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ABSTRACT 
 

Two-dimensional compressible Navier-Stokes equations consist of continuity, momentum and energy equations. These 
coupled equations must be solved simultaneously. The  values of density, two velocity components, pressure and temperature 
are obtained by solving the four equations  and considering the assumption of calorically perfect gas.  A finite volume based 
in house solver is developed in C++.  The solver is able to solve steady or unsteady and inviscid or laminar compressible flow 
problems on an unstructured mesh. It uses Van Leer’s Flux Vector Splitting Scheme. It has local time stepping feature for the 
acceleration of convergence and can run parallel on computers with shared memory architecture. The solver is designed to 
adapt alternative schemes for better accuracy and computing efficiency. In order to check the accuracy and code 
implementation, various supersonic benchmark problems are visited. The problems are steady inviscid double wedge, steady 
viscous flow over a cylinder, unsteady inviscid Sod’s problem and unsteady inviscid forward facing step flow. The obtained 
results are compared with those available in literature. The comparisons show that the results are promising.   
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1. INTRODUCTION 
 
For a two dimensional compressible flow of a calorically perfect gas, governing equations consists of 
conservations of mass, momentums in x-y directions, and energy. The equations are coupled and 
thereby, they must be solved simultaneously. Computational Fluid Dynamics, CFD aims to solve the 
equations numerically. CFD has improved along with the rapid progress in computer technology during 
the 1970s. In order to find the best schemes or discretization techniques in terms of accuracy and 
computational costs, a great number of studies were conducted, and new methodologies were developed.  
As a result of those efforts and progresses, new techniques were proposed such as flux vector splitting 
for shock capturing, artificial viscosity or thin-layer approximations for flows with high Reynolds 
number, and etc. CFD was not feasible for many problems in the past because of limited computer 
power. However, today catching the correct location of the shock, understanding of complex interactions 
are possible with CFD. For example, today CFD is in use for designing and manufacturing a hypersonic 
re-entry and air breathing spacecraft. These vehicles operate in a flow with high enthalpy where the real 
gas effects are non-negligible [1]. Modelling such flows realistically requires consideration of the 
chemical reaction in the solution.  
 
The other major challenges in supersonic flow modelling are shock-shock and shock-boundary layer 
interactions that can result in high heat transfer rates between the flow and the surface. Observation of 
such interactions in ground facilities are expensive and limited with the operating range of the 
instruments used in the experiment. Underestimating consequences of such complex phenomena in 
design stage can change flight characteristics of a spacecraft drastically [1]. In February 1, 2003, 
Thermal Protection System (TPS) of USA space shuttle damaged and caused structural failure during 
its re-entry. Later, extended investigation revealed that the failure resulted from shock-shock interaction 
[2]. 
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An article by Lax is one of the most important advancements  for compressible flow  and wave motion 
[ 3]. The article is about weak solutions of non-linear hyperbolic equations.  The method is first order 
accurate and  allows to model structure and trajectory  of a shock wave. Today, the method proposed by 
Lax is widely known and called  as  “shock capturing”. Later , Lax and Wendroff laid the foundation of 
second order accurate schemes  with a paper that is on conservation law [4].  Almost a decade later, 
Mac-Cormacks introduced a two step explicit method [5]. Godunov made a major contribution in the 
field of compressible flow by introducing a treatment for artificial viscosity [6]. The treatment  is able 
to stabilize the oscillation that takes place in the vicinity of strong gradients.  In the following years, 
Rosanov and then Turkel et al. introduced their third and fourth order accurate  schemes, respectively 
[7-8].  However,  the second order accurate schemes have been  dominant for the last three decades. 
With advancement in computer technology, rapid and accurate solution needs for Navier-Stokes and 
Euler’s equations made high demand on powerful implicit schemes [9]. The implicit scheme of Yee 
[10], approximate Rienmann solver of Roe [11] are among the most important studies that aim to 
accelarate computations. The review article by Kostoff and Cummings [9] lists and gives the details of 
the important advancement in the computational compressible flow.  
 
