g)(X,Z)
(
= (∇Zg)(X,Y )

)
for any vector fields X,Y, Z ∈ Γ∞(TM).

In this setting, we shall consider in this article statistical structures having two types of metrics, more
precisely, the Ricci tensor field and the Hessian operator. We are going to derive some basic properties and
provide several examples. Since these tensor fields and the pseudo-Riemannian metric are connected by the
gradient Ricci soliton equation, we will also bring that into discussion.

In all the rest of the paper, we shall consider (M, g) a pseudo-Riemannian manifold (unless something else
is explicitly stated) and we will denote by ∇g its Levi-Civita connection.
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2. Statistical structures with Ricci and Hessian metrics

For an affine connection ∇ and a pseudo-Riemannian metric g on a smooth manifold M , we shall characterize
the statistical pairs with the metric either the Ricci tensor or the Hessian operator.

If the Ricci tensor field Ric∇ of (g,∇) is symmetric and non-degenerate, it becomes a pseudo-Riemannian
metric and we shall further provide the necessary and sufficient condition for (Ric∇,∇) to be a statistical
structure whenever (g,∇) is a statistical structure. If we denote by Q =: Q∇ the Ricci operator defined by
g(QX,Y ) := Ric∇(X,Y ) for X,Y ∈ Γ∞(TM), from a direct computation, we obtain

(∇X Ric∇)(Y,Z) = (∇Xg)(QY,Z) + g((∇XQ)Y,Z)

which implies, by the symmetry of Ric∇ and ∇g, that

(∇X Ric∇)(Y, Z)− (∇Y Ric∇)(X,Z) = (∇Xg)(QY,Z)− (∇Y g)(QX,Z) + g((∇XQ)Y, Z)− g((∇Y Q)X,Z)

= (∇Xg)(Y,QZ)− (∇Y g)(X,QZ) + g
(
(∇XQ)Y − (∇Y Q)X,Z

)
,

and we can state

Theorem 2.1. Let ∇ be a torsion-free affine connection on (M, g) such that the Ricci tensor field Ric∇ of (g,∇) is non-
degenerate and symmetric and the Ricci operator Q of (g,∇) is a ∇-Codazzi tensor field

(
i.e., (∇XQ)Y = (∇Y Q)X for

any X,Y ∈ Γ∞(TM)
)
. Then (Ric∇,∇) is a statistical structure if and only if (g,∇) is a statistical structure.

Example 2.1. If ∇ is a torsion-free affine connection on an Einstein manifold (M, g), then (Ric∇
g

,∇) is a
statistical structure if and only if (g,∇) is a statistical structure.

Taking into account that (g,∇g) is a statistical structure for any pseudo-Riemannian metric g, we illustrate
the previous result by the following example.

Example 2.2. If (M,∇gf,−κf, g) is a gradient almost Ricci soliton (we refer to [38] for its definition) with
the Riemannian metric of constant sectional curvature κ and non-degenerate Ricci tensor field Ric∇

g

, then
(Ric∇

g

,∇g) is a statistical structure on M . Indeed, it follows from the fact that, in this case, the tensor field
Hess(g,∇

g)(f) + κf · g(= −Ric∇
g

) is a ∇g-Codazzi tensor field.

Example 2.3. Another example of statistical structure (Ric∇
g

,∇g) arises on any Ricci symmetric manifold
(M, g) (i.e., satisfying ∇g Ric∇

g

= 0) with non-degenerate Ricci tensor, in particular on any Einstein manifold.
And more general, if ∇g Ric∇

g

= Ω⊗ η, with Ω a symmetric (0, 2)-tensor field and η a 1-form, then (Ric∇
g

,∇g)
is a statistical structure.

We recall that a Riemannian manifold of dimension > 2 is called a quasi-Einstein manifold [10] if there exist
λ, µ ∈ R and a 1-form η such that

Ric∇
g

= λg + µη ⊗ η, (2.1)

respectively, an Einstein manifold [7] if the Ricci curvature tensor field is a multiple of the metric, Ric∇
g

= λg
with λ ∈ R.

Proposition 2.1. Let (M, g) be a quasi-Einstein manifold satisfying (2.1). If η is a ∇g-Codazzi tensor field, then
(Ric∇

g

,∇g) is a statistical structure on M if and only if M is an Einstein manifold, or the g-dual vector field of η is
∇g-parallel.

