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Abstract: Nanomaterials are currently one of the most popular emerging materials used in different 
applications such as drug delivery, water treatment, cancer treatment, electronic, food preservations, and 
production of pesticide. This is due to their interesting features including size-dependent properties, 
lightweight, biocompatibility, amphiphilicity and biodegradability. They offer wide possibilities for modification 

and are used in multiple functions with enormous possibilities. Some of them are medically suitable which 
has opened new opportunities for medical improvement especially for human health. These characteristics 

also make nanomaterials one of the pioneers in green materials for various needs, especially in environmental 
engineering and energy sectors. In this review, several synthesis approaches for nanoparticles mainly 
physical, chemical, and biological have been discussed extensively. Furthermore, bibliometric analysis on the 
synthesis of nanoparticles was evaluated. About 117,162 publications were considered, of which 92% are 
journal publications. RSC Advances is the most published outlet on the synthesis of nanoparticles and China 

has the highest number of researchers engaged in the synthesis of nanoparticles. It was noted in the 
evaluation of synthesis approach that biological approach is the savest method but with a low yield, while 
the chemical approach offers a high yield with some level of hazardous effect. Also, the bibliometric analysis 
revealed that the field of nanotechnology is a trending and hot ground for research. 
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1. INTRODUCTION 
 
Nanomaterials are currently one of the most popular 
emerging materials used in various applications (1). 
The fascinating optical, structural and morphological 
properties of materials as they approach the 
nanometric domain have increased the research 

attention on these materials. Other properties of note 
include lightweight, biocomp-atibility, amphiphilicity 
and biodegradability (2). Nanomaterials are known 

to be used for multiple functions with enormous 
possibilities in modification (3). The biocompatibility 
of some nanomaterials, especially with the human 
system, has open new opportunities for medical 
improvement (4). These characteristics also make 
nanomaterials one of the pioneers in green materials 
for various needs, especially in environmental 

engineering and energy sectors. 
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Application of nanomaterials is mostly medical (5), 
electronic (6), absorbent (7-13) and membrane 
technologies (14). Medical application of 

nanomaterials includes the delivery of drugs, heat, 
or other substance to a specific targeted cell (15). 
They are also used in devices such as sensors to 
provide fast results of disease diagnostic (16), 

antibacterial compounds (17), purifier in water 
treatment (7, 18), wound healing treatment (19), as 
cell reparation agents (20), and in nano-electronic 
technology. The improved optical and electronic 
properties has been utilized in display productions, 
such as organic light-emitting diodes (21), as 

support in the wireless technology and internet of 
things (22), as well as in nano-communication in 
which medical devices could transmit information 
inside the human body for medical purposes (23). In 
the membrane sectors, various types of 
nanomaterials such as carbon, graphene and 

fullerene are currently widely used (14, 24). 

 
Due to the wide array of benefits and utilization, the 
current study focuses on highlighting the different 
synthesis approaches of nanomaterials. Synthesis of 
nanomaterials can be conducted via various methods 
including the solid phase (25), liquid phase (26), and 
thermal methods (27). The solid phase syntheses 

involve synthesis methods without the use of 
solvents. The liquid phase syntheses include the 
solvent dissolution and sol-gel process, while the 
thermal methods include synthesis at elevated 
temperatures such as microwave irradiation, plasma, 
magnesio-thermic reduction, solar energy, and 

neutron irradiation methods. This paper is aimed to 
explore and highlight the different synthesis route of 

nanomaterials via the 3 broad physical, chemical, 
and biological routes. The bibliometric analysis of 
these various synthesis approaches is discussed. This 
review paper will enhance the knowledge on the 
synthesis route of nanomaterials and the utilization 

of the synthesized materials for different 
applications. 
 
2. TECHNIQUES FOR SYNTHESIZING 
NANOMATERIALS 
 
The two broad categories of synthesis routes are 

bottom-up and top-down approaches. Physical 
methods are used in top-down approaches, whereas 
chemical and biological methods are used in bottom-
up approaches. Other synthesis methods falls under 

these two categories and are discussed in this 
section. 

 
2.1 Physical Methods of Nanomaterial 
Synthesis 
In this method, electric current is used to generate 
electron from the initial material to produce the 
required electron (Ionic Species) which further 
converted into atomic material and develop into 

nanoparticle (NPs) (28). Physical methods have the 
advantages of high speed (29), none use of toxic 
chemicals (30), uniform size (2), purity (31), and 
shape (3). Their disadvantages include high cost 
(32), less productivity (33), radiation exposure (34), 
high temperature (35), energy intensive (30), high 
pressure (36), less thermal stability (37), complex 

shape and size tenability (38), and less stability (39, 
40). This synthesis approach could alter the 
physicochemical and surface chemistry of 

nanoparticles, making it unsuitable for producing 
nanoparticles in standard sizes and forms (41). 
Physical techniques such as ball milling (42), 
evaporation-condensation (43), sputtering (44), 

laser ablation (45), and arc discharge methods are 
examples of this process (46). The use of physical 
techniques in the synthesis of metal-nanoparticles 
have recently aroused the interest of researchers, 
owing to the adjustable parameters utilized in 
reactions (47). Unlike chemical or biological 

techniques, physical methods do not require 
reagents or solvents that can contaminate the 
samples (48, 49). 
 
In addition, the homogeneity of nanomaterial is 
potentially high when created via physical techniques 

(5). However, the requirement for huge and 

expensive equipment, the long duration of synthesis 
time are the present challenges (50, 51). 
 
2.1.1 Laser ablation 
The laser-induced ablation approach has drawn 
increased attention among other physical methods 
because of its eco-friendliness, simplicity and ability 

to offer nanoparticles with even sizes (52). In 
synthesizing diverse kinds of NPs by laser ablation, a 
high-power pulsed laser is a critical and coherent 
need for ablation on the sample's surface (53). 
Adjusting parameters such as wavelength, pulse 
width, repetition rate of the laser source, 

temperature and ablation time, the production of 
nanoparticles with chosen morphological 

characteristics is attainable (54). This is the most 
prevalent technique for metallic alloy-NPs production 
among the physical procedures (50). In this 
approach, a solid substance is irradiate via a laser to 
produce particles of nano-size (55). This technique 

involves creating nanoparticle in a liquid environment 
by obtaining colloidal solution of nanoparticle from 
solid target material in a variety of solvent (56). A 
solid target material is abraded using a laser beam 
as the energy source, resulting in the vaporization to 
atoms and clusters (57). The NPs are progressively 
formed in ambient media (58). The settings specified 

before the experimental setup may impact the final 
concentration and condition of the nanoparticle 
solution (39, 59) as it is depicted in Fig 1. The 
approach offers several notable benefits in particle 

production. The first is the ability to produce several 
particles in a single operation, and the second is the 

laser source's capacity to generate various colloidal 
solution concentrations in accordance with the 
chosen parameters (47). The primary issue, despite 
the solution's promise, continues to be the large, 
expensive equipment needed (60). The analysis 
duration is longer than the chemical procedures, and 
the process is more difficult (49). 

 
Strong laser pulses are centered on metal’s target 
contained in a liquid (61) and NPs might be produced 
using laser ablation of metallic bulk materials in 
solution (62). The size of the NPs formed by alcohol 
based materials depends on its chain length (63). C-
3 (Prop-) to C-5 (Pent-) long alcohol chain had more 
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stable particles than short-chains; ethanol and 
methanol (64). The features of the metal-NPs 
generated are determined by various factors such as 

ablation time (65) which increases, as the amount of 
metal-NPs increase till ablation time optimum value 
is reached. Increasing surfactant content may also 
yield smaller metal-NPs (66). According to reported 

studies, metal-NPs produced by femtosecond laser 
pulses have a narrower size distribution than those 
produced by nanosecond laser pulses (67). After the 
ablation, the liquid environment exclusively includes 
metal-NPs without other chemicals, and ions. 
 