There are several flux calculation schemes available in literature with different levels of accuracies. Liu, 
Osher and Chang introduced higher order WENO schemes [12]. Later, Serna and Marquina derived a 
fifth-order accurate Weighted Power ENO method [13]. Both schemes are using different reconstruction 
techniques to achieve higher order capability. Liou and Steffen proposed another type of upwind 
schemes, AUSM (Advection Upstream Splitting Method) [14]. This method separates convective fluxes 
by considering not only the eigenvalues but also pressure. AUSM has been improved and named as 
AUSM+ -up that is now applicable for all flow regimes [15]. Van Leer’s Flux Vector Splitting Scheme 
is first order accurate but it is very popular because of its relative simplicity. It is able to capture shock 
in reasonably good sharpness for transonic-supersonic flows [16]. Van Leer’s flux vector splitting 
scheme separates the convective fluxes into two parts as positive and negative ones. It is also 
differentiable at sonic point without smearing [17].   
 
One of the key point of capturing a shock correctly is to have an adequate mesh. The mesh generation 
strategy in the regions of boundary layer differs from the regions near the shocks. Therefore, using a 
structured mesh in the computations of the flow fields increases computational costs tremendously and 
brings challenges. Today, there is a rich variety of solvers available in both academia and industry. Some 
of them are CFL3D, developed and maintained by NASA, SU2 by Stanford University, Ansys 
FLUENT, and OpenFOAM. All these solvers are finite volume based Navier-Stokes solvers. Finite 
volume method was introduced by McDonald to simulate inviscid transonic flow on turbine cascades 
[18]. This method solves the integral form of the Navier-Stokes equations by calculating the convective 
and diffusive parts of it as a summation of the fluxes at the faces of the control volumes. Even though 
the formulas of the mass, momentum and energy are clear, finding the values of the primitive variables 
or the fluxes at the faces of the control volume are not straightforward. The decision on where the 
variables are hold comes with some pros and cons. The two preferences for the location of holding the 
variables are known as cell – centered and cell − vertex schemes. For example, the fluxes at the faces 
can be approximated by using upwind schemes or central schemes for the convective fluxes and 
Galerkin Method [19] for the viscous fluxes. 
 
The main objective of the present article is to examine a newly developed finite volume based Navier-
Stokes in-house solver by dealing with the well-known benchmark problems for compressible flow.  
Current version of the solver accepts structured and unstructured meshes, can run on a computer with 
multiple cores in parallel manner, and its modular structure allows implementation of other type of 
schemes with minimum effort. The authors expect to contribute national literature and capabilities in 
the field of compressible flow.  
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The developed solver is tested by considering four benchmark problems available in the literature. The 
first one is a typical oblique shock that is generated by a wedge. Since the analytical result is availbale 
for the problem by shock-expansion theory, it is a benchmark problem to test the solver shock resolving 
ability of the developed solver. In order to check the accuracy of the solver especially for the 
discretization of the viscous terms, we consider the problem of supersonic flow over a cylinder. The 
comparisons of the obtained results with an experimental study [20] allows us to examine the 
applicability of the developed code for a real fluid (laminar) flow over object that has curved boundary. 
This benchmark problem, where an unstructured mesh is in use also allows us to check mesh-handling 
capabilities of the solver. The third benchmark problem is another well-known supersonic test problem 
for unsteady flow. The problem first introduced by Gary Sod in 1978, where an infinitely long 1D tube 
is modelled. Two regions with different densities having a discontinuity at their interface is given as 
initial conditions. After that, the solution is started, and created waves are observed for comparing them 
with the solvers of other researchers. The reason of choosing this as a test case is that analytical result 
is present, it is unsteady and common in the literature. Final test is forward facing step problem. In this 
case, generated shock is interacting with the boundaries as the time passes. This would give us the 
opportunity to observe the implemented boundary conditions. This test was desired to be run as a viscous 
flow, but that would require too much number of elements in order to catch shock-boundary layer 
interactions. Hence, it is decided to run as inviscid. The solution is compared with another transient 
inviscid solution. 
 
Present article is designed as follows: Governing equations for compressible flows are introduced in 
Chapter 2, and then their temporal and spatial discretizations are explained in Chapter 3. The benchmark 
problems are introduced, and the obtained solutions are shown in Results and Discussions. The 
manuscript ends with Conclusion. 
 
