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ON THE EIGENSTRUCTURE OF THE q-STANCU OPERATOR

Övgü GÜREL YILMAZ

Department of Mathematics, Recep Tayyip Erdogan University, Rize, TÜRKİYE

Abstract. The main goal of this research is to find the eigenvalues and the
corresponding eigenfunctions of the q-Stancu operator, Ln,s,q , introduced by

L. Yun and R. Wang. In this work, an explicit representation for moments of

all orders has been derived. Further, it has been proved that Ln,s,q possesses
n − s + 1 linearly independent eigenfunctions whose explicit expression and

the corresponding eigenvalues are derived. In addition, for special choices of

parameters, several eigenfunctions are depicted.

1. Introduction

The discovery of the Bernstein polynomials by S. N. Bernstein in 1912 [2] paved
the way for a vast number of studies in the approximation theory. Due to their
elegant structure and remarkable properties, these polynomials have formed the
basis for research not only in mathematics but also in many other fields such as
physics, statistics, engineering (see [6, 8, 16]). The extensive research on the Bern-
stein operators has enabled the development of various generalizations and modified
forms.

In 1981, Stancu proposed a generalization of the Bernstein operator, represent-
ing an extension based on the non-negative integer parameter s, of the classical
Bernstein operator as follows:

Definition 1. [17] Let n and s be integers such that 0 ⩽ s < n/2. Then, for any
function f ∈ C[0, 1], the Stancu operator is defined by

Ln,s(f ;x) =

n∑
k=0

f

(
k

n

)
bn,k,s(x), (1)
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where

bn,k,s(x) =

 (1− x)pn−s,k(x), 0 ⩽ k < s,
(1− x)pn−s,k(x) + xpn−s,k−s(x), s ⩽ k ⩽ n− s,
xpn−s,k−s(x), n− s < k ⩽ n.

Here, pn,k(x) are the Bernstein basis polynomials given by

pn,k(x) =

(
n

k

)
xk(1− x)n−k, k = 0, 1, . . . , n.

Observe that, for s = 0, 1, (1) reveals the classical Bernstein operator.
In [17], Stancu examined the remainder term of the approximation formulas for

operator Ln,s and established its asymptotic estimate using Voronovskaja-type for-
mula. He also estimated the order of approximation for operator (1) in terms of
the modulus of continuity of a function f and its derivative f ′. Moreover, he found
the eigenvalues of this Bernstein-type operator and proved that the sequence of the
eigenvalues is monotonically decreasing. In 2008, L. Yun and X. Xiang delved into
the monotonicity-preserving and convexity-preserving properties of the aforemen-
tioned operator. They provided a proof regarding the operator’s monotonicity for
convex functions and gave the theorem about simultaneous approximation [19]. Re-
cently, the Kantorovich extension of Stancu operator was proposed and investigated
in [3].

Another way to extend the operator is to obtain a modified version of the classical
operator by employing q-calculus. The first steps of this generalization were taken
by Lupaş [12] and Phillips [15], who introduced q-generalizations of the Bernstein
operator. Owing to their works, the idea of generalizing operator using q-calculus
has been extended to many operators and this idea is still fruitful, see for example,
[7, 9, 14].

In 2011, L. Yun and R. Wang [20] introduced a q-generalization of the Stancu
operator, known as q-Stancu operator. There, they studied shape-preserving and
approximation properties of this generalization. A year later, X. Xiang [18] obtained
more results pertinent to the q-Stancu operator.

For the convenience of the reader, some notations and definitions related to
q-calculus are provided, see [1, Chapter 10], and afterward, the definition of the
q-Stancu operator will be given.

Let q > 0. For any non-negative integer n, the q-integer [n]q is defined by

[0]q := 0, [n]q := 1 + q + · · ·+ qn−1, n = 1, 2, . . . (2)

The expressions below are q-variants of factorials and binomial coefficients known
as q-factorials and q-binomial coefficients, respectively,

[0]q! := 1, [n]q! := [1]q[2]q · · · [n]q, n = 1, 2, . . . ,

and [n
k

]
q
:=

[n]q!

