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Abstract 

The possibilistic mean–variance (MV) model is the counterpart of 

Markowitz’s MV model in the possibility theory. This study aims to 

examine the possibilistic MV model when the possibility distributions of 

stock returns are uncertain triangular fuzzy numbers. We define an 

uncertainty vector and use its ellipsoidal uncertainty set in a minimax 

optimization problem to model this uncertainty. We also show that this 

minimax optimization problem reduces to a strictly convex minimization 

problem. Thus, unlike the possibilistic MV model, we get diversified 

optimal portfolios uniquely with our approach. After laying down the 

theoretical points of our approach, we illustrate it with a real-world 

example in the literature by using a software package for convex 

optimization. To the best of our knowledge, this is the first paper that 

considers uncertain possibility distributions in the possibilistic MV model. 
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1. INTRODUCTION 

Although Markowitz’s MV model introduced by Markowitz (1952) has deeply influenced the 

portfolio theory, it is not preferred in practice due to estimation errors (Goldfarb & Iyengar, 2003). 

Estimating the mean vector is a more significant problem (DeMiguel et al., 2009; Garlappi et al., 2007). 

Hence, the robust MV model is proposed where this vector belongs to an uncertainty set (Garlappi et 

al., 2007). When the ellipsoidal uncertainty set is used, this model mainly provides that an efficient 

portfolio approaches the minimum variance portfolio (Garlappi et al., 2007). In addition, the box-type 

uncertainty set ignores the correlation matrix of variables. A Bayesian approach introduced by Jorion 

(1986) can be used to minimize the impact of estimation errors by using a common value. This model 

mainly provides that the efficient portfolio approaches the minimum variance portfolio if the common 

value is chosen as the mean of the minimum variance portfolio (Garlappi et al., 2007). Ding’s minimax 

portfolio selection model depends on minimizing the maximum loss when the stock returns vector’s 

joint probability distribution is an elliptical distribution as in the models mentioned above (Ding, 2006). 

However, the literature questions this assumption (Chicheportiche & Bouchaud, 2012). 

Young’s minimax portfolio selection model is another alternative to Markowitz’s MV model 

(Young, 1998). It is related to the game theory. It depends on past data without the assumption of 

elliptical distribution. However, the past data may not contain necessary information for the future. The 

possibilistic MV model is a notable alternative to Markowitz’s MV model (Carlsson et al., 2002). This 

model enables us to model the imprecise probability and use expert knowledge. Here, possibility 

distributions are used to model the uncertainty of the stock returns. This model and its solution are 

examined in many papers, such as Taş et al. (2016), Zhang et al. (2009), Corazza and Nardelli (2019), 

Göktaş and Duran (2020a). There are also many studies in which possibilistic models are used, such as 

Zhang (2007), Li et al. (2015), Göktaş & Duran (2019), Göktaş & Duran (2020b), Sui et al. (2020a), Sui 

et al. (2020b), Hu et al. (2021), Huang et al. (2022), Deng & Lin (2022), Göktaş (2023), Saki et al. 

(2023), Guillaume at al. (2024). Some of these models are reviewed by Zhang et al. (2018), Mandal & 

Thakur (2024). On the other hand, to the best of our knowledge, no study considers uncertain possibility 

distributions in this model. Though it is assumed that the possibility distributions are exactly known in 

the literature of possibilistic portfolio optimization, this assumption is generally invalid (Hu et al., 2021). 

Thus, the primary motivation of our paper is to consider not only the uncertainty of stock returns but 

also the uncertainty of possibility distributions in the portfolio selection. 

To fill this gap in the literature, we examine the possibilistic MV model when the possibility 

distributions are uncertain triangular fuzzy numbers. We define an uncertainty vector and use its 

ellipsoidal uncertainty set in a minimax optimization problem to model the uncertainty. We also show 

that this minimax optimization problem reduces to a strictly convex minimization problem. Thus, unlike 

the possibilistic MV model, we get diversified optimal portfolios uniquely. Furthermore, we derive 

theoretical results about our approach based on the possibilistic portfolio optimization and robust (worst-
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case) portfolio optimization frameworks. Our paper's originality comes from being the first paper that 

considers uncertain possibility distributions in the possibilistic MV model. 