2. GOVERNING EQUATIONS 
 
Navier-Stokes equations for a two-dimensional compressible flow in Cartesian coordinates without 
source, body forces, and volumetric heating terms are as follows: 
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For closing the system, assumption of calorically perfect gas is needed. 
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Viscosity can be related with temperature by using Sutherland’s Law. For a Newtonian fluid, shear 
stresses and viscosity are related as follows: 
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where ሺߣ ൌ െ23/ߤሻ. 
 
3. NUMERICAL METHODS 
 
The integral form of the Navier-Stokes equations over a volume, Ω is as follows: 
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The vectors appearing in the equation above can be written explicitly as  
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where ܸ denotes the velocity in the direction of ሬ݊Ԧ. 
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Figure 1: Schematic of control volume Ω, taken from [21] 
 

3.1. Spatial and Temporal Discretization 
 
Equation (10) can be discretised spatially over the control volume, Ω as follows. 
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where ܰܨ stands for number of the faces. The term on the left hand side of the Equation (12) can be 
approximated by using first order finite difference formula as below: 
 

డ

డ௧
׬ ሬܹሬሬԦ݀Ω ൌ Ω

డௐሬሬሬԦ	

డ௧
ൌ Ωஐ 	

ௐሬሬሬԦ೙శభିௐሬሬሬԦ೙

୼௧
                                                      (13) 

 
After the spatial and temporal discretizations, Equation (10) takes the following form: 
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Developed solver utilizes explicit type of calculations. Convective and diffusive fluxes at time ݊,  ሬܹሬሬԦ௡ 
are utilized to calculate  ሬܹሬሬԦ௡ାଵ. For steady state calculations, 3 Stage Runge -Kutta Scheme is used. Only 
the first and the third stages include viscous fluxes. 
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ሺଵሻ. 
 
In the solution of unsteady flow problems, Dual Time - Stepping Scheme is used. The idea of this scheme 
is allowing the element to exchange all fluxes around its neighbour elements using pseudo time steps. 
After that, every element is integrated with the physical time step. Time integration scheme used in 
steady problems is used in the pseudo time stepping. There are many improvements made by other 
researchers in order to make this approach stable. Detailed information on the scheme can be found at 
[22]. For the sake of clarity and convenience, calculation procedure used in this study is presented 
directly as follows: 
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After the relative error become less than 1e-5, pseudo time stepping is skipped, and elements are 
integrated with physical time step. 
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The left and the right coming fluxes are calculated by using the primitive variables of the element on 
the left and right hand sides of the faces, respectively. Gradients of the velocity and temperature are 
needed for the calculations of the viscosity and conduction related terms appearing in the momentum 
and energy equations. Developed code holds the primitive variables at the center of the elements. For 
calculating the fluxes at the faces, Van Leer’s Flux Vector Splitting Scheme is used. Since the solver is 
cell − centered, it is convenient to find the gradients at the cell centers with Green-Gauss approach as 
below: 
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In order to find the gradients at the faces, the gradient values of the two adjacent elements are averaged. 
Another approach for finding the derivatives at the faces is finite difference approach. The primitive 
variables at the faces of two neighbour elements are known beside the vector that connects them (see  
Figure 2). Therefore spatial derivatives can be written as below: 
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It is preferred to keep the values of the variables at the center of the face during the calculation of the 
fluxes,  ܨ௖ሬሬሬԦ and ܨ௩ሬሬሬԦ. A diamond in Figure 2 represents this point.  
 

 
 

Figure 2. Schematic of two elements 
 
3.2. Implementation of Boundary Conditions 
 
Four type of boundary conditions, supersonic inflow, supersonic outflow, slip-wall and no-slip wall with 
the option of adiabatic wall or constant temperature are implemented so far. 
 
Boundary conditions are embedded into the fluxes itself. For example, on a slip wall, ࢂ must be equal 
to 0 because of no penetration. Then ࢉࡲሬሬሬሬԦ coming from the wall to the element becomes; 
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Value of ࢖ can be extrapolated from the interior points. In this study, the ࢖ value of the corresponding 
element is used directly on the ࢉࡲሬሬሬሬԦ coming from the wall. On a no-slip wall, ࢂ will be equal to 0, thus ࢉࡲሬሬሬሬԦ 
will be same as on the case of slip wall. 
 