Laser ablation facilitates the production of 
nanoparticles with regulated shapes and sizes, 
resulting in better long-term stability and high yields 
(55). The in-situ conjugation of bio-molecules with 
gold nanoparticles is one of the biomedical 
applications of the laser ablation technique, and it is 

possible since the synthesis is flexible and can be 

done in both aqueous and organic solvents (64). This 
strategy has consequently shown to be more 
successful than traditional procedures through 
minimizing waste production, manual operation and 
refining size control of nanoparticle (68). 
 
The studies by Islam, Shohag (47) is a notable 

example of this technology, ZnO NPs was 
synthesized via laser ablation in a NaOH solution 
(particle size from 80.76 - 102.54 nm) and spherical 
shape which refined size control of the nanoparticles 
compared to other methods. Singh, Nayak 
(69), produced ZnO NPs by laser ablation from a 

mixture of zinc, methanol, and deionized water 
solution with sizes of the particles range from 1 - 30 

nm. Similarly, Mintcheva, Yamaguchi (70) reported 
the synthesis of laser-ablated rod-shaped ZnO NPs 

with an average width of 30 nm and a length in the 
range 40 to 110 nm. Menazea and Ahmed (71), 
prepared Ag NPs using various liquid media, 

including distilled water, deionized water, 
tetrahydrofuran, and dimethylformamide. The study 
indicated that Ag NPs generated in deionized water 
had more significant ablation, antibacterial efficiency 

and stability than other media. Zhang, Gokce (72), 
employed laser beam irradiation with focused and 
unfocused laser beams at 12 and 900 mJ/cm2, 
respectively. They showed that the diameter of the 
NP decreased with the reduction in laser wavelength, 
going from 29 - 12 nm. 

 
The pulsed laser approach may also be utilized for 
synthesizing metal-organic frameworks (MOF) and 
inorganic metal complexes or the surface 
modification of nanomaterials, including nanopart-
icles coated with organic compounds that can be 

quickly produced using a single process (73). No by-

products and hazardous agents are required for the 
process. Hence, the pulsed laser synthesis processes 
are ecologically favourable (54). Fig. 1 depicts this 
method. 
 
Laser ablation industry is now undergoing fast 
change. The current advancement in the usage of 

new lasers with various modes of operation and 
wavelengths, as well as equipment, are leading to 
promising outcomes in terms of treatment 
selectivity, among other developing solutions and 
advances that are remarkable (74). Laser ablation is 
evolving into a viable surgical in the medical field 

(75). Its overarching objectives are to lessen the 
pain associated with particular cancers and to 

enhance outcomes (20). 

 

 
Figure 1: A picture of a laser system connected to a particle analyser (76). 

 

2.1.2. Ball milling 
Ball milling is a mechanical process used to generate 
nanoparticles (77). It started in 1970, and the 
technology is employed today mainly for ceramic, 
metallic, and nanoparticles (1). Its key benefits are 
connected to the cheap cost, the tiny size of particles 
created, the capacity to handle refractory materials 

and their purity since no chemical reagents or 
solvents are required (50). This approach involves 

the application of a solid force to activate electrons 
from the material's crystals and electrons from the 
inner structure (78). High energy is released 
throughout the operation due to the velocity 
differential between the rotating balls and the 
grinding jars (63). The high temperature required to 
begin chemical synthesis will rise due to the frequent 

collisions s depicted in Figure 2. This procedure 
produces nanoparticles or doped nanoparticles as a 
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result of the high temperature's crucial role in atom 
diffusion (79). The downsides of this approach 
include the potential for environmental or milling ball 

contamination and the creation of irregular-shaped 
NPs (1). Compared with a more significant 
temperature of 1000 °C, this approach can mill the 
material better (56). Different variables, including 

time, milling speed, process control agent, 
atmosphere, ball-to-powder ratio, temperature, and 
the size distribution, affect the quality of products 
produced by ball milling (80). 
 
According to an earlier reported study, ball milling is 

also suitable for the environmentally friendly 
synthesis of silver, a process that has been 
extensively researched in recent years (56, 81). 
Nicolae-Maranciuc, Chicea (50), used silver nitrate in 
the presence of two naturally occurring compounds 
acting as reducing agents while using the ball milling 

procedure. Eggshell membranes and 

Origanumvulgare L. were added to the silver 
precursor solution as reducing agents. The results 
suggested that both biocompatible chemicals, with 
certain variations, might be employed as reducing 
agents in this procedure which are used to convert 
ionic species into atomic material which develops into 
NPs. The TEM analysis revealed that the particle 

diameters of Origanumvulgare L. are lower. The 
plant's optical and antibacterial characteristics seem 
superior to those of the eggshell membrane (82). 
Fine metal NPs were prepared using the high-energy 

ball milling approach in an elevated shaker mill (68). 
Its primary benefit is the capacity to concurrently 
create enormous volumes of material (47). According 

to Abdullah, Bakar (83), a high-energy ball milling 
was employed to produce ZnO NPs with a mean 
particle size of 0.8 nm. Through milling, particles 
with ultimate sizes ranging from 200 to 400 nm were 

produced. Similarly, Raha and Ahmaruzzaman (84) 
developed a high-energy ball milling method to 
create rod-shaped ZnO NPs in the 20 – 90 nm range. 
A high-intensity ball milling process was adopted to 
generate ZnO NPs from ZnO microcrystalline powder 
by Prasad, Kumar (85). The samples were processed 

in a ball mill for 2, 20, and 50 h. According to the 
findings, the particle size varied over time. The 
duration of the ball milling process increases with 
decreasing particle size. Spherical ZnO-NPs with 
around 30 nm particle sizes were detected in the 
milled sample. Khayati (86), showed the production 

of Ag NPs graphite as a reducing agent utilizing a 

mill. The resulting Ag NPs had a size of 14 nm in the 
presence of process control agents. Alam and 
Hossain (87), synthesized rod-shaped ZnO NPs using 
a high-energy milling technique in the range of 20 to 
90 nm. The higher the ball milling duration, the lesser 
the particle size. After 50 hours of milling, the 
material revealed spherically formed ZnO-NPs with 

particle sizes of roughly 30 nm. High-energy ball 
milling is a handy approach to generating nanosized 
particles. A typical example of ball mill is shown in 
Figure 2a & b. 

 

 
 

 
Figure 2: (a) A rock tumbler Ball mills (88), and (b) Illustration of the steps needed to create metallic 

nanoparticles using high-energy ball milling techniques (47). 
2.1.3. Evaporation – Condensation 
Evaporation-condensation can be used to synthesize 

NPs using an air pressure tube furnace/tiny ceramic 
heater (4). This approach is often used to generate 

metal-based NPs. There are three primary phases in 
the evaporation-condensation process: (1) the 

material is sublimated or evaporated to produce a 
gaseous phase; (2) the substrate receives material 

A 

B 
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from the source via condensation, and (3) films or 
particles are generated by nucleation and 
subsequently followed by growth (89). Rapid cooling 

of the vapour results in significant concentrations of 
tiny NPs (90). Additionally, this approach requires a 
specified kilowatt of electricity from a standard 
furnace and a given time to attain a steady 

temperature (91). Radiation was utilized as a 
reducing agent in this process to produce NPs due to 
its ability to generate ionic species which further 
converted to atomic material for the production of 
NPs (92). This technique was used to assemble 
nanospheres from different metal components. The 

downsides of evaporation-condensation are the 
lengthy process time, and the huge amount of 
energy needed (93). 
 