We organize the rest of the paper as follows. Section 2 gives theoretical points of the possibilistic 

MV model and our approach under certain assumptions. Section 3 illustrates our approach with the real-

world example in the literature using CVX, a MATLAB software for convex optimization. (See Grant 

and Boyd (2008) for further information.) We conclude the paper with Section 4.  

2. METHODS 

In this section, we consider the portfolio selection problem where x is the weight vector of the 

portfolio and its feasible set (F) is as below, like Carlsson et al. (2002). There are at most n stocks in the 

portfolio and xi is the weight of the ith stock. 

1

: 1 0,
n

i i

i

F x x x i
=

 
= =    
 
                                                                                                 (1) 

The possibility theory is related to the fuzzy sets and probability theories. It gives the lower and 

upper bounds for the imprecise probability. Possibility distributions are usually given with fuzzy 

numbers (Dubois, 2006; Souliotis et al., 2022). We assume that the possibility distributions of stock 

returns are given with triangular fuzzy numbers. The graph of the membership function of triangular 

fuzzy number (-0.2, 0, 0.1) is given in Figure 1. 

Figure 1. The graph of the membership function of the triangular fuzzy number 

 

When the ith stock return’s possibility distribution is (ai, bi, ci), the possibilistic mean and 

standard deviation of portfolio return are found as below, respectively (Carlsson et al., 2002). ai, bi and 
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ci can be taken as equal to the sample minimum, mean and maximum statistics, respectively (Taş et al., 

2016). The second expression in (2) implies that the possibilistic correlation matrix consists of only ones 

under the triangular fuzzy numbers assumption (Corazza & Nardelli, 2019). 
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                                                                                                    (2) 

For several reasons, we prefer to use triangular fuzzy numbers rather than trapezoidal fuzzy 

numbers. Firstly, it is more intuitive to use triangular fuzzy numbers since their parameters correspond 

to the worst-case, base-case and best-case predictions for the stock returns, respectively. Secondly, it is 

more practical since we can use linear or convex optimization tools in this case. We note that the 

weighted sum method gives the exact efficient frontier in this case. Thirdly, the possibilistic correlation 

depends on the cores and supports of trapezoidal fuzzy numbers (Corazza & Nardelli, 2019). However, 

this may cause misleading results since these are not related to the correlation structure of the stock 

returns vector. On the other hand, the use of triangular fuzzy numbers corresponds to the uncertain 

correlation structure of the stock returns vector. Thus, the possibilistic MV model considers the worst-

case scenario. 

Based on (2) and the weighted sum method, the possibilistic MV model can be given with the 

following linear minimization problem as in this study where β is in [0,1] (Göktaş & Duran, 2019; 

Göktaş & Duran, 2020a). In the portfolio selection problem, β (1-β) is the weight of the first (second) 

objective, which is to maximize (minimize) the possibilistic mean (standard deviation). When β is equal 

to 1, the investor is risk-neutral. When β decreases, the investor’s degree of risk aversion increases. (If 

the investor were a risk lover, the second objective would be maximizing the possibilistic standard 

deviation instead of minimizing it.) 

( ) ( ) ( ) ( )min 1
x F

PM x PSD x 


− + −                                                                                        (3)   

The maximum performance portfolio (MPP) can be defined as below, where P(x) is the 

performance function. It is also an optimal solution of (3) for the unknown β value. 

( )
( )

( )
max :

x F

PM x
P x

PSD x

 
=  

 

                                                                                                       (4) 

The optimal solution of (3) is found analytically (Göktaş & Duran, 2019; Göktaş & Duran, 

2020a). If the objective function is minimum for only one stock, then the optimal portfolio (OP) consists 

of only this stock. If the objective function is minimum for multiple stocks, then OPs consist of their 

convex combinations. In this case, alternative optimal solutions exist (Göktaş & Duran, 2019; Göktaş 

& Duran, 2020a). Similar results are also valid for MPP. (When f(x)=0 in (14), MPP is found. Due to 
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the Fundamental Theorem of Linear Programming, either the optimal solution is a corner point of the 

feasible set, i.e. a unique stock, or alternative optimal solutions exist.) 