[k]q![n− k]q!
.
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Also, for each x ∈ C, the q-analogue of the Pochhammer symbol is defined by

(x; q)0 := 1, (x; q)n :=

n−1∏
j=0

(1− xqj).

Definition 2. [20] Let n and s be integers such that 0 ⩽ s < n/2. Then, for
0 < q < 1 and f ∈ C[0, 1], the q-Stancu operator, Ln,s,q : C[0, 1] → C[0, 1], is given
by

Ln,s,q(f ;x) =

n∑
k=0

f

(
[k]q
[n]q

)
bn,k,s(q;x),

where

bn,k,s(q;x) =

 (1− qn−k−sx)pn−s,k(q;x), 0 ⩽ k < s,
(1− qn−k−sx)pn−s,k(q;x) + qn−kxpn−s,k−s(q;x), s ⩽ k ⩽ n− s,
qn−kxpn−s,k−s(q;x), n− s < k ⩽ n,

and

pn,k(q;x) =
[n
k

]
q
xk(x; q)n−k, k = 0, 1, . . . , n. (3)

The polynomials (3) are known as q-Bernstein basis polynomials.
Along with changing index as k − s = i in the sum and then denoting again the

summation index by k, it becomes evident that the operator can be represented for
n = 1, 2, . . . , as follows:

Ln,s,q(f ;x) =

n−s∑
k=0

{
(1− qn−k−sx)f

(
[k]q
[n]q

)
+ qn−k−sxf

(
[k + s]q
[n]q

)}
pn−s,k(q;x).

(4)

See [20, formula (1.2)].
Note that, q-Stancu operator reduces to the classical Stancu operator, as intro-

duced in [17], when q is set to 1. Additionally, in the cases where s = 0, 1, the
operators Ln,s,q coincide with the q-Bernstein operators defined by Phillips [15].
Furthermore, this operator possesses some properties of the q-Bernstein polyno-
mials. In the case 0 < q < 1, q-Stancu operator is a positive linear operator,
while in the case q > 1, it is not. This operator enjoys the end-point interpolation
property, that is, Ln,s,q(f ; 0) = f(0) and Ln,s,q(f ; 1) = f(1) for all q > 0. Due
to Ln,s,q(1;x) = 1 and Ln,s,q(t;x) = x, the q-Stancu operator leaves the linear
functions invariant.

The eigenvalues and eigenvectors of linear operators are important issues in the
applications of linear algebra to the theory of algorithms, the theory of Markov
chains and computer science. The spectral theory of linear operators is also used
extensively in other disciplines, like quantum mechanics and the field theory, see,
e.g., [11] and [21]. Even though quantum systems are generally described in L2

spaces of infinite dimensions, the quantum perturbation theory routinely uses their
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finite-dimensional approximations, see, e.g., [11, Chapter 5]. Apart from that,
eigenvalues and eigenvectors are used in the theory of parametric excitation of
oscillating systems, see [10, Section 27].

The present paper is devoted to examining the eigenvalues and the eigenfunctions
of the q-Stancu operators Ln,s,q. The structure of this paper is as follows: In
Section 1, some preliminary results that will be used through the paper and the
explicit formula for the moments of all orders for the q-Stancu operator are provided.
Hitherto, only the first three moments have been calculated. Section 2 focuses on
the eigenvalues and the corresponding eigenfunctions of the q-Stancu operator. It
is demonstrated that while ξ = 1 is a double eigenvalue, the others are simple. In
the last section, the eigenvectors are graphically illustrated for selected values of
parameters.

2. Moments of q-Stancu Operators

The calculation of the moments of linear positive operators plays a significant
role when studying their approximation properties. Regarding the q-generalization
of the Stancu operator Ln,s,q, only the first three moments, Ln,s,q(ei;x), where
ei = ti, i = 0, 1, 2 have been found so far, see [20, Proposition 2]. In this section,
explicit formulae for all the moments of the q-Stancu operators will be presented
through moments of the q-Bernstein operator. To begin with, let us provide the
essential details regarding the q-Bernstein operator.