Sharma and Kumar (94), Evaporation- condensation 
process comprises heating of a combination of AgNO3 

and CH3COONa in a tube furnace. This led to the 

liquid mixture being converted into a gas, which was 
then condensed into Ag-NPs after cooling. The 
produced Ag-NPs ranged from 3 - 50 nm. Ong and 
Nyam (95), used the inert gas helium to demons-
trate the evaporation-condensation approach for 
synthesizing Ag NPs spherical Ag NPs of 9 to 32 nm, 
with few agglomerations, were formed at a lower 

inert gas pressure and evaporation temperature. A 

ceramic heater with a maximum temperature of 
1500 °C was used by Lee and Jun (96) to produce 
Ag-NPs using the evaporation-condensation method. 

Poly-dispersed Ag-NPs were produced from a heater 
surface with a constant temperature. The Ag-NPs 
generated were in the size range of 6.2 - 21.5 nm. 
Similarly, Hara, Fukuoka (97), produced Ag-NPs 

using temperatures ranging from 1300 to 1400 °C in 
a furnace, and the vapour was diluted with N2 gas. 
Ag-NPs of 50, 90, and 130 nm were generated at 
various synthesis temperatures. 
 
However, the synthesis of mainly metallic alloy NPs 

through evaporation-condensation in a tube furnace 
has some limitations. The tube furnace has a big 
volume, uses significant amount of energy to 
increase the temperature of the metal supply's 
environment, and has to be maintained for a longer 
time to retain its thermal stability (98). One of the 

most appealing nanomaterials for commercial uses is 

Ag-NPs (99). They have been widely employed in a 
variety of environmental applications, including 
textile coatings, food storage, anti-bacterial 
treatments in the health sector, and electronic goods 
(100). Ag-NPs were employed as anti-bacterial 
agents for a variety of purposes, including water 
treatment, cleaning and disinfection of medical 

equipment (101). 
 

 
 

Figure 3: Synthesis of silver nanoparticles by evaporation-condensation method. 
 
2.1.4. Arc discharge method 
Due to its ease of apparatus setup and capacity for 
high production rate, the arc discharge technique has 

attracted much attention for producing nanoparticles 
(76). This approach has been used to successfully 

create a variety of nanoparticles. One of the most 
studied nanomaterials prepared with this process is 
carbon nanotubes (CNTs). In this method, a direct 
current (DC) arc discharge was utilized (102) (Figure 
4). The process of producing carbon nano-tubes 

(CNTs) involves applying a current arc voltage across 
two graphite electrodes, which causes carbon to 
evaporate while a catalyst is immersed in an inert 
gas (103). 
 
The arc discharge approach may be used to 

synthesize nanoparticles in either continuous or 
pulsed mode (104). High-purity graphite is employed 
as an electrode in the production of MWNTs and 
SWNTs, and arc discharge may be performed in 

helium or hydrogen gas (105). The arc discharge 
technique needs vacuum equipment with an effective 
cooling system. Then the precursor is introduced and 

heated by the thermal plasma, which creates the 
ideal environment for the induction of processes that 

result in super-saturation and particle nucleation 
(40). It breaks down into radicals, atoms, and ions in 
the presence of thermal plasma to create an ionized 
gas at high temperature (106). The plasma arc's high 
temperatures and dense concentration of species 

cause a diffusion mechanism that quickly quenches 
gas species. This condense to form particles during 
this process after cooling down by combining with a 
cold gas or being enlarged by a nozzle (107). 
 
Koushika, Shanmugavelayutham (108), created 

Fe3O4-NPs from mild steel scrap via transferred arc 
plasma approach. Similarly, Si-NPs was created by 
using a radio-frequency thermal plasma technique to 
recycle silicon waste (Lee, Kim, (109)). Several 



Ajala OJ et al. JOTCSA. 2024; 11(4):1329-1368  REVIEW ARTICLE 

1344 

metals, alloys, and metal oxides NPs have been 
synthesized effectively using plasma methods (46). 
The composition, size, and shape of NPs may be 

readily adjusted by altering some parameters such 
as raw material composition, applied voltage and 
current, gas type and concentration within the 
reaction chamber, and reaction type (110). Helium, 

argon, nitrogen, air, and hydrogen are the most 
common gasses for producing thermal plasma (111). 
 
Typically, experimental factors are changed to 
improve the arc discharge process, including 

current/voltage, buffer gas, catalysts, carbon 
sources, electrode morphologies, external fields, etc. 
(112). In essence, the experimental parameters 

determine the plasma characteristics, the spatial 
distribution, and the nucleation and development of 
carbon in the space and time domains (113). In most 
situations, nanoparticles generated via the arc 

discharge process are exposed to high cooling rates. 
The homogeneity of the nanoparticles created using 
this process often degrades due to uneven cooling. 
Thus, regulating particle nucleation and development 
requires attention (114). 

 

 
Figure 4: Schematic representation of the experimental configuration for arc discharge in gas chamber 

(115). 
 
2.1.5. Sputtering 
Sputtering involves depositing a thin layer of 
nanoparticles, which are formed through an 

annealing process (116). This approach is known as 
physical vapour deposition, and its efficiency is 

primarily determined by parameters such as layer 
thickness, temperature, substrate type, and 
annealing time (117). All these factors directly 
impact the nanoparticles' shapes and sizes (118). Ion 
sputtering is a physical process for depositing 
substrates that employ high-energy equipment and 

an ionized plasma (119, 120). The method relies on 
injecting argon gas, which when exposed to a 
powerful electric field creates a plasma inside the 
cavitate and causes the ions to move as an intensely 
focused ion beam from the anode to the cathode 
(49). In most circumstances, the concentrated ion 
beams are sputtered on a selected substance as an 

adhering film. Since this is a top-down method, a 

high vacuum is necessary in order to accelerate the 
gas ions and finish the deposition (121). 
 
In order to better monitor the changes in single 
molecule analysis techniques like surface-enhanced 
Raman spectroscopy, López-Lorente, Picca (122), 

utilized ion beam sputtering to deposit 
nanocomposites using variable proportions of Ag and 
TiOx/ZnO on silica surfaces (SERS). Three samples 
were created: an Ag-TiOx composite made with two 
co-sputtering targets, Ag-NPs deposited on ZnO, and 
Ag-NPs deposited on TiOx. The results of the study 

showed that the substrate's sensitivity can be 

increased by adding silver and ceramics, allowing for 
the collection of more detailed information via 
vibrational spectroscopy. The samples made of 

Ag/TiOx increased the SERS while also functioning as 
photocatalytic materials. The study showed that, in 

addition to their antibacterial effects, Ag-NPs also 
possess exceptional chemistry and surface 
functionalization abilities; hence, using Ag-NPs as 
spectroscopic substrates is a feasible strategy for 
further research (50). Also, Zhao, Zhang (123), 
reported the preparation of Sn-NiO films via simple 

one-step magnetron sputtering process for a 
superior electrochromic performance. The amount of 
Sn in the Sn-NiO films was controlled by adjusting 
the sputtering power of the SnO2 target. The 
optimized Sn-NiO film was used as an anodic 
electrochromic layer to prepare inorganic all solid-
state electrochromic device (ECD) and the ECD 

displayed excellent electrochromic perfor-mance. 