Proof. For any X,Y, Z ∈ Γ∞(TM), we have

(∇g
X Ric∇

g

)(Y,Z)− (∇g
Y Ric∇

g

)(X,Z) = µ
(
(∇g

X(η ⊗ η))(Y, Z)− (∇g
Y (η ⊗ η))(X,Z)

)
= µ

(
η(Y )(∇Xη)Z + η(Z)(∇Xη)Y − η(X)(∇Y η)Z − η(Z)(∇Y η)X

)
= µ

(
η(Y )(∇Xη)Z − η(X)(∇Y η)Z

)
,

hence, (∇g
X Ric∇

g

)(Y, Z)− (∇g
Y Ric∇

g

)(X,Z) = 0 for any X,Y, Z ∈ Γ∞(TM) if and only if µ = 0 or

η(Y )(∇Xη)Z − η(X)(∇Y η)Z = 0
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for any X,Y, Z ∈ Γ∞(TM). Let ξ be the g-dual vector field of η. Then

η(Y )(∇Xη)Z − η(X)(∇Y η)Z = η(Y )(∇Zη)X − η(X)(∇Zη)Y

= η(Y )g(∇g
Zξ,X)− η(X)g(∇g

Zξ, Y )

= g(∇g
Zξ, η(Y )X − η(X)Y )

for any X,Y, Z ∈ Γ∞(TM), and we get the conclusion.

Example 2.4. If (M, g) is a quasi-Einstein Vaisman manifold (we refer to [16] for its definition and to [35]
for explicit examples) satisfying Ric∇

g

= λg + µη ⊗ η with η the Lee 1-form, then (Ric∇
g

,∇g) is a statistical
structure on M .

For a connection ∇ := ∇g + S, with S a (0, 2)-tensor field on M , we shall further provide conditions on S

such that the couples (g,∇), (Ric∇
g

,∇), and (Ric∇,∇) to be statistical structures, giving, in each case, concrete
examples.

By direct computations we get

Proposition 2.2. Let ∇ := ∇g + S be an affine connection on (M, g), where S is a (1, 2)-tensor field on M . Then

T∇(X,Y ) = S(X,Y )− S(Y,X),

(∇Xg)(Y,Z) = −g(S(X,Y ), Z)− g(S(X,Z), Y )

for any X,Y, Z ∈ Γ∞(TM), therefore, (g,∇) is a statistical structure if and only if

S(X,Y ) = S(Y,X),

g(S(X,Y ), Z) = g(S(X,Z), Y )

for any X,Y, Z ∈ Γ∞(TM).

Since

∇X∇Y Z = ∇g
X∇g

Y Z +∇g
XS(Y,Z) + S(X,∇g

Y Z) + S(X,S(Y,Z))

we find that

Proposition 2.3. The Riemann curvature of the statistical structure (g,∇ := ∇g + S) defined in Proposition 2.2 is given
by

R∇(X,Y )Z = R∇g

(X,Y )Z + (∇g
XS)(Y, Z)− (∇g

Y S)(X,Z) + S(X,S(Y,Z))− S(Y, S(X,Z))

for any X,Y, Z ∈ Γ∞(TM).

We can further deduce

Corollary 2.1. Let (g,∇ := ∇g + S) be the statistical structure defined in Proposition 2.2. If S(S(X,Y ), Z) =
S(S(Z, Y ), X) for any X,Y, Z ∈ Γ∞(TM), then S is a ∇g-Codazzi tensor field if and only if R∇ = R∇g

.

Taking into account that the Ricci tensor field of a Riemannian metric with harmonic curvature is a Codazzi
tensor field, and considering the above properties, we give the following examples of statistical structures with
Ricci metric.

Example 2.5. If (M, g) is a Riemannian manifold with harmonic curvature tensor and the Ricci tensor field
Ric∇

g

is non-degenerate, then (Ric∇
g

,∇g) is a statistical structure.