The explicit form of the moments of Bn,q, mentioned in [5, formula (2.4)], is
provided below:

Bn,q(ek;x) =

k∑
i=0

Sq(k, i)

[n]k−i
q

λ
(n)
i,q x

i, (5)

where Sq(i, j) is defined as the q-Stirling numbers of the second kind [5, formula
(2.5)] as follows,

Sq(i, j) =
1

[j]q! qj(j−1)/2

j∑
r=0

(−1)rqr(r−1)/2

[
j

r

]
q

[j − r]iq,

with Sq(0, 0) = 1, Sq(i, 0) = 0 for i > 0, Sq(i, j) = 0 for j > i.

Here are the eigenvalues λ(n)
m,q of the q-Bernstein operator [13]: form = 2, 3, . . . , n,

λ
(n)
0,q = λ

(n)
1,q = 1, λ(n)

m,q =

(
1− 1

[n]q

)(
1− [2]q

[n]q

)
· · ·

(
1− [m− 1]q

[n]q

)
.

Theorem 1. For m = 1, 2 . . ., there holds

Ln,s,q(em;x) =

m∑
r=1

an,s,q(r,m)xr, (6)

where



824 Ö. GÜREL YILMAZ

an,s,q(r,m) =
[n− s]rq
[n]mq

Sq(m, r)λ(n−s)
r,q

+

m−r+1∑
j=1

j−1∑
i=0

A(j, i, r − 1) +

m∑
j=m−r+2

j−1∑
i=r−1−m+j

A(j, i, r − 1) (7)

and

A(j, i, r) =

(
m

j

)(
j − 1

i

)
qn−s(−1)i(1− q)i

[n− s]rq[s]
j
q

[n]mq
Sq(m− j + i, r)λ(n−s)

r,q . (8)

Proof. From the definition (4), one has

Ln,s,q(em;x) =

n−s∑
k=0

{
(1− qn−k−sx)

(
[k]q
[n]q

)m

+ qn−k−sx

(
[k + s]q
[n]q

)m
}
pn−s,k(q;x)

=

n−s∑
k=0

(
[k]q
[n]q

)m

pn−s,k(q;x) +
x

[n]mq

n−s∑
k=0

qn−k−s
(
[k + s]mq − [k]mq

)
pn−s,k(q;x)

=

(
[n− s]q
[n]q

)m

Bn−s,q(em;x) +
x

[n]mq

n−s∑
k=0

qn−k−s
(
[k + s]mq − [k]mq

)
pn−s,k(q;x).

Using the relation [k + s]q = [k]q + qk[s]q and the binomial expansion formula in
the second sum, we get

Ln,s,q(em;x)

=

(
[n− s]q
[n]q

)m

Bn−s,q(em;x) +
x

[n]mq

n−s∑
k=0

m∑
j=1

(
m

j

)
[k]m−j

q qn−k−s
(
qk[s]q

)j
pn−s,k(q;x)

=

(
[n− s]q
[n]q

)m

Bn−s,q(em;x) +
qn−sx

[n]mq

m∑
j=1

(
m

j

)
[s]jq

n−s∑
k=0

[k]m−j
q qk(j−1)pn−s,k(q;x).

Applying qk = 1− (1− q)[k]q, one can write

Ln,s,q(em;x) =

(
[n− s]q
[n]q

)m

Bn−s,q(em;x)

+
qn−sx

[n]mq

m∑
j=1

(
m

j

)
[s]jq

n−s∑
k=0

[k]m−j
q (1− (1− q)[k]q)

j−1pn−s,k(q;x).