The strategy of preparing NiO modified by Sn4+ ion 
presents an innovative direction to obtain high 
performance electrochromic materials for energy 
saving smart windows. Wang, Qu (124), reported the 
preparation of Cu-doped Ag thin films via magnetron 
co-sputtering method which was successfully 

fabricated on SiO2 substrate. He discovered that the 
peak value of 36.8 dB is the highest shielding 
effectiveness at an optimal concentration of 2 mol%. 
This exceptional property make Cu-doped Ag films 
highly valuable and applicable for electromagnetic 
shielding in transparent windows which is as a result 

of Co-sputtering method. 
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Figure 5: Schematic representation of the experimental configuration for sputtering (124). 

 

2.2. Biological Methods of Synthesizing 
Nanomaterials 
Green synthesis of nanoparticles by various 
physiochemical processes necessitates considerable 
energy consumption, harsh reaction conditions, 
costs, and the usage of harmful substances (125). 
Synthetic ways of producing nanoparticles also 

generates some hazardous by-products that are 
harmful to the environment and living things (126). 
Biological synthesis commonly referred to as “green 
synthesis”, is an alternative route to the production 
of nanoparticles. Green synthesis of nanoparticles is 
a new topic in nanoscience that includes the efficient 
preparation of functional nanoparticles utilizing plant 

extracts, bacteria, and fungi (127). Biological 
pathways are beneficial in various fields since they 
are simple, safe, biocompatible, and harmless to 
living things and the environment (128, 129). The 
green synthesis process is not only dependable, 
economical, and time-saving, but it also reduces the 

creation of hazardous waste (130, 131). The green 
strategy for the synthesis of nanoparticles is the 
preferable technology since it does not involve 
significant energy consumption, such as high 
pressure or temperature. In contrast to the other 
synthesis methods, it employs moderate reaction 
conditions and nontoxic precursors (132). 

 
The use of plants and microorganisms to synthesize 
metal nanoparticles has excited lots of research 
interests (133, 134). Numerous metallic 

nanoparticles have recently been created using a 
green method and are widely employed in the 
pharmaceutical and biological industries (135). 

However, biologically synthesized nanoparticles play 
an essential role in the environmental and biomedical 
domains due to their high yield, enhanced stability, 
excellent biocompatibility, and lower bio-toxicity 
(136). Furthermore, as interest in sustainable 
development grows, so does interest in biological 

synthesis, since it conserves raw resources and 
decreases the use of dangerous chemicals (137). 
Plant components such as seeds, leaves, peels, 
fruits, and flowers are high in phytochemicals 
including terpenoids, phenols, etc which function as 
reducing agents (137-140). The production of NPs by 

microorganisms and plants has several benefits, 
including mono-dispersity, the absence of harmful 
compounds, effective, fast, and eco-friendly process 
(1). The synthesis of NPs depends critically on factors 
like pH, incubation period, and temperature (141). 
Metal-alloy NPs (MNP), which were generated 
biologically, showed superior biocompatibility than 

metal alloy NPs manufactured using diverse 
physicochemical approaches (142). Biologically 
produced MNPs have been widely employed to 
address difficulties or to boost process efficiency in 
industries and biomedical sciences (143-145). 
 
2.2.1. Green synthesis using microorganism 

Microbes offer enormous potentials for producing 
ecologically friendly metallic nanoparticles (MNPs) 
without the need for traditional physical or chemical 
methods (146). Microbes are everywhere, and they 
may swiftly adapt to their surroundings and develop 
tolerance to hazardous metals (147). Enzymes in 

physiological and biological functions enable 
microorganisms to create metallic alloy NPs. The 
proteins, enzymes, and functional groups are all 
known for their ability to decrease ions (148). Two 
fundamental strategies underlie microbial resistance 
to hazardous metals. Nanoparticles (NPs) may be 
produced by microbes both intracellularly and 

extracellularly. Microbes may generate materials of 
various sizes and morphologies at the nanoscale by 
bio-mineralizing inorganic minerals intracellularly or 
extracellularly (147, 149). The transfer of metal ions 

into the microorganism causes the intracellular 
synthesis of metallic alloy NPs (137). In contrast, the 
extracellular approach also involves the metal ion 

concentration at the cell surface (150). In a nutshell, 
for the extracellular approach, the specific 
microorganism is cultivated for 1–2 days in a rotary 
shaker, the biomass is separated through 
centrifugation, while the supernatant is collected 
(50). MNPs are created by combining a specific ratio 

of cell-free culture supernatant and filter-sterilized 
metallic salt solution, then incubating the mixture at 
the ideal temperature (151, 152). 
 
In contrast to generated intracellular MNPs, the 
microbial biomass is centrifuged and thoroughly 
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washed with sterile water (125). The biomass is then 
dissolved in a metallic salt solution that has been 
asterilized. The combination is incubated as a visible 

colour change is monitored (153). The biomass is 
removed by centrifugation after several cycles of 
sonication, and the produced MNPs are then 
quantified using a UV spectrophotometer (145, 154). 

The microbial cell wall/membrane is broken down by 
ultrasonication, allowing the MNPs to exit the cell 
(142). Because it does not need the same processing 
steps as intracellular production and recovery of 
MNPs, such as centrifugation, sonication, and 
washing, extracellular synthesis of MNPs is regarded 

as a low-cost, fast, and scalable technique (155). 
Diverse fungal metabolites with improved 
oxidation/reduction potential and increased 
bioaccumulation potential have been used to study 
the mycosynthesis of MNPs using simple, 
environmentally safe methods (156). Three different 

phenomena, including electron shuttle quinones, 

nitrate reductase activity, and their interactions, 
have been characterized for the myco-mediated 
generation of MNPs (157). For the production of 
various MNPs, many enzymes have been identified, 
including NADPH-dependent reductases in the case 
of Fusariumoxysporum and nitrate reductase in the 
case of Penicillium sp (59). Few studies have 

demonstrated how actinomycetes contribute to the 
development of MNPs (158). Actinomycetes have the 

potential to be used in the synthesis of stable, mono-
dispersed MNPs, but further studies are needed 
(159). 

 
Kalpana and Devi Rajeswari (149), synthesized ZnO 
NPs from Vitexnegundo plant extract using zinc 
nitrate hexahydrate as a precursor. Bio-synthesised 

ZnO nanoparticles with size of 40.5-20.8 nm 
exhibited antibacterial properties against Staphyloc-
occus aureus and Escherichia coli. Undabarrena, 
Ugalde (160) reported that the reductase enzyme 
from Streptomyces sp. has been used to synthesize 
zinc with 11.84-24.82 nm size, copper with 6.93 nm 

size, and silver NPs with 5.62 nm size and MNPs. 
Yeast has been utilized to synthesize MNPs by 
downstream techniques AbdelRahim, Mahmoud 
(161). Capsids of genetically modified viruses has 
also been utilized as bio-templates to create titanium 
nanostructures and quantum dot nano-wires (156, 

157). Semiconductor nanoparticles have also been 

synthesized by using some biological molecules 
including polyphosphates, amino acids, and fatty 
acids as templates. Other biological techniques for 
green nanostructure synthesis include protein cages 
(162), DNA (163), bio-lipid cylinders (164), multi-
cellular superstructures (165), and viroid capsules 
(166), which have been used for template-mediated 

MNP production (167). This process is represented in 
Fig. 6. 

 

 
Figure 6: Green synthesis of nanoparticles by various microorganisms (168). 