In this study, we assume that the ith stock return’s possibility distribution is equal to (ai+Ɵi, 

bi+Ɵi, ci+Ɵi) where ai, bi and ci are determined based on the past data like in Taş et al. (2016). Ɵi is the 

uncertainty parameter for the ith stock return and the uncertainty vector’s (Ɵ) joint probability 

distribution is normal. We also assume that its mean vector (µƟ) and positive definite covariance matrix 

(∑Ɵ) are determined based on expert knowledge. Its α-confidence region is found as below, where kα is 

the square root of the α-quantile of the chi-square distribution with n degrees of freedom (Ding, 2006; 

Studer, 1999). (5) is an ellipsoidal uncertainty set with the center µƟ. When an element of µƟ is positive 

(negative), the expert is optimistic (pessimistic) about the future return of the corresponding stock with 

respect to its past returns. ∑Ɵ is related to the variability of Ɵ with respect to these beliefs (µƟ) since ∑Ɵ 

determines the Mahalanobis distance between Ɵ and µƟ (Breuer, 2006; Breuer & Csiszar, 2013). Here, 

ƟT is the transpose of the Ɵ vector and ∑-1 is the inverse of the ∑ matrix. 

( ) ( ) 1 2:
T

S k       −= −  −                                                                                       (5) 

Based on (2) and our assumption that Xi ~ (ai+Ɵi, bi+Ɵi, ci+Ɵi), we find the possibilistic mean 

and standard deviation of portfolio return as below. That is, the possibilistic standard deviation remains 

the same due to the translation invariance property (Carlsson & Fuller, 2001). 
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                                                 (6) 

Based on (6) and the weighted sum method, we define the possibilistic MV model with uncertain 

possibility distributions as below, where β is again in [0,1], F is defined in (1) and S is defined in (5). 

( ) ( ) ( ) ( )
1

min max 1
n

i i
x F S

i

PM x x PSD x


  
 

=

 
− + + − 

 
                                                                (7) 

This minimax optimization problem is equivalent to the following convex minimization 

problem. (8) is strictly convex when β is not equal to 0. (8) reduces to (3) when β is equal to 0. 

( ) ( ) ( ) ( )
1

min 1 min
n

i i
x F S

i

PM x PSD x x


   
 

=
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− + − − 

 
                                                             (8) 
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We define the following minimization problem over the ellipsoidal uncertainty set. We know 

that (9) is related to the risk measure called Maximum Loss (ML) (Studer, 1999). Due to the scenario 

analysis approach, we can say that ML considers the most severe scenario from the plausible scenario 

set (S) (Breuer, 2006). 

1

min
n

i i
S

i

x





=

                                                                                                                             (9) 

The optimal solution of (9) is found as below by using the Karush-Kuhn-Tucker (KKT) 

conditions (Ding, 2006; Studer, 1999). As in this study, it is the most severe scenario in S and can be 

called the worst-case scenario.  

( )*

T

k
x x

x x


 



 = − 


                                                                                              (10) 

Then, the optimal value of an objective function of (9) is found as below, where E() and var() 

are the expectation and variance operators in the probability theory, respectively (Ding, 2006; Studer, 

1999).  

( ) ( ) ( ): varT T T Tf x x k x x E x k x     = −  = −                                                                         (11) 

Furthermore, we find that (7) is equivalent to the following convex minimization problem. We 

call its optimal solution as the worst-case optimal portfolio (WOP). 

( ) ( ) ( ) ( ) ( )min 1
x F

PM x f x PSD x 


−  +  + −                                                                            (12) 

We define the maximum worst-case performance portfolio (MWPP) as below where WCP(x) is 

the worst-case performance function. It is also an optimal solution of (12) for the unknown β value. 