If supersonic inflow will be used, all waves will be directed to inside of the domain, meaning that all 
primitive variables at the inflow boundary must be specified directly. In the solver, ρ, u, v, T are written 
in a text file, and they will be assigned automatically as inflow variables. These variables are straightly 
put into calculation of fluxes at the boundary face. Inflow conditions are also used as initial conditions. 

 

ሬሬሬሬሬሬሬԦ࢈,ࢉࡲ ൌ

ۏ
ێ
ێ
ۍ

	࢏ࢂ࢏࣋
࢏ࢂ࢏࢛࢏࣋ ൅	࢏࢖࢞࢔
࢏ࢂ࢏࢜࢏࣋ ൅	࢏࢖࢟࢔

࢏,࢚ࢋ൫࢏࣋ ൅ ے࢏ࢂ൯࢏࣋/࢏࢖
ۑ
ۑ
ې
                                                         (27) 

 
If the boundary is supersonic outflow, all waves will go out and leave the domain. Thus, flux coming 
from the boundary to the element is calculated with all primitive variables at the the element itself if the 
first order extrapolation is adequate: 
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In wall boundary conditions, T can be calculated using extrapolation -meaning adiabatic wall-, or be 
given directly as a constant value. First approach corresponds to Neumann type while the latter 
corresponds to Dirichlet type boundary condition.   
 
At the calculation of viscous fluxes, the only addition will be at the derivative terms. Used approach can 
be checked at the end of Spatial And Temporal Discretization topic. There is no neighbour element at 
the boundary, so only the opposite element and the value in the previous time steps at the wall are used, 
i.e. forward difference. 
 
3.3. Parallelization 
 
Current solver uses OpenMP for parallel computations. OpenMP is an API that provides developers 
making their computer applications run with multiple threads on computers having shared memory 
architecture. Furthermore, it supports multiple programming languages such as C/C++ and Fortran [23]. 
It uses an approach called Fork − Join Model. 
 
Parallel solution works as follows: At the beginning of a time integration, multiple threads are created. 
Total element numbers are divided in smaller groups and are assigned to threads. When all the workers 
finish their job, the code moves forward and the workers are destroyed at the end of the time integration. 
 
4. RESULTS AND DISCUSSION 
 
4.1. Steady Inviscid Flow Over A Wedge 
 
A supersonic inviscid flow over a wedge having a half angle of 15° is considered as a benchmark 
problem in this section. This supersonic flow will create an oblique shock over the wedge. 
Computational domain and the structured mesh generated for the solution are shown in Figure 3.   
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Figure 3. Computational domain, mesh and boundary conditions 
 

Solution domain is 1	݉ long and 0.8	݉ high where the wedge starts at ݔ ൌ 0.2	݉. A flow with ݌ ൌ
101325	ܲܽ, and ܶ ൌ ܯ at ܭ	300 ൌ 2.4 enters the domain from the left and reaches the leading edge of 
the wedge at ݔ ൌ 0.2	݉.   
 
Total number of elements for three different mesh resolutions and total number of iterations for them to 
reach  L2 norm error less than 10ି଼ are tabulated in Table 1: 
 

Table 1. Number of elements and iteration numbers 
 

Case Total Cell Number of Iterations 
1 6162 497 
2 25122 867 
3 101442 1560 

 
Variations of pressure and Mach values along x direction at ݕ	 ൌ 	0.25	݉ are shown in Figure 4a and 
Figure 4b, respectively. In order to be sure that the calculated results are correct, comparing them with 
the oblique shock theory is necessary. From the theory:  
 

ଶܯ ൌ 1.79267, ଵ݌/ଶ݌ ൌ 2.40481	 
 
The p2/p1 and downstream Mach number, M2 values obtained from the developed  code can be seen on 
Table 2 (Coloumn 2 and 3) in addition to the percentage error relative to the theory written above (the 
last two coloumns). The error in static pressure ratio across the shock wave, ݌ଶ/݌ଵ	 and downstream 
Mach number ܯଶ for the three meshes are calculated and tabulated in Table 2. As expected, calculated 
values are getting closer to the theory as the total element number increases. It can be concluded that 
using a domain with 101442 elements is more than enough for reaching mesh independent result. 
Obtained Mach contours are shown in Figure 5. 
 