With the use of the binomial theorem,

Ln,s,q(em;x) =

(
[n− s]q
[n]q

)m

Bn−s,q(em;x)

+
qn−sx

[n]mq

m∑
j=1

(
m

j

)
[s]jq

j−1∑
i=0

(
j − 1

i

)
(−1)i(1− q)i

n−s∑
k=0

[k]m−j+i
q pn−s,k(q;x)
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=

(
[n− s]q
[n]q

)m

Bn−s,q(em;x) +
qn−sx

[n]mq

m∑
j=1

(
m

j

)
[s]jq

×
j−1∑
i=0

(
j − 1

i

)
(−1)i(1− q)i[n− s]m−j+i

q Bn−s,q(em−j+i;x).

Employing (5), one obtains

Ln,s,q(em;x) =
1

[n]mq

m∑
r=0

[n− s]rqSq(m, r)λ(n−s)
r,q xr

+

m∑
j=1

j−1∑
i=0

m−j+i∑
r=0

(
m

j

)(
j − 1

i

)
qn−s(−1)i(1−q)i

[n− s]rq[s]
j
q

[n]mq
Sq(m−j+i, r)λ(n−s)

r,q xr+1.

Changing the order of triple sums leads to:

m∑
j=1

j−1∑
i=0

m−j+i∑
r=0

A(j, i, r) =

m−1∑
r=0

m−r∑
j=1

j−1∑
i=0

A(j, i, r) +

m−1∑
r=1

m∑
j=m−r+1

j−1∑
i=r−m+j

A(j, i, r),

which allows us to write

Ln,s,q(em;x) =
1

[n]mq

m∑
r=0

[n− s]rqSq(m, r)λ(n−s)
r,q xr

+

m−1∑
r=0

m−r∑
j=1

j−1∑
i=0

A(j, i, r)xr+1 +

m−1∑
r=1

m∑
j=m−r+1

j−1∑
i=r−m+j

A(j, i, r)xr+1,

where A(j, i, r) is given by (8). The first sum can be started from r = 1 due to the
equality Sq(i, 0) = 0 for i > 0. In the last triple sum, an empty sum is obtained for
r = 0, so it can be started from zero. Additionally, if we make the shift of index
r 7→ r − 1 in the second and third sums, we arrive at:

Ln,s,q(em;x) =
1

[n]mq

m∑
r=1

[n− s]rqSq(m, r)λ(n−s)
r,q xr

+

m∑
r=1

m−r+1∑
j=1

j−1∑
i=0

A(j, i, r − 1)xr +

m∑
r=1

m∑
j=m−r+2

j−1∑
i=r−1−m+j

A(j, i, r − 1)xr

=:

m∑
r=1

an,s,q(r,m)xr,

where the coefficients an,s,q(r,m) are as in (7). This completes the proof. □

Remark 1. It should be noted that the expression for m = 1, 2 in (6) recovers the
same result as the ones in [20, Proposition 2].
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3. Spectrum of the q-Stancu Operator

In this section, we will investigate the spectral properties of the q-Stancu opera-
tor, including its eigenvalues and associated eigenvectors. In the next theorem, we
will prove that, similar to the q-Bernstein operators, the subsequent eigenvalues,
excluding the first two, will be found as simple eigenvalues.

Theorem 2. For all 0 < q < 1, the q-Stancu operator owns n− s+ 1 eigenvalues

ξ(n,s)m,q expressed as

ξ
(n,s)
0,q = ξ

(n,s)
1,q = 1,

ξ(n,s)m,q =
[n− s]m−1

q

[n]mq

(
[n− s]q − [m− 1]q + qn−s[ms]q

)
λ
(n−s)
m−1,q, m = 2, 3, . . . , n− s.

Moreover, they obey the following order:

1 = ξ
(n,s)
0,q = ξ

(n,s)
1,q > ξ

(n,s)
2,q > ξ

(n,s)
3,q > ... > ξ

(n,s)
n−s,q > 0.