( )
( ) ( )

( )
max :

x F

PM x f x
WCP x

PSD x

 +
=  

 

                                                                                      (13) 

When at least one portfolio’s worst-case performance (WCP) is positive, we can find MWPP 

by standardizing the optimal solution of (14) since the objective function of (13) is a homogeneous 

function of x (Goldfarb & Iyengar, 2003; Tütüncü & Koenig, 2004). Clearly, (14) is a strictly convex 

minimization problem. To solve (12) and (14), the CVX/MOSEK solver can be used in MATLAB as in 

this study (Grant & Boyd, 2008). 

( ) ( )( )

( )

min

. . 1

0,i

PM x f x

s t PSD x

x i

− −

=

 

                                                                                                       (14) 
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Remark: In this study, we assume that the joint probability distribution of Ɵ is normal. Anyone 

can generalize the theoretical results derived in this section for the other elliptical distributions with 

finite moments. When another elliptical distribution is used, kα is replaced by another positive constant 

cα. Everything remains the same except for this (Breuer, 2006). See Embrechts et al. (2002) for further 

information about the elliptical distributions. 

Remark: The possibilistic MV model (with uncertain possibility distributions) considers the 

asymmetry in the past data like Young’s minimax model, unlike the other models mentioned in this 

study. The elliptical distribution of the stock returns vector (uncertainty vector) is determined based on 

the expert knowledge in Ding’s minimax model (in our approach). We believe that modeling the 

uncertainty vector is simpler. That is, the ease of use of our approach is higher. 

When there are no restrictions that xi is nonnegative in (1), the PM(x) and PSD(x) functions are 

found as below (Carlsson & Fuller, 2001; Carlsson et al., 2002). In this case, the possibilistic MV model 

does not give a bounded optimal solution (Corazza & Nardelli, 2019). On the other hand, our approach 

may give a bounded optimal solution due to f(x) given in (11). It may be applicable, unlike this model, 

even if there are no restrictions on the short positions. We note that (12) and (14) remain convex 

minimization problems because the absolute value and sum operations preserve the convexity. (The first 

constraint of (14) changes to PSD(x)≤1, but it is always tight at an optimal solution due to the risk-return 

trade-off.) 
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                                                                                           (15) 

It is obvious that when the joint probability distribution of Ɵ is another elliptical distribution 

with the same first two moments, we have the same WOP for a different confidence level than α. Using 

Proposition 1 of Breuer and Csiszar (2013), we can show that a similar result is also valid for µƟ. Let 

the reference distribution be N(µƟ,∑Ɵ). Then, using the relative entropy constraint, the worst-case joint 

probability distribution of Ɵ is found as below for E(xTƟ), where d is the upper bound for the distance 

to the reference distribution. 

2 ,
T

x
N d

x x


 



 
 
 − 
  

                                                                                         (16) 

By using (16) instead of N(µƟ,∑Ɵ), we find f(x) as below for the given confidence level c. By 

comparing (11) and (17), we see that the same WOPs are derived when the scalars before the square 

root expressions are equal. Based on this information, we remark that it is more essential to determine 

ΣƟ. Thus, the expert may focus on its determination rather than the others. 
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( ) ( )2 2T T T T

c c
T

x
f x x d k x x x k d x x

x x


   



 
 
 = − −  = − + 
  

                         (17) 

3. RESULTS AND DISCUSSION 

In this section, we illustrate our approach with the real-world example given by Zhang (2007) 

and Huang et al. (2022), where there are five stocks (X1, X2, X3, X4, X5) and the possibility 

distributions are as below in the possibilistic MV model. Clearly, in our approach, they are shifted by 

Ɵi for all i due to the uncertainty in the possibilistic means where the uncertainty vector’s (Ɵ) joint 

probability distribution is normal with mean vector µƟ and positive definite covariance matrix ∑Ɵ. 

( )
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0.04, 0.208,0.421

X

X

X

X

X

                                                                                              (18)  

Then, we calculate the possibilistic means and standard deviations with the performances as in 

Table 1 using the formulas given in (2) or (4). We show the best values in bold. We get X3 when x 

equals the column vector (0, 0, 1, 0, 0)T. 

Table 1. The possibilistic MV model’s metrics 

Stocks P. Mean P. Std. Dev. Performance 

X1 0.079 0.029 2.727 

X2 0.110 0.036 3.031 

X3 0.143 0.045 3.188 

X4 0.174 0.059 2.960 

X5 0.216 0.078 2.771 

Based on Table 1 and the information given in Section 2, we uniquely calculate some OPs as in 

Table 2. As we expect, they are not diversified. 