Moreover

(∇X Ric∇
g

)(Y, Z) = (∇g
X Ric∇

g

)(Y,Z)− g(S(X,Y ), QZ)− g(QY, S(X,Z)),

where g(QX,Y ) := Ric∇
g

(X,Y ), and we can state
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Proposition 2.4. If (M, g) is a Riemannian manifold with harmonic curvature tensor and the Ricci tensor field Ric∇
g

is
non-degenerate, then (Ric∇

g

,∇ := ∇g + S) is a statistical structure, where S is a symmetric (1, 2)-tensor field, satisfying

g(S(X,Y ), Z) = g(S(X,Z), Y ),

S(X,QY ) = S(QX,Y )

for any X,Y, Z ∈ Γ∞(TM), and g(QX,Y ) := Ric∇
g

(X,Y ).

Proof. Remark that the conditions upon S imply

g(QY, S(X,Z)) = g(Z, S(X,QY )) = g(Z, S(QX,Y ))

= g(Z, S(Y,QX)) = g(QX,S(Y,Z))

and we obtain the conclusion.

For a suitable choice of S, we give the following example of statistical structure with Ric∇
g

metric.

Example 2.6. Let S :=
(
g(Qξ0, ·)⊗ g(ξ0, ·) + g(ξ0, ·)⊗ g(Qξ0, ·)

)
⊗ (ξ0 +Qξ0) be the (1, 2)-tensor field from

Proposition 2.4, where ξ0 is a smooth vector field satisfying Q2ξ0 = fξ0, for an n ∈ N and a smooth function
f on M . If the Riemannian metric g has harmonic curvature tensor and the Ricci tensor field Ric∇

g

is non-
degenerate, then (Ric∇

g

,∇ := ∇g + S) is a statistical structure.

Proposition 2.5. If (M, g) is a Riemannian manifold with harmonic curvature tensor and the Ricci tensor field Ric∇
g

is non-degenerate, then (Ric∇,∇ := ∇g + S) is a statistical structure, where S is a symmetric and ∇g-Codazzi (in
particular, ∇g-parallel) (1, 2)-tensor field, satisfying

g(S(X,Y ), Z) = g(S(Z,X), Y ),

S(S(X,Y ), Z) = S(S(Z, Y ), X),

S(X,QY ) = S(QX,Y )

for any X,Y, Z ∈ Γ∞(TM), and g(QX,Y ) := Ric∇
g

(X,Y ).

Proof. From Proposition 2.3 we get

R∇(X,Y )Z = R∇g

(X,Y )Z + S(X,S(Y,Z))− S(Y, S(X,Z)).

Also the conditions upon S imply

S(Y, S(X,Z)) = S(S(X,Z), Y ) = S(S(Y, Z), X) = S(X,S(Y,Z)),

hence Ric∇ = Ric∇
g

, and we obtain the conclusion.

An example of a statistical structure with Ric∇ metric is the following.

Example 2.7. Let S := g(Qnξ0, ·)⊗ g(Qnξ0, ·)⊗Qnξ0 be the (1, 2)-tensor field from Proposition 2.5, where ξ0
is a smooth vector field satisfying Qn+1ξ0 = fQnξ0, for an n ∈ N and a smooth function f on M . If the
Riemannian metric g has harmonic curvature tensor and the Ricci tensor field Ric∇

g

is non-degenerate, then
(Ric∇,∇ := ∇g + S) is a statistical structure.

Also by means of the Levi-Civita connection, now we shall consider other kind of affine connection.

Proposition 2.6. Let J be a symmetric and invertible (1, 1)-tensor field on (M, g). Then ∇ := J−1(∇g ◦ J) is an affine
connection and

T∇(X,Y ) = J−1
(
(∇g

XJ)Y − (∇g
Y J)X

)
,

R∇(X,Y )Z = J−1
(
R∇g

(X,Y )JZ
)

for any X,Y, Z ∈ Γ∞(TM).
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Proof. Remark that from J(∇XY ) = ∇g
XJY , we get

(∇XJ)Y = J−1(∇g
XJ2Y )−∇g

XJY = J−1((∇g
XJ)JY ).

Also

T∇(X,Y ) = J−1(∇g
XJY )− J−1(∇g

Y JX)− [X,Y ]

= J−1
(
∇g

XJY −∇g
Y JX − J(∇g

XY ) + J(∇g
Y X)

)
and

∇g
X∇g

Y JZ = ∇g
X(J(∇Y Z)) = J(∇X∇Y Z),

and we obtain the conclusions.