Proof. The polynomial Ln,s,q(em;x) can be written as

Ln,s,q(em;x) = ξ(n,s)m,q xm + Pm−1(x), (9)

where

ξ(n,s)m,q = an,s,q(m,m) =
[n− s]m−1

q

[n]mq

(
[n− s]q − [m− 1]q + qn−s[ms]q

)
λ
(n−s)
m−1,q,

and Pm−1 is a polynomial of degree at most m− 1.
By (9), the matrix representation of Ln,s,q in the standard basis

{
1, x, x2, . . . , xn

}
is an upper triangular matrix, whose diagonal entries are {ξ(n,s)m,q }. Therefore, the

numbers {ξ(n,s)m,q }, m = 0, . . . , n− s are the eigenvalues of Ln,s,q.

Next, let us demonstrate that the sequence {ξ(n,s)m,q }m⩾1 is monotonically decreas-
ing. Obviously,

ξ
(n,s)
m+1,q

ξ(n,s)m,q

=

[n−s]mq

[n]m+1
q

([n− s]q − [m]q + qn−s[(m+ 1)s]q)λ
(n−s)
m,q

[n−s]m−1
q

[n]mq
([n− s]q − [m− 1]q + qn−s[ms]q)λ

(n−s)
m−1,q

=
[n− s]q
[n]q

(
1− [m− 1]q

[n− s]q

)
[n− s]q − [m]q + qn−s[(m+ 1)s]q
[n− s]q − [m− 1]q + qn−s[ms]q

=
[n− s]q − [m− 1]q

[n]q
· [n− s]q − [m]q + qn−s[(m+ 1)s]q

[n− s]q − [m− 1]q + qn−s[ms]q

=
[n− s]q − [m− 1]q

[n]q
· [n+ms]q − [m]q
[n+ms− s]q − [m− 1]q

=
qm−1 − qn−s

1− qn
· qm − qn+ms

qm−1 − qn+ms−s
.



EIGENSTRUCTURE OF THE q-STANCU OPERATOR 827

In order to prove that ξ(n,s)m,q is monotonically decreasing, one needs to show

ξ
(n,s)
m+1,q

ξ(n,s)m,q

=
qm−1 − qn−s

1− qn
· qm − qn+ms

qm−1 − qn+ms−s
< 1,

which means that

(1− qn)(qm−1 − qn+ms−s)− (qm−1 − qn−s)(qm − qn+ms)

= qm−1 − qn+ms−s − qn+m−1 − q2m−1 + qn+ms+m−1 + qn+m−s > 0.

Dividing both sides by qm−1, the latter inequality takes the form

1− qn+ms−s−m+1 − qn − qm + qn+ms + qn−s+1 > 0.

Adding and subtracting qn+m on the left side of the inequality and making some
simplifications, one gets

1− qn+ms−s−m+1 − qn − qm + qn+ms + qn−s+1 + qn+m − qn+m > 0

⇔(1− qn)− qm(1− qn) + qn+m(−qms−s−2m+1 + qms−m + q−m−s+1 − 1) > 0

⇔(1− qn)(1− qm) + qn+m(qms−m(1− q−m−s+1)− (1− q−m−s+1) > 0

⇔(1− qn)(1− qm) + qn+m(qms−m − 1)(1− q−m−s+1) > 0

⇔(1− qn)(1− qm) + qn−s+1(1− qms−m)(1− qm+s−1) > 0,

which yields that, for s ⩾ 1 and m ⩾ 1, the sequence {ξ(n,s)m,q }m⩾1 is decreasing,

implying that the numbers ξ(n,s)m,q , m = 1, . . . , n− s are distinct. □

Remark 2. It is worth mentioning that {ξ(n,s)m,1 }n−s
m=0 are the eigenvalues of the

classical Stancu operator found in [17, Theorem 5.1]. Additionally, when s = 0
or s = 1, we obtain the eigenvalues of the q-Bernstein operator defined by Phillips
[15], and, accordingly, when q equals 1, we recover the eigenvalues of the classical
Bernstein operator given in [4].