Table 2. Some optimal portfolios 

Stocks OP for β=1 OP for β=0 MPP 

X1 0 1 0 

X2 0 0 0 

X3 0 0 1 

X4 0 0 0 

X5 1 0 0 

We get the possibilistic MV model’s efficient frontier as in Figure 2. We find that all stocks are 

an OP with some β values. The possibilistic mean (standard deviation) increases with the increase in β. 

The efficient frontier consists of consecutive line segments due to the linearity in (2). 
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Figure 2. The possibilistic MV model’s efficient frontier 

 

We determine that µƟ is equal to the column vector (0.02, 0.01, 0, -0.01, -0.02)T, whereas ∑Ɵ is 

as in Table 3. We set the confidence level (α) as 0.9 in this study. Then, we find kα as 3.039 based on 

the normal distribution assumption. Due to µƟ, we can say that the expert is optimistic (pessimistic) 

about the future returns of X1 and X2 (X4 and X5) with respect to the possibility distributions given in 

(18). We note that the probabilistic standard deviation vector of Ɵ is equal to the column vector (0.03, 

0.02, 0.02, 0.02, 0.03)T while Ɵ1 and Ɵ2 (Ɵ4 and Ɵ5) are negatively correlated each other. 

Table 3. The covariance matrix of the uncertainty vector (Ɵ) 

Stocks X1 X2 X3 X4 X5 

X1 0.0009 -0.0003 0 0 0 

X2 -0.0003 0.0004 0 0 0 

X3 0 0 0.0004 0 0 

X4 0 0 0 0.0004 -0.0003 

X5 0 0 0 -0.0003 0.0009 

WOP1 (WOP2) is an abbreviation of WOP for β=1 (for β=0.5). We uniquely find WOP1, WOP2 

and MWPP as in Table 4 using CVX/MOSEK solver in MATLAB for (12) or (14). The WOPs are 

diversified, unlike the OPs. Even if there are no restrictions that xi is nonnegative in (1), we get the same 

WOPs due to the effect of f(x) given in (11). We remark that the possibilistic MV model does not give 

a bounded optimal solution in this case. 
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Table 4. Some worst-case optimal portfolios 

Stocks WOP1 WOP2 MWPP 

X1 0 0.090 0.201 

X2 0 0.180 0.355 

X3 0.020 0.161 0.216 

X4 0.553 0.350 0.167 

X5 0.427 0.218 0.061 

In Table 5, we give the Ɵ*(x) vectors for the WOPs by using (10). When this information and 

(18) are combined, the worst-case possibility distributions of stock returns are derived for the WOPs. 

These vary from portfolio (x) to portfolio (x). 

Table 5. The Ɵ*(x) vectors for the WOPs 

Parameters WOP1 WOP2 MWPP 

Ɵ1 0.02 0.010 -0.007 

Ɵ2 0.01 -0.007 -0.020 

Ɵ3 -0.002 -0.024 -0.031 

Ɵ4 -0.034 -0.038 -0.028 

Ɵ5 -0.075 -0.054 -0.022 

In Figure 3, we roughly give the efficient frontier in our approach. We see that X2, X3, X4 and 

X5 are not a WOP for any β. (WOP for β=0 consists of only X1.) 

Figure 3. The efficient frontier in our approach 

 

We compare the WOPs and the OPs in Table 6 using the formulas (4) or (13). The WOPs, except 

for X1, have sufficient performance and worst-case performance, unlike the OPs. Spearman’s rank 
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correlation coefficient equals Pearson’s linear correlation coefficient of the ranks (Akinyi et al., 2022; 

Li et al., 2022). In the example, we find it to be 0.429, which is not high. These two measures do not 

give similar results in the example. 

Table 6. Comparisons of the OPs and the WOPs 

Portfolio 
Performance  

Value 

Performance  

Rank 

Worst-Case 

P. V.  

Worst-Case  

P. R. 

MWPP 2.988 3. 2.491              1. 

