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1. INTRODUCTION 

Logistics holds a critical significance in today's global and local industrial production and 

service systems, encompassing highly complex phenomena. The organizational success of an industrial 

system relies on the efficient management of both forward and reverse flows of materials, products, and 

information. The coordination and optimization of these processes are consolidated under the concept 

of Supply Chain Management (SCM). SCM encompasses networks designed to comprehensively 

address all stages, from sourcing a product or service to production processes, from production processes 

to storage, and from storage to distribution. 

Before the U.S. Air Force made Leontief's work applicable to dynamic situations, Hitchcock 

(1941) and Koopmans (1947) independently addressed an intriguing special case. This specific scenario 

tackled by Hitchcock and Koopmans can be referred to as the Transportation Problem (TP). TP was 

initially proposed by Hitchcock in 1941 and by Koopmans in 1947 (Dantzig, 1951). TP and Fixed-Cost 

Transportation Problem (FCTP) constitute indispensable logistic process components to be considered 

in the operational dimension of SCM. TP aims to determine transportation routes and modes, most 

efficiently by modelling with linear programming, optimizing a multitude of variables. This 

optimization process targets cost minimization, efficient resource utilization, and operational efficiency. 

On the other hand, FCTP aims to develop the best transportation plan for materials and products within 

a specified cost constraint, taking into account the fixed costs of different transportation modes. FCTP 

is an NP-Hard problem, which implies that its mathematical models are solvable up to a certain 

dimension. Hence, studies in the literature focus on proposing solution approaches for FCTP utilizing 

various heuristic algorithms, and research on new solution approaches for FCTP is ongoing. 

For professionals in both academic and industrial fields within the logistics domain, generating 

solutions for TP and FCTP that contribute multidimensional positive impacts such as minimizing supply 

chain costs, managing resources most effectively and efficiently, and enhancing customer satisfaction 

is crucial. Solving these operational problems enhances competitive advantage and positively affects 

business efficiency. 

This research aims to propose initial solution approaches from a novel FCTP-specific 

perspective. In this context, the hypothesis is put forward that effective initial solutions for FCTP can 

be obtained by using classical initial solution methods employed for the TP. The rest of this paper is 

organized as follows: the second section provides a comprehensive analysis of the existing literature; 

the third section explains the details of the research methodology and provides an applied analysis based 

on the case study; and the final section discusses the contributions of the research and provides 

limitations. 
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2. LITERATURE REVIEW  

The process of transporting homogeneous goods from production facilities in different 

geographical regions to warehouses located in various other regions in a way that meets supply and 

demand constraints, with the aim of minimizing costs, can be build a mathematically as a Linear 

Programming model. This approach is referred to as the TP. The mathematical modelling of the TP 

using Linear Programming was developed by George Dantzig in the year 1947. 

The first general solution approach for the Fixed-Charged Transportation Problem (FCTP) was 

proposed by Balinski in 1961, which builds upon the Transportation Problem (TP) framework. In his 

work, Balinski suggested a solution by normalizing the minimum of supply and demand to the fixed 

charge, thereby obtaining a new cost matrix, and resolving the TP using this approach (Balinski, 1961). 

Numerous studies in the literature have either directly applied the Balinski approach or proposed 

alternative methodologies. Demircioğlu and Coşkun conducted a solution implementation of an FCTP 

industrial problem using the Balinski approach. In their study, the authors addressed a distribution 

problem for three supply centers and 24 demand points, regulating fixed and variable costs, as well as 

supply and demand quantities through the Balinski approach to solve this real-world problem. A 

comparison with the existing state revealed that the company achieved significant savings to a certain 

extent in the obtained solution (Demircioğlu & Coşkun, 2018). 

Recent research in the realm of the TP has seen a somewhat limited exploration of initial solution 

propositions. Kirca and Satir (1990) were pioneers in proffering an inaugural solution for the TP, 

rigorously testing it across a spectrum of 480 distinct problem instances (Kırca and Satir, 1990). Khani 

et al. leveraged Kirca and Satir's foundational Total Opportunity Cost Matrix (TOCM) approach as the 

bedrock algorithm for their initial solution proposal (Khani et.al., 2015). Karagül and Şahin advanced a 

novel starting solution methodology coined as KSAM, tailored specifically for the TP. Within this study, 

a meticulous comparative performance analysis of 24 designated test problems was undertaken, each 

assessed through a variety of distinct initial solution methodologies (Karagül and Şahin,2020). Mutlu 

and colleagues introduced a method hinging on the minimization of the highest cost as a means of 

formulating inaugural solutions (Mutlu et.al., 2022). 