Theorem 3. For n ∈ N and m = 0, 1, . . . , n−s, the monic polynomials φ
(n,s)
m (q;x),

which are the eigenfunctions of Ln,s,q(f ;x) associated with the eigenvalues ξ(n,s)m,q ,
are given by

φ(n,s)
m (q;x) =

m∑
u=0

dn,s,q(u,m)xu,

where dn,s,q(m,m) = 1 and φ
(n,s)
0 (q;x) = 1, φ

(n,s)
1 (q;x) = x, while for m > 1 and

v = 1, 2, . . . ,m,

dn,s,q(m− v,m) =
1

ξ(n,s)m,q − ξ
(n,s)
m−v,q

v−1∑
u=0

dn,s,q(m− u,m)an,s,q(m− v,m− u).
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Proof. Consider the monic eigenfunctions of Ln,s,q(f ;x):

φ(n,s)
m (q;x) =

m∑
u=0

dn,s,q(u,m)xu, dn,s,q(m,m) := 1, (10)

corresponding to the eigenvalue ξ(n,s)m,q . Then,

Ln,s,q(φ
(n,s)
m (q;x);x) = ξ(n,s)m,q φ(n,s)

m (q;x). (11)

Taking expression (10) into account, (11) can be written as

ξ(n,s)m,q

m∑
v=0

dn,s,q(v,m)xv =

m∑
u=0

dn,s,q(u,m)Ln,s,q(t
u;x)

=

m∑
u=0

dn,s,q(u,m)

u∑
v=1

an,s,q(v, u)x
v =

m∑
v=1

m∑
u=v

dn,s,q(u,m)an,s,q(v, u)x
v.

Comparing the coefficient of xs in both sides results in

ξ(n,s)m,q dn,s,q(v,m) =

m∑
u=v

dn,s,q(u,m)an,s,q(v, u).

Substituting v with m− v and u with m− u leads to

ξ(n,s)m,q dn,s,q(m− v,m) =

v∑
u=0

dn,s,q(m− u,m)an,s,q(m− v,m− u),

resulting

dn,s,q(m− v,m) =
1

ξ(n,s)m,q − ξ
(n,s)
m−v,q

v−1∑
u=0

dn,s,q(m− u,m)an,s,q(m− v,m− u),

which completes the proof. □

As an application of this theorem, the following result on the convergence of the
iterates can be stated.

Corollary 1. Let 0 < q < 1, f ∈ C[0, 1] and Lm
n,s,q stand for the m-th iterate of

Ln,s,q, which is defined by L1
n,s,q(f ;x) = Ln,s,q(f ;x),

Lm
n,s,q(f ;x) = Ln,s,q

(
Lm−1
n,s,q(f ;x)

)
, m = 2, 3, . . .

Then, for fixed n and s,

lim
m→∞

Lm
n,s,q(f ;x) = f(0)(1− x) + f(1)x

and the convergence is uniform on [0, 1].
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4. Numerical Examples

In this part, we will present the visual representation of the eigenfunctions

φ
(n,s)
m (q;x) for some specific parameter values. Figure 1 illustrates the eigenfunc-

tions φ
(9,3)
m (q;x) for m = 0, 1, . . . , 6 normalized to establish a uniform norm 1. Fig-

ure 2 shows how the eigenfunctions φ
(n,4)
3 (q;x) behave as the parameter n varies,

whereas Figure 3 displays the eigenfunctions φ
(15,s)
5 (q;x) for different values of s.

In Figure 4, while keeping all parameters fixed except for q, the eigenfunctions

φ
(10,4)
3 (q;x) are demonstrated with respect to the varying values of q.

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

Figure 1. The normalized eigenfunctions of L9,3,q for q = 0.5.
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Figure 2. The eigenfunctions φ
(n,4)
3 (q;x) for different values of n

and q = 0.8.
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Figure 3. The eigenfunctions φ
(15,s)
5 (q;x) for different values of

s and q = 0.8.
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Figure 4. The eigenfunctions φ
(10,4)
3 (q;x) for different values of q.
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