WOP2 2.928 5. 2.388 2. 

WOP1 2.869 6. 2.109 3. 

X1 2.727 8.            0.255 8. 

X2 3.031 2. 1.625 6. 

X3 3.188 1. 1.828 4. 

X4 2.960 4. 1.756 5. 

X5 2.771 7. 1.341 7. 

Based on Table 2, Table 4 and Table 6, we remark that the WOPs, except for X1, are more 

appropriate for conservative investors since they are robust to the worst-case scenario and more 

diversified by definition. This is like the relationship between Markowitz’s MV model and the robust 

MV model proposed by Garlappi et al. (2007). 

In Table 7, we give WOP1 for the different confidence levels. The weight of X5 (X3) decreases 

(increases) with the increase in the confidence level (α). 

Table 7. WOP1 for the different confidence levels 

Stocks α=0 α=0.25 α=0.5 α=0.9 α=0.95 α=0.99 α=0.999 

X1 0 0 0 0 0 0 0 

X2 0 0 0 0 0 0 0 

X3 0 0 0 0.020 0.048 0.086 0.115 

X4 0 0.497 0.531 0.553 0.543 0.530 0.519 

X5 1 0.503 0.469 0.427 0.409 0.385 0.366 

In Table 8, we give WOP2 for the different confidence levels. The weight of X5 (X2) decreases 

(increases) with the increase in α. 

Table 8. WOP2 for the different confidence levels 

Stocks α=0 α=0.25 α=0.5 α=0.9 α=0.95 α=0.99 α=0.999 

X1 0 0.011 0.053 0.090 0.096 0.105 0.113 

X2 0 0.077 0.131 0.180 0.189 0.201 0.211 

X3 0 0.174 0.167 0.162 0.161 0.159 0.158 

X4 0 0.447 0.396 0.350 0.342 0.331 0.322 

X5 1 0.291 0.253 0.218 0.213 0.204 0.197 

In Table 9, we give MWPP for the different confidence levels. The weight of X3 decreases with 

the increase in α, whereas the weights of X4 and X5 increase with the increase in α. 
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Table 9. MWPP for the different confidence levels 

Stocks α=0 α=0.25 α=0.5 α=0.9 α=0.95 α=0.99 α=0.999 

X1 0 0.277 0.254 0.201 0.190 0.175 0.164 

X2 0 0.476 0.442 0.355 0.337 0.312 0.293 

X3 1 0.248 0.249 0.216 0.207 0.196 0.187 

X4 0 0 0.055 0.167 0.187 0.214 0.235 

X5 0 0 0 0.061 0.079 0.103 0.122 

Shannon’s entropy can be used as a diversification measure. It takes values between 0 and ln(n). 

Diversification level increases with the increase in Shannon’s entropy (Kamaludin et al., 2021; Lam et 

al., 2021). (Since n equals 5 in the example, ln(n) equals 1.609.) Table 10 gives Shannon’s entropy 

values for the different confidence levels. We note that the diversification levels (Shannon’s entropy 

values) of the WOPs increase with the increase in the confidence (conservativeness) level. This is 

because, the increase in the confidence level improves the effect of f(x) given in (11). 

Table 10. The Shannon’s entropy values for the different confidence levels 

WOP α=0 α=0.25 α=0.5 α=0.9 α=0.95 α=0.99 α=0.999 

WOP1 0 0.693 0.691 0.770 0.843 0.915 0.956 

WOP2 0 1.055 1.214 1.491 1.522 1.552 1.566 

MWPP 0 1.271 1.435 1.519 1.529 1.542 1.551 

Based on the last four tables, we say that the WOPs are sufficiently diversified even if the 

confidence (conservativeness) level is not high. 

Let the maximum error matrix (V) be positive semi-definite. That is, its eigenvalues are 

nonnegative. Since ∑Ɵ is positive definite, it is a fact that V+∑Ɵ is also positive definite. That is, its 

eigenvalues are positive. Based on the framework given in Tütüncü and Koenig (2004), we can make 

the worst-case analysis for var(xTƟ) by only using V+∑Ɵ in (10)-(11) instead of ∑Ɵ. This is because, 

var(xTƟ) is maximized for any portfolio (x) when the positive definite covariance matrix of Ɵ is equal 

to V+∑Ɵ due to the restrictions on the short positions. See Proposition 3 of Tütüncü and Koenig (2004). 