 
2.2.2. Green synthesis using plants 

Plants contain a variety of molecular functions, 
naturally occurring compounds, secondary 
metabolites, or phytochemicals, which may be 
exploited as efficient biological factories to deal with 
environmental toxins caused by industrial wastes 

(169). Synthesis via the use of plant extracts allow a 
considerably easier approach to creating 
nanoparticles in more significant quantities than 
microbe-mediated synthesis (15). The solvent, 
pressure, temperature, and pH conditions in green 
synthesis approaches are all essential considerations 

(150). Numerous plant extracts, particularly those 
from the leaves, have been thoroughly studied for 
NPs production because they contain a variety of 
useful phyto-chemicals like flavones, terpenoids, 
ketones, phenols, amides, aldehydes, carboxylic 

acids, and ascorbic acids (1). These bio-molecules 

can transform metal salts into metal nanoparticles, 
which have been explored for diagnostic and anti-
microbial applications (170). 
 
Plants also offer several potential uses in biomedicine 

due to the presence of biologically active substances 
such as flavonoids, alkaloids, terpenoids, saponins, 
polyphenols, co-enzymes, carbohydrates, vitamins 
and proteins (171). In Ayurvedic, Thai, and Chinese 
traditional medicine, plants have been extensively 
used to treat various illnesses, including skin 

conditions, rheumatism, venereal infections, and 
beriberi (169). The biological effects of plants have 
been found to include antimycotic, antibacterial, 
antiviral, free radical scavenging, anticancer, and 
anti-inflammatory properties (172). 
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Therefore, a replacement option for producing 
nanoparticles is by employing plants and their 

components. Because they are non-toxic, naturally 
capable of capping ends, reduce metal ions, and can 
accumulate heavy metals in their cells. Synthesis of 
nanoparticles with plants involves a simple, energy-

free, quick, and affordable approach (173). 
Nanoparticles produced from plants or their 
components have the requisite size and form, are 
non-toxic, biocompatible, stable, have enhanced 
activity, and have a solid capacity to penetrate (174). 
Plant and its component include numerous 

biochemicals that play a vital role in reducing, 
capping and stabilizing metal ions to nanoparticles 
(135, 175). Recently, scientists have been focusing 
on plants to biosynthesize biocompatible nanopart-
icles. Secondary plant metabolites may play a vital 
and critical function as reducers, and stabilizing 

agents for biosynthesizing nanoparticles (150). 

 
Additionally, phytochemicals' surface adsorption 
results in biocompatible nanoparticles' formation 
(176). Instead of using nanoparticles that are 
produced routinely, they might additionally improve 
the biological properties of nanoparticles. The use of 
plants in the synthesis of nanoparticles offers a 

number of advantages since it are dependable, 
simple, economical, easy to scale up, and 
ecologically friendly (177). Plants are also preferable 
to microbial synthesis methods for the green 
production of nanoparticles since they need less 

time, are safe, and do not require complex laboratory 
infrastructure (178). 
 

Ijaz, Shahid (179), reported the fabrication of CuO-
NPs using Abutilon indicum leaves aqueous extract 
and described A one-port synthesis of ZnO and Cu-
doped ZnO nanoparticles using aqueous leaf extracts 

of Abutilon indicum and Clerodendrum infortunatum 
has been described Khan and Lee (180). Several 
components, including fruits, leaves, fruit peels, 
roots, and seeds, have been used to prepare Au 
nanoparticle, Ag nanoparticle, Pd nanoparticle, 
Pd/Fe3O4 nanoparticle, and Pd/CuO nanoparticle, 

respectively (127). The initial stage in producing 
nanoparticles by plants is collecting desirable plant 
parts, such as leaves, fruits, and roots followed by 
cleaning and drying as shown in Figure 7. The dried 
material is then grinded and heated for an extended 
period at the ideal temperature. Plant solid waste is 

filtered using plant extract. Metal salt solution and 

aqueous plant extract are heated at optimal 
temperature conditions. The nanoparticle synthesis 
production may be determined by visual examination 
(130, 181). Plants produce nanoparticles by reducing 
metal ions into NPs through redox reactions such as 
the enol-to-keto-transformation, which are electron-
rich phytochemical molecular functions found in 

sugars, polyphenols, and flavonoids in plant extract 
(182, 183). Saponins, alkaloids, terpenoids, co-
enzymes, and proteins in plant extracts capped and 
stabilized the nanoparticles (180). 

 

 
Figure 7: Green nanoparticle synthesis using various plant components, such as leaves, fruits peel, fruits, 

roots, and seeds (180). 
 
 

 
 
 
2.3. Chemical Methods of Synthesis of Various 
Nanoparticles 
This section detailed numerous chemical techniques 

for the preparation of various nanomaterials. This 
highlights the significance and comparative merit of 
one strategy over the others. 
 

2.3.1. Hydrothermal method 
This method involves preparing nanoparticles in an 

aqueous medium under high temperature and 
pressure. Different studies have examined the use of 
hydrothermal method to prepare various 
nanoparticles, including titanium oxide and graphene 
oxide among others (184). Even while hydrothermal 
technology is regarded as cost-effective and 

environmentally beneficial, it frequently involves 
high temperatures (185). An autoclave has a 
temperature range of 160 to 180 °C (87). However, 
there are several limitations, such as the inability to 
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clearly see the crystal material growing in autoclave 
and the expensive nature of the equipment. When 
the temperature in the autoclave exceeds the boiling 

point of water, the pressure reaches saturation with 
vapour. The autoclave's temperature and the volume 
of solution supplied directly affect how much internal 
pressure is generated (186). Synthesis of zinc oxide 

was reported by Bulcha, Leta Tesfaye (187) which 
was been synthesized using hydrothermal method. 
He reported successful production of zinc oxide 

synthesis. Jubeer, Manthrammel (188), also reported 
the synthesis of ZnS nanoparticle through the 
hydrothermal method which was found successful. 

Chen, Liu (189) and Khan, Usman (190) synthesis 
Ce-doped SnO2 hollow spheres and CuAl2O4/rGO 
nanocomposites respectively using one-pot 
hydrothermal method and from there finding the 

synthesis was successful. Figure 8 is an example of 
hydrothermal synthesis method of nan- oparticle 
showing the synthesis of GO nanoparticle. 

 

 
Figure 8: Synthesis of GO nanoparticle using Hydrothermal Method (24). 

 

2.3.2. Solvothermal method 
This method involves the application of non-aqueous 
solution (precursor and non-aqueous solvent) at high 
temperature and pressure to produce various 
nanoparticles. Both synthesis in alkaline 
environments and in the presence of organic 
molecule precursors fall under the solvo-thermal 

technology which involves the reaction between 
precursor(s) in a solvent in a close system (191). The 
use of a solvothermal method to create nanoparticles 
offers a number of benefits, including economical, 
and releasing nearly no by-products throughout the 
reaction (192). For instance, Perumal, 
MonikandaPrabu (193), demonstrated a 

solvothermal method for producing TiO2 nanop- 
articles, using toluene and titanium tetra 

isopropoxide as the solvent. The solution underwent 
thermal treatment in a stainless steel autoclave at 
250 °C for 5 hours at a rate of 20 °C/min, followed 
by two hours of calcinations at 550 °C. The XRD 

measurement showed the synthesis of pure anatase 
TiO2 nanoparticles with a particle size of 20 nm, in 
contrast to the SEM images that showed particles 
with irregular shapes and an average size in the 
range of 7–14 nm. Similarly, ammonium 
citratoperotitanate and polyvinyl alcohol (PVA) were 

used to create anatase TiO2 nanoparticles Uematsu, 
Baba (194). The PVA was mixed with the titanium 
precursor, which was then micro-waved to 
evaporation. Kløve, Philippot (195), reported the 
synthesis of pure-phase tetragonal ZrO2 nanoparticle 
via simple solvothermal synthesis. Different types of 
Alcohol were used for condition variation as solvent 

and studies using in-situ scattering. The variation of 
tetragonal or monoclinic phase ratios within the 
produced powders was directly correlated with the 
amount of in-situ generated water from solvent 
dehydration during the syntheses. Zhang, Feng 
(196), reported the synthesis of hollow CoSx@CdS 
polyhedron constructed by ZIF-67 via one-pot 

solvothermal route. It was discovered that the 
photocurrent responses of the CoSx@CdS-modified 

ITO electrodes could be specifically turned on by 
Hg2+, in contrast to these of the CoSx or CdS-
modified ones showing no significant Hg2+ induced 
photocurrent. Under visible light irradiation, herein, 

the synergetic combination of CoSx and CdS 
components could improve the carriers transferring 
of photoelectrochemical system. Figure 9 
summarized solvothermal synthesis method of 
nanoparticles. 
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Figure 9: Synthesis of Nanoparticle using Solvothermal Method (24). 