An example of statistical structure with Ric∇
g

metric and this type of connection is the following.

Example 2.8. If (M, g) is a Riemannian manifold with harmonic curvature tensor, the Ricci tensor field Ric∇
g

is
non-degenerate, and the Ricci operator Q is invertible, then (Ric∇

g

,∇ := Q−1(∇g ◦Q)) is a statistical structure.
Indeed, it follows from the fact that Q is a symmetric and, in this case, also a ∇g-Codazzi tensor field, and it
satisfies

Q((∇XQ)Y ) = (∇g
XQ)QY

and

(∇X Ric∇
g

)(Y, Z)− (∇Y Ric∇
g

)(X,Z) = g(X, (∇g
Y Q)Z)− g(Y, (∇g

XQ)Z)

= g(X, (∇g
ZQ)Y )− g(Y, (∇g

ZQ)X) = 0

for any X,Y, Z ∈ Γ∞(TM).

Another kind of metric of special interest is the Hessian metric. In [9] we obtained some properties of
statistical structures with Hessian metrics, which, we shall briefly recall, bringing into light their natural
connections to gradient solitons.

Let f be a smooth function on (M, g). If the Hessian of f with respect to (g,∇g), denoted by Hess(f) =:

Hess(g,∇
g)(f), is non-degenerate and of constant signature, then Hess(f) is a pseudo-Riemannian metric. A nice

geometrical interpretation of Hessian metrics has recently appeared in mirror symmetry [20], their importance
in ecology being shown in [3].

Denoting by ∇f =: ∇gf the gradient of f with respect to g and assuming that Hess(f) is a pseudo-
Riemannian metric, we proved in [9] the following result.

Theorem 2.2. (i) (Hess(f),∇g) is a statistical structure if and only if the radial curvature vanishes, i.e.,
R∇g

(X,Y )∇f = 0 for any X , Y ∈ Γ∞(TM).
(ii) If (g,∇) is a statistical structure, then (Hess(f),∇) is a statistical structure if and only if R∇(X,Y )∇f = 0 for

any X , Y ∈ Γ∞(TM).

3. Statistical structures and solitons

We shall relate statistical structures with Ricci and Hessian metrics to gradient Ricci solitons (see [8, 9]).
We recall that, for a pseudo-Riemannian metric g on a smooth manifold M and two smooth functions f and

λ on M , the data (M, g,∇f, λ) is called a gradient almost Ricci soliton [38] if

Hess(f) + Ric = λg,

where ∇f =: ∇gf and Hess(f) =: Hess(g,∇
g)(f) is the gradient and the Hessian of f and Ric =: Ric∇

g

is the Ricci
tensor field of g. If λ is a constant, then we drop "almost" from the previous definition and we call the soliton
gradient Ricci soliton.

We assume that Ric and Hess(f) are non-degenerate and Hess(f) is of constant signature. Taking the covariant
derivative in the soliton equation, we infer

(∇g
X Hess(f))(Y, Z) + (∇g

X Ric)(Y, Z) = X(λ)g(Y, Z)

for any X , Y , Z ∈ Γ∞(TM) and we have [9]
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Proposition 3.1. If (M, g,∇f, λ) is

(i) a gradient almost Ricci soliton, then (Ric,∇g) is a statistical structure if and only if

R∇g

(·, ·)∇f = dλ⊗ I − I ⊗ dλ;

(ii) a gradient Ricci soliton, then (Ric,∇g) is a statistical structure if and only if (Hess(f),∇g) is a statistical structure.

We recall that a pseudo-Riemannian metric is said to satisfy the Miao–Tam equation [26] if

Hess(f)− f Ric = −rf + 1

n− 1
g, (3.1)

respectively, the Fischer–Marsden equation [17] if

Hess(f)− f Ric = − rf

n− 1
g, (3.2)

where r denotes the scalar curvature of (Mn, g).