Table 2. The obtained results (left) and the errors relative to the oblique shock theory (right) 
 

Case ݌ଶ/݌ଵ ܯଶ %݌ଶ/݌ଵ %ܯଶ 

1 2.4056 1.7866 0.0362 0.3364 
2 2.4052 1.7895 0.0198 0.1768 
3 2.4047 1.7919 0.0015 0.0385 
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(a) (b) 

Figure 4. Comparisons of the obtained pressure and Mach variation along a line, where ݕ ൌ 0.25	݉ 
 

 
 

Figure 5. Obtained Mach contours 
 

4.2. Steady Viscous Flow Around A Cylinder 
 
A viscous flow over a circular cylinder at ܯ ൌ 2.9 is the another benchmark problem studied here. An 
O-type structured mesh that has a circular outer boundary is generated for the solution. The flow enters 
the computational domain from the left-half of the computational domain (see Figure 6). The other half 
of the outer boundary is set to be supersonic outflow. On the cylinder surface, no-slip and adiabatic wall 
boundary conditions are prescribed. Inflow conditions are also used as initial conditions, where ܯ ൌ
2.90, ݌ ൌ 1139.015	ܲܽ, ܶ ൌ ܴ and ,ܭ	300 ݁ ൌ  10ହ. Mesh sizes, relative errors in terms of pressureݔ7.2
at the stagnation point where θ = 0°, and at the downstream where θ = 180° can be found at Table 3. 
Relative errors are calculated using the experimental data presented in Reference  [20]. 
 

Table 3. Number of elements used in the laminar flow around the cylinder 
 

Case Total Cell Error  at θ = 0° Error at θ = 180° 
1 8820 1.09449 20.19685 
2 17640 0.83996 17.26973 
3 35640 0.83192 16.29402 

 
Obtained pressure coefficient distributions on the surface of the cylinder are plotted alongside the 
experimental data in Figure 6. Mesh having a total cell number of 8820 and the Mach contours obtained 
by solving the equations on the mesh computationally are shown in Figure 7a, and 7b.  
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Figure 6. Pressure coefficient variation over the surface of the cylinder 
 

 
 

Figure 7. Mesh and Mach contours of the cylinder 
 
4.3. The Shock Tube Problem 
 
The third benchmark problem studied here is the shock tube problem that is also known as Sod’s 
problem. Shock tube is a long tube with constant cross section, where a diaphragm separates the left and 
right halves that are filled with two different pressures of air. The gas in the left portion is at higher 
pressure than the one on the right. 
 
The computations are performed using two different meshes, course and fine meshes that have 100 and 
400 cells in horizontal direction, respectively. Both meshes consist of 3 cells in vertical direction. The 
boundary and initial conditions used in the solution of the pressure driven inviscid flow are shown in 
Figure 8 and tabulated in Table 4, respectively. The length of the tube is 10	݉. 
 

 
 

Figure 8. Domain of shock tube problem 
 

Table 4. Initial and boundary conditions of the Riemann problem 
 

 Left Right 
Density ሺ݇݃/݉ଷሻ 1.0 0.125 
Temperature ሺܭሻ 348.4 278.7 
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The obtained density distributions along the horizontal direction at ݐ ൌ  are plotted in Figure 9 ݏ݉	20.8
and also compared with the numerical result of  [24] and the analytical solution of [25].  In addition, the 
density variation in time at a station, x = 0.9 m can be seen in Figure 9b. 
 

a)  b)  
 

Figure 9. Density distribution along the shock tube a) and variation of density in time at x=0.9 m b) 
 

As can be seen from the figure, as the resolution of the mesh is increased the obtained distribution 
matches the reference study better. On [24], second order semi-discrete, non-staggered schemes of 
Kurganov and Tadmor [26] with Minmod limiter is used.  
 
4.4. Unsteady Flow on Forward Facing Step Problem 
 
This problem was introduced by Woodward and Colella for benchmarking of Euler solvers [27]. A 
freestream at Mach 3 approaches a step as shown in Figure 10. A detached curve shock form in front of 
the step and reflects from the first top then bottom walls. Geometrical details and boundary conditions are 
given also in Figure 10. 
 