 
2.3.3. Co-precipitation Method 
This entails the co-precipitation of metal cations from 
several sources, including hydroxides, citrates, 
carbonates, and oxalates (197). At the suitable 

temperature, these precipitates are transformed into 
powders because the demerit of this method is that 

product co-precipitates with unwanted contaminants 
as well as the analyte (198). By producing inclusion 
and occlusion (when a contaminant generates a 
frame site in the transporter's crystal structure, 
which is about a crystallographic fault), re-
precipitating the analyte can correct this 

imperfection (when an adsorbed contamination 
becomes physically surrounded inside the crystal) 
Priyadharshini, Shobika (199), Nickel ferrite 
nanoparticles was prepared using the co-
precipitation process with starting materials such as; 

Ni(NO3)2.6H2O and Fe(NO3)3.9H2O before annealing 
the samples at various temperatures (500 °C, 700 
°C, and 900 °C). According to the XRD study, a 
highly crystalline ferrite phase was formed, with 

average crystallite sizes ranging from 9 to 21 nm, 
depending on the annealing temperature. 

Priyadharshini, Shobika (199), also used a co-
precipitation technique to create NiFe2O4 
nanoparticles. The creation of the cubic spinal phase 
of NiFe2O4 was confirmed by XRD analysis, and SEM 
analysis revealed the formation of spherical particles 
with an average particle size of 28 nm. Although this 

approach is difficult and expensive, co-precipitation 
produces nanoparticles whose shapes are 
unpredictable, necessitating more deliberate efforts 
to achieve the desired particle size and form. Figure 
10 presents the synthesis procedure. 

 

 

Figure 10: Synthesis of Nanoparticle using Co-precipitation Method (197). 

 

 

2.3.4. Sol-gel method 

This is a straightforward and affordable wet-chemical 
approach used to create composite materials with 
exceptional control over size. With this method, the 
solution (sol) progressively develops into a gel-like 

substance that is composed of both liquid and solid 

phase (18, 200). Non-aqueous and aqueous sol-gel 
syntheses are the two types of sol-gel methods. The 
initial stage in creating a rational synthesis for non-
aqueous sol-gel creation of metal oxide nanoparticles 
is to elaborate the chemical formation mechanism 

alongside investigations on the crystallization 
process (201). However, in order to verify that this 
technique yields comprehensive results, it is 
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necessary to explore many characterizations 
qualities, including crystallographic and microscopy. 
 

In contrast, the hydrolysis of metal alkoxides occurs 
very fast in aqueous conditions when using the sol-
gel method, complicating the ability to control 
reaction rate. When using the non-aqueous sol-gel 

approach, the carbon-oxygen bond may be applied 
with moderate reactivity at a low reaction 
temperature, which causes the nanoparticle to have 
a high crystallinity. The right solvent must be 
selected because it has a significant impact on how 
nanoparticles develop. For instance, Ahmed, Aly 

(202), used the sol gel approach to create titanium 
dioxide (TiO2) nanoparticles by combining ethanol 
and titanium chloride (TiCl4). The created TiO2 
nanoparticles were calcined for two hours at various 
temperatures between 200 and 800 °C. Up to 400 

°C, these materials demonstrated good thermal 
resilience. 
 

Polyacrylic acid (PAA) was used as a chelating agent 
in the sol-gel process to create spinel nickel ferrite 
nanoparticles. NiFe2O4 nanoparticles' size, specific 
surface area, and crystallinity were all influenced by 

the molar ratios of PAA to total metal ions and the 
calcination temperature (203). Using glycine gels 
made from metal nitrate and glycine solutions, Liu, 
Guo (204), adapted the sol-gel combustion process 
to create ultrafine barium ferrite (BaFe12O19) 
nanoparticles with sizes ranging from 55 to 110 nm. 

Furthermore, Zakir, Iqbal (205), used the sol-gel 
auto combustion approach to create spinel nickel 
ferrite (NiFe2O4) nanoparticles. Figure 11 
summarized sol-gel synthesis method of 
nanoparticle. 

 

 
Figure 11: Synthesis of nanoparticles using Sol-gel Method (200). 

 
2.3.5. Solution mixing method 

The fundamental method for mixing solutions is in a 
solvent system. This method uses electrospinning to 
combine two distinct nanoparticles in a solution. 
Since there is no chemical connection between the 
new substance and the base, the main disadvantage 
is the potential leaching of the added material. For 
instance, the synthesis of Zinc doped Iron 

oxide/GO/Polymer ternary nanocomposites using 
solution mixing approach was explored by Suneetha, 
Selvi (206). The impedance study showed that the 
modified electrode made of nanoparticle had an 
excellent capacitance with a bond phase angle of 87° 
and was a promising candidate for use in super 

capacitors. Zeng, Teng (207), used ultrasonic 

techniques to create Al-graphene oxide composites, 
and they discovered that the materials had a 255 
MPa tensile strength. The creation of graphene oxide 
metal oxide/metal nanocomposites has been shown 
to improve mechanical qualities and address a 
variety of energy and environmental-related 
problems. An effective method for producing 

graphene-TiO2 nanomaterials by photocatalyzing the 
reduction of graphene oxide in solution has been 
reported Nawaz, Moztahida (208), Figure 12 depicts 
a simplified solution mixing synthesis process for 
nanoparticles. 
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Figure 12: Synthesis of GO nanoparticles using Solution Mixing Method (208). 

 
2.3.6. Chemical vapour deposition (CVD) 
Chemical vapour deposition (CVD) is method which 
involves the deposition of solid materials from a 
chemical reaction through the production of vapour 
or vicinity of a normally heated substrate surface. 
This is an example of vapour-solid reaction which 

normally used in the production of thin films in 
semiconductor industry. In this method, vapour 
phase precursors are brought into a hot wall reactor 
under conditions that favour nucleation of particles 

in the vapour phase rather than deposition of a film 
on the wall. It is called chemical vapour synthesis or 

chemical vapour condensation in analogy to the 
chemical vapour deposition processes used to 
deposit thin solid films on surfaces. This method has 
tremendous flexibility in producing a wide range of 
materials. Hong, Liu (209), reported the synthesis of 

layered two-dimensional MoSi2N4 material via 
chemical vapour deposition. The monolayer was built 
up by septuple atomic layers of N-Si-N-Mo-N-Si-N 
which can be viewed as a MoN2 layer sandwiched 
between two Si-N bilayers. Xu, Zhang (210), 
reported the synthesis of graphene on thin metal 

films using chemical vapour deposition which was 
successfully produced. Thin metal films are usually 
made by depositing metals on various substrates 
such as single-crystal sapphire which serves as 

catalytic substrates for high quality graphene 
growth. Table 1 is the summary of different synthesis 

routes to nanoparticles such as chemical, physical, 
and biological for different applications such as 
optical communication, membrane, adsorbents 
sensor, electronic, and antimicrobial. 