Remark 3.1. (i) By taking the trace in (3.1) or (3.2), and applying then ∆, we infer

∆(∆(f)) = − 1

n− 1
∆(f),

hence, if f is not a harmonic function, then ∆(f) is an eigenfunction of ∆ corresponding to the eigenvalue
− 1

n−1 .
(ii) If f is a harmonic function and g satisfies the Miao–Tam equation, then rf = −n, and if g satisfies the

Fischer–Marsden equation, then rf = 0. In these cases, if f is nowhere zero, then ∇r = −r∇(ln |f |).
Denoting by λ the coefficient of g from (3.1) or (3.2), for any X,Y, Z ∈ Γ∞(TM), we get

(∇g
X Hess(f))(Y, Z)− (∇g

Y Hess(f))(X,Z) = f
(
(∇g

X Ric)(Y, Z)− (∇g
Y Ric)(X,Z)

)
+X(λ)g(Y,Z)− Y (λ)g(X,Z)

and we can state

Proposition 3.2. Let the metric g satisfy either the Miao–Tam equation or the Fischer–Marsden equation with f a smooth
function. If (Ric,∇g) is a statistical structure, then (Hess(f),∇g) is a statistical structure if and only if (rf) is a constant.

From Remark 3.1 and Proposition 3.2, we conclude

Corollary 3.1. If the metric g satisfy either the Miao–Tam equation or the Fischer–Marsden equation with f a harmonic
function, then (Ric,∇g) is a statistical structure if and only if (Hess(f),∇g) is a statistical structure.

Example 3.1. Proposition 3.2 can be used as a criterion to decide when a solution (g, f) of the Miao–Tam
equation (3.1) or the Fischer–Marsden equation (3.2) leads to a statistical structure (Hess(f),∇g). For instance, it
is known from [15, Theorem 3.1] that the n-dimensional Euclidean sphere Sn(c) admits a nontrivial concircular
vector field with a potential function ρ satisfying the Fischer–Marsden equation. In this case, it follows
immediately that (Ric,∇g) is a statistical structure on Sn(c) (where g denotes the standard metric on Sn(c)),
but (Hess(ρ),∇g) is not due to the fact that (rρ) is not a constant (since the scalar curvature r is a non-zero
constant and the potential function ρ is not constant).

We extended the notion of a statistical structure as follows. If h is a symmetric (0, 2)-tensor field and ∇ is a
torsion-free affine connection, we call (h,∇) a nearly statistical structure on M [8] if ∇h is totally symmetric.

We will further consider a more general notion of soliton, not necessarily in the presence of a pseudo-
Riemannian metric. More precisely, we call (M,∇, J, ξ, λ) a (∇, J, ξ)-soliton [13] if

∇ξ + J = λI, (3.3)

where ∇ is an affine connection, J is a (1, 1)-tensor field, ξ is a vector field and λ is a smooth function on M .
Regarding to it, in [9] and [8] we proved the following results.
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Proposition 3.3. Let (M, g) be a pseudo-Riemannian manifold, let J be a (1, 1)-tensor field on M and let Ω := g(J ·, ·).

(i) If (∇, J, ξ, λ) defines a (∇, J, ξ)-soliton on (M, g), then the 2-form Ω is symmetric if and only if the dual 1-form of
ξ is closed, which is equivalent to

g(∇Xξ, Y ) = g(X,∇Y ξ)

for any X , Y ∈ Γ∞(TM).
(ii) The 2-form Ω is a ∇-Codazzi tensor field, i.e., (∇XΩ)(Y,Z) = (∇Y Ω)(X,Z) for any X , Y , Z ∈ Γ∞(TM), if and

only if
(∇Xg)(JY, Z)− (∇Y g)(JX,Z) = g

(
(∇Y J)X − (∇XJ)Y,Z

)
for any X,Y, Z ∈ Γ∞(TM). In particular, Ω is a ∇g-Codazzi tensor field if and only if J is a ∇g-Codazzi tensor
field, i.e., (∇g

XJ)Y = (∇g
Y J)X for any X , Y ∈ Γ∞(TM).

As particular cases, we deduce from [8] and [9] the following results.

Proposition 3.4. Let (∇, J, ξ, λ) define a (∇, J, ξ)-soliton on (M, g). If Ω := g(J ·, ·) is symmetric and ∇ is torsion-free,
then (Ω,∇) is a nearly statistical structure if and only if

g(R∇(X,Y )ξ, Z) = (∇Xg)(JY, Z)− (∇Y g)(JX,Z) + g
(
X(λ)Y − Y (λ)X,Z

)
for any X , Y , Z ∈ Γ∞(TM).