 
 

Figure 10. Geometry used in forward facing step problem 
 

The domain is 3	݉ long and	1	݉ high. The step with the height of 0.2	݉ is located at ݔ ൌ 0.6	݉. A 
cartesian meshes with two different cell sizes of ∆݄ are generated and used computations. Cell sizes and 
total element numbers are listed in Table 5. The walls of the channel are assumed to be adiabatic and 
freestream conditions are set also as initial conditions, where ܯ ൌ ݌ ,3.0 ൌ 101325	ܲܽ, and ܶ ൌ   .ܭ	300
 

Table 5. Number of elements used in forward facing step problem 
 

Case Total Cell ∆h 
1 16064 0.0125 
2 64128 0.00625 
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The obtained results are shown and compared with the reference study of Cockburn and Shu [28] in 
Figure 11 at time ݐ ൌ  In the figure, there are 30 linearly distributed density contour lines in .ݏ݉	34.56
the range of 0.090338 to 6.2365. 
 

(a) (b) 

(c) (d) 
 
Figure 11. Comparisons of the obtained density contours (a) and (b) with Cokburn and Shu’s  [28] result  (c), with 

∆h = 0.0125 and (d) ∆h = 0.00625, respectively. 
 

Cockburn and Shu uses a higher order method called Runge Kutta Discontinuous Galerkin method with 
local slope limiter [28]. The solver presented here is only first order in both time and space without 
using any limiter. Therefore, the discrepancies in the results are expected. On the other hand, qualitative 
comparisons of the  results reveal that the developed solver is able to capture the shock  with right 
location and strengths.  
 
4.5. Acceleration of the Code 
 
In order to check OpenMP implementation, the Double Wedge Problem is revisited here. The problem is 
solved performing both sequential and parallel runs on a laptop with 8 GB RAM and four CPU at 2.40 
Ghz. 
 
For parallel run, the computations were performed on 4 threads with a mesh of 101442 cells. The solver 
time is recorded for 1000 iterations. The average time per iteration is equal to 0.25680	ݏ for a sequential 
run. The average time reduces to 0.06916	ݏ for parallel run.  Effect of running the code parallel in terms 
of relative speed is found to be 3.7128.  
 
5. CONCLUSION 
 
Recently developed, an unsteady, 2-D compressible Navier-Stokes solver that is based on finite volume 
method is introduced here. The solver reads mesh data, initial conditions, types of boundary conditions 
and desired numerical scheme from multiple text files. The solver utilizes upwind scheme of Van Leer’s 
Flux Vector Splitting Scheme, and it is first order accurate in both time and space. It has local time 
stepping feature for fast convergence, and can run parallel on computers with shared memory 
architecture. 
 
The solver is designed in such a way that other type of schemes can be integrated to the solver or the 
schemes in use can be modified for higher accuracy. In addition, various benchmark problems are solved 
to show its performance. Comparisons show that the obtained results are promising. Improving the 
current capabilities of the code to handle 3-D problems with higher accuracy is a must.  
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NOMENCLATURE  
 

Symbols Description Symbols Description 

ܿ specific heat ܵ߂ lenght of a face in a control volume 

 ܮܨܥ
Courant–Friedrichs–Lewy 
condition 

 time step ݐ߂

݁ Energy ߆ 
sum of the conduction and work done by 
viscous stresses 

 Ԧ flux vector μ dynamic viscosityܨ

ଓ̂, ଔ̂, ෠݇ 
unit vectors in Cartesian 
coordinates 

 Density ߩ

݇ thermal conductivity ߬ shear stress 
Mach number Ω ܯ area of a control volume 
ሬ݊Ԧ unit normal vector 

Superscripts 
 Pressure ݌
 Prandtl number ݊ time level ݎܲ
ܴ specific gas constant 

Subscripts 
 Ԧ a direction vectorݎ
ܴ݁ Reynolds number ܾܽ From a to b 
ܶ Temperature ܿ Convective 

,ݑ  ݒ
velocity components in x and y 
direction 

݊ ݊௧௛ face in a control volume 

ܷ an arbitrary scalar quantity ݐ Total 
ܸ contravariant velocity ݒ Viscous 
ሬܹሬሬԦ conservative variables ݔ x direction in Cartesian coordinates 

ݕ specific heat ratio ߛ y direction in Cartesian coordinates 
E, F  Fluxes in Cartesian 

coordinates 
b Boundary 

 lenght of a face in a control ܵ߂
volume 

e Element 

 time step i element id ݐ߂
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