 
Table 1: Overview on the synthesis of different nanomaterials. 

Nanomaterials 
Synthesis 
routes 

Synthesis methods Applications Ref. 

Aramid Chemical In-situ Membrane (211) 

Rubidium chloride doped 
magnesium oxide 

Chemical Green 
Optical 
communication 

(212) 

Polyacrylamide hydrogels  Physical Thermal Membrane  (213) 

Hyperbranchedpolyethyleneimine Chemical Facile Adsorbent (214) 

Ru–poly(amindoamine) Chemical Ionic liquid Electronic (215) 

MXenes Chemical 
Triple carbides and 
nitrides MAX 

Membrane (216) 

Amine functionalized mesoporous 
silica 

Chemical 
Etching and 
polymerization 

Adsorbent (217) 

Carbon dots-based covalent Chemical Schiff-base reaction 
Food additive 
and adsorbent  

(218) 

ZnO 
Physical 
Chemical 

Carbon microspheres 
Sensor and 
adsorbent 

(219) 

Graphite flakes and carbon-based 
nanomaterials 

Physical Thermal - (220) 

In2O3 Physical 
Hydrothermal and 
calcination 

Sensor (221) 

TiO2/WO3−x hybrid Chemical Ethanoic acid Nanowire (222) 
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Nanomaterials 
Synthesis 
routes 

Synthesis methods Applications Ref. 

Tungsten oxide 
Physical 
Chemical 

Hydrothermal and 
Dissolution 

Electronic (223) 

One-dimensional α-MoO3 Physical Hydrothermal Sensor (224) 

BaLa2ZnO5:Dy3+ Physical 
Dissolution and thermal 
processes 

Solar cell (225) 

Nano-Fe3O4@TiO2-Pr-2AB@Cu Chemical Coprecipitation Cosmetic (226) 

Ag/ZnO Chemical Facile Antibacterial (227) 

CoNi2S4 
Physical 
Chemical 

Dissolution and 
calcination 

Adsorbent (228) 

MgFe2O4 Physical 
Microwave solution 
combustion 

Dye degrader (229) 

Pd-dopedCeO2 Physical Hydrothermal  Sensor (230) 

Ba2YAlO5:Dy3+ Physical Propellant combustion Electronic (231) 

AgNPs 
Biological 
Chemical 

Plant extraction Antimicrobial (232) 

CNMs 
Physical 

Chemical 

Surface activation and 

heating 
Membrane (233) 

Sn–SnO2–C Physical Monte-Carlo reaction Electronic (234) 

MoOx/Nb2O5 Physical Calcination Medical (235) 

GO-MgO Biological Plant extraction Adsorbent (236) 

Silica nanoparticles, graphene 
nanosheets and graphene oxide 
nanosheets 

Physical 
Ambient fiery and 
furnace 

Medical (237) 

TiO2/Ag Chemical 
Sterilization and 
purification 

Electronic (238) 

Mg(OH)2 Biological Seaweed extraction 
Anti-
mycobacterial 

(239) 

Tris(selenobenzoato)antimony(III), 
tris(selenobenzoato)bismuth(III) 
and 

bis(selenobenzoato)dibutyltin(IV) 

Chemical One pot process Electronic (240) 

NaBH4 and FeCl3∙6H2O Chemical In-situ Algae harvesting (241) 

Metal ion dopedZnO Physical Combustion Adsorbent (242) 

Porous TiO2 Biological Biomass assistance Electronic (243) 

CaO 
Biological 
Physical 

Fruit extraction and 
furnace 

Antimicrobial (244) 

Bimetallic Cu-Ni hybrid 
Biological 
Chemical 

Plant extraction and 
dissolution 

Antimicrobial  (245) 

α-MnS Chemical Dissolution Electronic (246) 

Ca3MgAl10O17 Chemical Facile Sensor (247) 

SWCNT-hybrid Chemical 
Subphthalocyanine 

substitution 
Electronic  (248) 

FeFe2O4 Chemical Facile Adsorbent (249) 

Biogenicgold Chemical Dissolution Electronic (250) 

Zn–F co-dopedTiO2 Physical 
Sol-gel and 

coprecipitation 
Electronic (251) 

2-methyl-6-nitroquinoline Chemical Cyclization reaction Medical (252) 

CuFe2O4 Biological 
Waste eggshell 

extraction 

Adsorbent and 

antibacterial 
(253) 

ZnOxS1-x Chemical Facile Adsorbent (254) 

ZnxFe3–xO4 redox Chemical Dissolution Adsorbent  (255) 

Gd doped α-Sb2O4 Physical 
Washing and 

calcinations 
Electronic (256) 
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3. METHODOLOGY 
 
Scopus Database was chosen for data collection of 

the current study primarily due to the broad range of 
data covered, in-depth coverage of various 
publications (especially with regard to citation by 
source), and the system that ensures rigorous peer 

review(257). The data were searched and collated on 
the 30th December, 2022, with the search scope 
being inclusive of all sorts of articles available in the 
WoS database to ensure that the current study 
covered all potentially relevant publications. 
Important search terms were encapsulated in double 

quote marks to produce the best results, and related 
terms were split using the OR operator to produce a 
wider range of results. Examples of keywords include 
Title-ABS-KEY [synthesis AND nanoparticle] and 
Title-ABS-KEY [synthesis AND nanoparticle]. As an 
alternative, TITLE-ABS-KEY [nanomaterial] and 

TITLE-ABS-KEY [synthesis] were chosen to search 

for recent papers between 2010 and 2023, which will 
ultimately help recognize and study various research 
topics with a higher number of publications. 
 
The WoS website also generated citation statistics so 
users could see the year-by-year trend of documents 
published and the frequency with which they were 

cited. In order to determine the quantity of 
publications relative to various authors, nations, 
affiliations, research areas, publishers, and journals, 
the WoS website was also examined. Lastly, the 
downloaded data were imported into the VOSviewer 
1.6.18.0 programme to plot co-occurrence maps of 

author keywords used in the articles as well as 

network maps showing relationships between 
authors and nations. 
In order to create network maps with respect to 

various parameters such as author, citation, 
organization, country, and keyword co-occurrence, 
Ludo Waltman and Nees Jan van Eck created the 
free-to-use scientometric programme VOS viewer 

(Visualisation of Similarities). The dataset was also 
sorted using the three metrics of total link strength, 
document count, and citation count using the 
VOSviewer software. According to the data, a frame's 
dominance in network maps increases with frame 
size, and a frame's networking power increases with 

the number of lines that originate from it (a line 
serves as a connection between two frames). When 
it comes to keyword co-occurrence maps, the larger 
the frame size, the more frequently a keyword is 
used. Various applications were assessed by 
examining the most recent, pertinent, and highly 

referenced publications found on the WoS website, in 

addition to the various network mapping and trend 
studies, and mechanistic insights were presented for 
each nanoparticle synthesis. 
 
4. RESULTS AND DISCUSSION 
 
4.1. Primary Details and Publication Patterns 

117,162 publications of the total documents from 
more than 15,568 sources had more than 19000 
keywords in addition to the author's own keywords 
with an average of 15 citations per document and 
more than 2000 authors. In Figure 13, the analyzed 
papers span the period of January 2010 to December 

2022, indicating that research is progressing to 
improve synthesis of different nanoparticles. 