Also

Corollary 3.2. If (∇g, J, ξ, λ) defines a (∇g, J, ξ)-soliton on (M, g) and Ω := g(J ·, ·) is symmetric, then (Ω,∇g) is a
nearly statistical structure if and only if

R∇g

(·, ·)ξ = dλ⊗ I − I ⊗ dλ.

For ξ = ∇f , from the soliton equation (3.3) we find

Hess(g,∇)(f) + Ω = λg,

hence, ∇X Hess(g,∇)(f) +∇XΩ = X(λ)g + λ∇Xg for any X ∈ Γ∞(TM). In this case, we get

Proposition 3.5. Let (g,∇) be a statistical structure and let (∇, J,∇f, λ) define a (∇, J,∇f)-soliton on (M, g) with λ

a constant. Then (Ω,∇) is a nearly statistical structure if and only if (Hess(g,∇),∇) is a nearly statistical structure.

In particular, we have

Corollary 3.3. If (∇g, J,∇f, λ) defines a (∇g, J,∇f)-soliton on (M, g) with λ a constant, then the following statements
are equivalent:

(i) (Ω,∇g) is a nearly statistical structure;
(ii) R∇g

(·, ·)∇f = 0;
(iii) (Hess(g,∇)(f),∇g) is a nearly statistical structure.

Remark 3.2. If (∇g, ϕ, ξ, λ) defines a (∇g, ϕ, ξ)-soliton on a trans-Sasakian manifold (M,ϕ, ξ, η, g) with α and β

real constants, then M is a Sasakian manifold. Indeed, since ∇g
Xξ = α

(
X − η(X)ξ

)
− βϕX , then

(β − 1)ϕX = (α− λ)X − αη(X)ξ

and further, by applying ϕ:
(α− λ)ϕX = −(β − 1)X + (β − 1)η(X)ξ

and we get α = 0, β = 1, λ = 0, hence the conclusion.

Funding
There is no funding for this work.

dergipark.org.tr/en/pub/iejg 12

https://dergipark.org.tr/en/pub/iejg


A. M. Blaga & G.-E. Vîlcu

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final
manuscript.

References

[1] Amari, S.-I.: Differential-Geometrical Methods in Statistics. Lecture Notes in Statistics. 28. Springer-Verlag, New York (1985).
https://doi.org/10.1007/978-1-4612-5056-2

[2] Amari, S.-I., Nagaoka, H.: Method of Information Geometry. American Mathematical Society: Providence, RI, USA (2000).
[3] Antonelli, P.L.: Non-Euclidean allometry and the growth of forests and corals. In: P.L. Antonelli (Eds.), Mathematical Essays on Growth and the

Emergence of Form. The University of Alberta Press, Edmonton, AB, 45–57 (1985).
[4] Aquib, M., Boyom, M.N., Alkhaldi, A.H., Shahid, M.H.: B.-Y. Chen inequalities for statistical submanifolds in Sasakian statistical

manifolds. Lecture Notes in Comput. Sci., 11712 Springer, Cham, 398–406 (2019).
[5] Aydin, M.E., Mihai, A., Mihai, I.: Some inequalities on submanifolds in statistical manifolds of constant curvature. Filomat. 29 (3), 465–477 (2015).

https://doi.org/10.2298/FIL1503465A
[6] Aydin, M.E., Mihai, A., Mihai, I.: Generalized Wintgen inequality for statistical submanifolds in statistical manifolds of constant curvature. Bull.

Math. Sc. 7, 155–166 (2017). https://doi.org/10.1007/s13373-016-0086-1
[7] Besse, A.L.: Einstein manifolds. Classics in Mathematics. Springer (1987). https://doi.org/10.1007/978-3-540-74311-8
[8] Blaga, A.M.: On solitons in statistical geometry. Int. J. Appl. Math. Stat. 58 (4) (2019).
[9] Blaga, A.M., Chen, B.-Y.: Gradient solitons on statistical manifolds. J. Geom. Phys. 164, 104195 (2021).

https://doi.org/10.1016/j.geomphys.2021.104195
[10] Chaki, M.R., Maity, R.K.: On quasi-Einstein manifolds. Publ. Math. Debrecen. 57 (3-4), 297–306 (2000).