In the example, we take V as 0.0009*A5x5, where A5x5 consists of only ones. (The maximum element of 

∑Ɵ is equal to 0.0009 as shown in Table 3.) Then, we find the WOPs as in Table 11. 

Table 11. The results of the worst-case analysis for var(xTƟ) 

Stocks WOP1 WOP2 MWPP 

X1 0 0 0 

X2 0 0 0 

X3 0 0.105 0.146 

X4 0.550 0.516 0.505 

X5 0.450 0.380 0.349 
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In the previous section, we remark that it is more essential to determine ΣƟ. By comparing the 

information given in Table 4 and Table 11, we say that the WOPs may change highly and get close to 

WOP1 with the increase in var(xTƟ). It is consistent with the fact that var(xTƟ) affects WOP1 more than 

the other WOPs. We note that WOP1 is found by maximizing the worst-case possibilistic mean. 

It can be useful to analyze the certainly known and uncertain possibility distributions together. 

In this context, we consider five additional stocks, of which possibility distributions are certainly known, 

for the portfolio selection problem. We present their information in Table 12. 

Table 12. The information for the additional stocks 

Stocks P. Mean P. Std. Dev. Performance 

X6 0.10 0.06 1.667 

X7 0.11 0.07 1.571 

X8 0.12 0.08 1.500 

X9 0.13 0.09 1.444 

X10 0.15 0.15 1.000 

Since X4 has a higher possibilistic mean and lower possibilistic standard deviation than these 

stocks, they are not an optimal portfolio for the possibilistic MV model. That is, the efficient frontier in 

Figure 2 does not change. On the other hand, the optimal portfolios in our approach may change as 

shown in Table 13. 

Table 13. Some worst-case optimal portfolios for the extended example 

Stocks WOP1 WOP2 MWPP 

X1 0 0.090 0.201 

X2 0 0.180 0.355 

X3 0 0.161 0.216 

X4 0 0.350 0.167 

X5 0 0.218 0.961 

X6 0 0 0 

X7 0 0 0 

X8 0 0 0 

X9 0 0 0 

X10 1 0 0 

 

 
By comparing Table 4 and Table 13, we see that WOP2 and MWPP do not change unlike 

WOP1. WOP1 is not diversified like OPs. That is, our approach may give undiversified portfolios when 

the certainly known and uncertain possibility distributions are used together. We also remark that our 

approach may not give unique solutions in this case. On the other hand, Tikhonov’s regularized problem 

can be used to approximate the unique optimal solution closest to the origin (Beck and Sabach, 2014; 

Ketabchi et al., 2021). 



 

 

548 

4. CONCLUSION 

This study proposes an approach to cope with uncertain possibility distributions in the 

possibilistic MV model under certain assumptions. To the best of our knowledge, this is the first paper 

that considers this problem. After laying down the theoretical points of our approach, we give a real-

world example. We show that our approach may be applicable, unlike the possibilistic MV model, even 

if there are no restrictions on the short positions. The main limitation of our approach is that there is no 

formal procedure to determine the uncertainty vector’s (Ɵ) joint probability distribution. In addition, 

our approach may be unpreferable for the portfolio selection problems including the high number of 

stocks since the primary determinant of its success is the quality of the expert knowledge. The main 

strength of our approach is that it captures uncertainty’s two aspects (fuzziness and randomness) since 

it depends on possibility and probability theories. In addition, we uniquely get diversified optimal 

portfolios with our approach, unlike the possibilistic MV model. Furthermore, our approach considers 

various future scenarios based on the determined confidence (conservativeness) level. For these reasons, 

our approach may be an alternative to the possibilistic MV model. Another limitation of our approach 

is that it only considers the possibilistic mean vector’s uncertainty. As future research, our approach can 

be extended by using multiple uncertainty vectors to model the possibilistic mean and standard deviation 

vectors’ uncertainty together. 
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