 

 
 

Figure 13: General patterns of the publications per year. 
 
Between 2007 and 2020, the overall number of 

annual publications grew gradually. The chart, 
however, demonstrates that following the available 
information on Scopus whereby there was low 
publication between 1985 and 2009. The lack of 

research papers during those years can be linked to 

a lack of understanding of the application of 
nanotechnology which ultimately led to an increase 
in publication output starting in 2010. With 12,691 
and 12,237 documents for 2020 and 2021 
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respectively reported the largest publication 
production. The reason why 2020 was the largest 
yearly publication was because researchers 

concentrate much on research due to Covid-19 
pandemics lockdown. 
 
4.2. Performance of Various Journals 

About 111,553 journals in total have published 
studies on the synthesis of nanoparticles. Table 2 
highlights the h-index and other performance 
metrics-based lists of the 20 most relevant journals. 

The top 20 journals generated more than 25 % of the 
total papers related to synthesis of nanoparticles 
over the course of the 13 years, indicating both a 

widespread distribution of these publications and a 
general interest in these devices. 2638, 2138, 1712, 
1599 and 1577 articles are the five most prominent 
journals by total number of publications (TNP) are 

RSC Advances, Journal of Colloid and Interface 
Science, Journal of Nanoparticle Research, ACS 
Applied Materials and Interfaces and chemical 
Communication respectively. 

 
Table 2: Top 20 most published Journals. 

Rank Sources Documents IF 

1 RSC Advances 2628 4.036 

2 
Journal of Colloid and Interface 
Science 

2138 9.965 

3 Journal of Nanoparticle Research 1712 2.533 

4 
ACS Applied Materials and 
Interfaces 

1599 10.383 

5 Chemical Communications 1577 6.065 

6 New Journal of Chemistry 1574 3.925 

7 Journal of Alloys and Compounds 1551 6.371 

8 
Colloids and Surfaces A 
Physicochemical And Engineering 

Aspects 

1507 5.518 

9 
Journal of Materials Science 
Materials in Electronics 

1359 2.779 

10 Materials Letters 1357 3.574 

11 Applied Surface Science 1282 7.392 

12 Ceramics International 1242 5.532 

13 Nanoscale 1214 8.307 

14 Materials Today Proceedings 1213 - 

15 
Journal of The American Chemical 
Society 

1123 16.383 

16 
Colloids and Surfaces B 
Biointerfaces 

1122 5.999 

17 
International Journal of Biological 
Macromolecules 

1040 8.025 

18 Materials Chemistry and Physics 923 4.094 

19 
Journal of Nanoscience and 

Nanotechnology 
872 4.849 

20 Langmuir 848 4.331 

 
4.3. Authors’ Characteristics 
4.3.1. Performances of authors 
The research on synthesis of nanoparticles was 

written by more than 1650 authors. Table 3 depicts 

the top ten most prolific authors in terms of 
publication, together with their total number of 
publications. The first author in the top ten most 
productive authors has the most articles published 
(196), while the tenth author has the fewest (85). 

More than half of these writers are from the top ten 
most productive countries, implying that they are 
more productive in the field of research. Prof. 

Salavati-Niasari has the most published articles 

(196), indicating that he has a good academic 
performance with scientific quality and that the 
majority of his works are well known. 
Prof.Rajeshkumar is the second-most prolific author 
in terms of publication, with 137 papers. 

  



Ajala OJ et al. JOTCSA. 2024; 11(4):1329-1368  REVIEW ARTICLE 

1355 

Table 3: Top 20 most published authors. 

Ranks Authors Documents 

1 Salavati-Niasari, M 196 

2 Rajeshkumar, S 137 

3 Asiri, A.M 129 

4 Baykal, A. 112 

5 Chen, S.M 105 

6 Nasrollahzadeh, M 99 

7 Ghaedi, M 89 

8 Maaza, M 87 

9 Darroudi, M 86 

10 Morsali, A 85 

 
4.3.2. Most cited articles 
The top most cited publications for the examined 

period (2010–2023) were also concerned about the 
first authors' countries, the journal's name, and the 
number of TCs. Differences in the number of citations 

or references received in a given year can be used to 
quantify the impact of publications and the authors' 
influence. As shown in Figure 13, most prolific 
authors are from China, India, United States, and 
Iran. The article, titled “porphyrin-sensitized solar 
cells with cobalt (II/III)-based redox electrolyte 
exceed 12 percent efficiency” was published in 

science in 2011 with 5475 total citations. The article, 
titled “MoS2 nanoparticles grown on graphene: an 

advanced catalyst for the hydrogen evolution 
reaction” which appeared in journal of the American 

chemical society in 2011 and received 4150 total 
citations, is the second-most referenced article 
overall. This article provides a general overview of 

nanostructures, discusses their significance, and 
reviews current develop-ments in nanostructured on 
graphene while the article, titled “principles of 
nanoparticle design for overcoming biological 
barriers to drug delivery” is the third most cited 
article. It had 3737 TCs when it was published in 
Nature Biotechnology in 2015. The research 

described the principles of nanoparticle design for 
overcoming biological barriers to drug delivery. 

 

 
Figure 14: The Map of top 20 countries in terms of academic cooperation for Nanoparticle synthesis. 

Colour caption: The colour size indicate the percentage quantities of nanoparticle synthesized countries 
with their collaborator. 
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5. CONCLUSION 
 
In this review, different synthesis methods of several 

nanoparticles such as chemical, physical and 
biological techniques were discussed. The co-
precipitation approach is a chemical synthesis route 
and it is the simplest of all techniques while green 

synthesis produces non-toxic compounds but it has 
very low yields compared to other techniques. There 
are many other factors that are associated with these 
synthesis approaches which are very important such 
as cost, simplicity, and percentage yield. The 
character of the products is largely influenced by the 

specifics of the preparation. The huge specific surface 
area, quick charge transfers, and the shape of the 
materials are features that determine the 
performance of the nanoparticles. 
 
Since various applications of nanoparticles have 

emerged, bibliometric examination of the evolution 

of literary works connected to synthesis of 
nanoparticles has been examined. Between 2010 and 
December 2022, about 117,162 publications on 
synthesis of nanoparticles were identified using 
bibliometric analysis in the Scopus database, and 
92% of them were journal articles. The study 
demonstrates that in the period under evaluation, 

the literature on synthesis of nanoparticles has 
advanced significantly. Research publications about 
synthesis of nanoparticles were published in over 139 
sources. The top five journals with more than 30% 
contributions to the subject field are RSC Advances, 
Journal of Colloid and Interface Science, Journal of 

Nanoparticle Research, ACS Applied Materials and 
Interfaces, and Chemical Communication. The top 

five most productive nations are as follows: South 
Korea, China, India, and the United States, with 
China being the most prolific across all references, 
indicating its leadership position in nanoparticle 
synthesis research. The most productive institution 

is Ministry of Education China with 5,356 articles, 
followed by Chinese Academy of Sciences with 4,472 
articles and CNRS Centre National de la Recherche 
Scientifique with 1419 articles. The top 10 
institutions all have positive international inter-
institutional relationships. The bibliometric analysis 
also identifies the most popular terms, which point to 

the most popular subject areas. The future of 
synthesis of nanoparticles lies in the basic 
development of composite materials from various 
types of preparations in order to overcome their 

drawbacks. The bibliometric studies, in our opinion, 
will motivate academics to further investigate the 

previously highlighted areas and promote future 
cooperation. 
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