https://doi.org/10.1023/B:MAHU.0000038977.94711.ab
[11] Chen, B.-Y., Decu, S., Vîlcu, G.-E.: Inequalities for the Casorati curvature of totally real spacelike submanifolds in statistical manifolds of type

para-Kähler space forms. Entropy. 23 (11), 1399 (2021). https://doi.org/10.3390/e23111399
[12] Chen, B.-Y., Mihai, A., Mihai, I.: A Chen first inequality for statistical submanifolds in Hessian manifolds of constant Hessian curvature. Results

Math. 74 (4), 165 (2019). https://doi.org/10.1007/s00025-019-1091-y
[13] Crasmareanu, M.: A new approach to gradient Ricci solitons and generalizations. Filomat. 32 (9), 3337–3346 (2018).

https://doi.org/10.2298/FIL1809337C
[14] Crasmareanu, M.: General adapted linear connections in almost paracontact and contact geometries. Balkan J. Geom. Appl. 25 (2), 12–29 (2020).
[15] Deshmukh, S., Al-Sodais, H., Vîlcu, G.-E.: A note on some remarkable differential equations on a Riemannian manifold. J. Math. Anal.

Appl. 519 (1), 126778 (2023). https://doi.org/10.1016/j.jmaa.2022.126778
[16] Dragomir, S., Ornea, L.: Locally Conformal Kähler Geometry. Progr. in Math. 155. Birkhäuser, Boston (1998). https://doi.org/10.1007/978-

1-4612-2026-8
[17] Fischer, A.E., Marsden, J.E.: Manifolds of Riemannian metrics with prescribed scalar curvature. Bull. Amer. Math. Soc. 80, 479–484 (1974).
[18] Furuhata, H., Hasegawa, I.: Submanifold theory in holomorphic statistical manifolds. In: Geometry of Cauchy–Riemann Submanifolds.

Springer, Singapore, 179–215 (2016).
[19] Furuhata, H., Hasegawa, I., Okuyama, Y., Sato, K., Shahid, M.H.: Sasakian statistical manifolds. J. Geom. Phys. 117, 179–186 (2017).

https://doi.org/10.1016/j.geomphys.2017.03.010
[20] Hitchin, N.: The moduli space of special Lagrangian submanifolds. Ann. Scuola Norm. Sup. Pisa. 25 (3-4), 503–515 (1997).
[21] Kazan, A.: Conformally-projectively flat trans-Sasakian statistical manifolds. Physica A Stat. Mech. Appl. 535, 122441 (2019).

https://doi.org/10.1016/j.physa.2019.122441
[22] Kazan, S., Takano, K.: Anti-invariant holomorphic statistical submersions. Results Math. 78, 128 (2023). https://doi.org/10.1007/s00025-023-

01904-8
[23] Lauritzen, S.: Statistical manifolds. In: Differential geometry in statistical inference. IMS lecture notes monograph series 1987 (10). Institute

of mathematical statistics: Hyward, CA, USA: 96–163. http://www.jstor.org/stable/4355557
[24] Lone, M.S., Lone, M.A., Mihai, A.: A characterization of totally real statistical submanifolds in quaternion Kaehler-like statistical manifolds. Rev.

R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM. 116, 55 (2022). https://doi.org/10.1007/s13398-021-01200-6
[25] Matsuzoe, H.: Statistical manifolds and affine differential geometry. Advanced Studies in Pure Mathematics. 57, 303–321 (2010).

https://doi.org/10.2969/aspm/05710303
[26] Miao, P., Tam, L.-F.: On the volume functional of compact manifolds with boundary with constant scalar curvature. Calc. Var. PDE. 36, 141–171

(2009). https://doi.org/10.1007/s00526-008-0221-2
[27] Mihai, A., Mihai, I.: The δ(2, 2)-invariant on statistical submanifolds in Hessian manifolds of constant Hessian curvature. Entropy. 22 (2), 164

(2020). https://doi.org/10.3390/e22020164
[28] Mihai, I.: Statistical manifolds and their submanifolds. Results on Chen-like invariants, Contemp. Math. 756, American Mathematical

Society, Providence, RI, 163–172 (2020).
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