Mallick and their team took the case of the distribution of pharmaceuticals produced by 

pharmaceutical companies to regional warehouses as an exemplary scenario for addressing the TP. They 

managed to achieve optimal solutions using the Vogel’s Approximation Method (VAM) and the 

Stepping Stone Technique (Mallick et al., 2023). Szkutnik-Rogoz and Małachowski introduced and 

implemented three different coding environments, namely R, Octave, and Matlab, for Linear 

Programming to obtain optimal solutions for the TP. They utilized initial solution approaches such as 

the northwest corner, the least cost in a matrix, and the VAM (Szkutnik-Rogoz and Małachowski, 2023). 
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Yılmaz and their research team concentrated on investigating initial solution approaches for 

TPs. They designed structures that incorporated the arithmetic, square root, and harmonic means of unit 

costs in the Tuncay Can Method, which relies on geometric averages preprocessing introduced in 2015 

and conducted performance analyses (Yılmaz et al., 2023). Jamali and Rahman initiated a discussion on 

initial solution approaches for the TP, highlighting scenarios where the Least Cost Method (LCM) and 

VAM yield suboptimal solutions (Jamali and Rahman, 2023). Muhtarulloh and their colleagues carried 

out a comparative analysis of two existing initial solution methods, namely the Sumathi-Sathiya Method 

and KSAM, for a test dataset of 100 randomly generated TPs and shared their results (Muhtarulloh et 

al., 2022). Lestari and their team devised a distribution model for a company engaged in producing 

rubber-based materials for the TP. They initially obtained solutions using the North West Corner, Least 

Cost, and VAM, subsequently reaching optimal solutions with the Stepping Stone and Modified 

Distributions (MODI) approaches (Lestari et al., 2023). Akbar and their team harnessed an online data 

source where unit costs could be acquired for TPs, and they produced solutions using the North West 

Corner, Least Cost, and VAM. They suggested the North West Corner approach as a straightforward 

and efficient initial solution approach (Akbar et al., 2023). Abdelati proposed the Cost Quantity Method 

(CQM) as an initial solution approach for TPs. This method involves planning distribution on a unit cost 

matrix, where the smallest unit cost is calculated as a ratio (Abdelati, 2023). Tarigan and their colleagues 

compared two initial solution methods in the literature for Transportation Problems, TOC-SUM and 

KSAM. They argued the superiority of the KSAM approach over the TOC-SUM approach through 

comparisons of initial and optimal solutions (Tarigan et al., 2023). 

Shivani evaluated TPs within a framework that could accommodate uncertainties arising from 

input data. In this context, she proposed a novel solution approach for the TP by addressing input data 

through a rough interval approach (Shivani, 2023b). Kalaivani and Kaliyaperumal prepared input 

matrices for solving with the MODI and VAM tools by introducing fuzziness to Transportation Problem 

input data using neutrosophic numbers and presented solutions (Kalaivani and Kaliyaperumal, 2023). 

Shivani and Ebrahimnrjad suggested a solution approach for Unbalanced Transportation Problems 

created using rough interval fuzzy numbers (Shivani and Ebrahimnrjad, 2023b). 

Sarhani and their research team have diligently conducted a comprehensive literature survey in 

the realm of intuitive algorithms, initial solutions, and the domain of constrained and discrete 

optimization. Their endeavor illuminates recent strides in this area of study (Sarhani et al., 2022). 

Angmalisang and colleagues have introduced the Leaders and Followers Algorithm, designed to procure 

optimal solutions for Balanced TPs, subjecting it to a thorough comparative analysis against various 

methodologies. The fruit of their research shines brightly, showcasing a commendable degree of relative 

success, as evidenced across a diverse set of 138 test problems (Angmalisang et al., 2023). Aroniadi and 

Beligiannis have crafted two distinctive iterations of the Particle Swarm Optimization Algorithm, 

tailored specifically for the intricate art of solving the TP. Their ingenuity has led to the creation of 
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solutions that are both innovative and effective (Aroniadi and Beligiannis, 2023). In a groundbreaking 

contribution to the field, Shivani has proposed novel repair functions in tandem with network-based 

Genetic Algorithm approaches, particularly tailored for the Nonlinear FCTP. This breakthrough ushers 

in a new era of problem-solving methodologies (Shivani, 2023a). Shivani and Ebrahimnejad have jointly 

spearheaded a pioneering approach for tackling the complexities of the Multi-Objective Fractional TP, 

marking a significant advancement in this intricate field (Shivani and Ebrahimnejad, 2023a). 

Karagül introduced a novel initial solution approach based on the KSAM approach, which is 

recommended as an initial solution methodology for the FCTP (Karagül, 2022). Yousefi et al. proposed 

an intuitive algorithm for solving the FCTP by utilizing priority-based GA, SA, and the Keshtel 

Algorithm (KA), incorporating four different consolidated cost calculation procedures. This algorithm 

resolves the consolidated cost matrices as standard Transportation Problems and selects the one with the 

lowest cost among the four solutions. When examining the comparative algorithm solution table, it 

becomes evident that solutions based on the consolidated cost matrix are more effective than others 

(Yousefi et al., 2017). Yousefi et al. recommended four intuitive algorithms for the FCTP, including 

Priority Based and Spanning Tree Based Simulated Annealing and Genetic Algorithm, resulting in the 

generation of solutions (Yousefi et al., 2018). 

3. METHODOLOGY 

In this section, we will first introduce the FCTP and its mathematical model. Subsequently, we 

will present the variable definitions for the proposed solution algorithm, outline the algorithm's steps, 

and illustrate the algorithm's solution process using a visual example.  

Figure 1. Fixed-Cost Transportation Problem  

Plant 1

Plant 2

Distrubution Center 1

Distrubution Center 2

Distrubution Center 3
 

Source: (Adlakha et al., 2018) 

Yousefi et al., (2018) included the mathematical model in their article as follows: 
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𝑀𝑖𝑛 𝑍 = ∑ ∑ (𝑐𝑖𝑗𝑥𝑖𝑗 + 𝑓𝑖𝑗𝑦𝑖𝑗)𝑛
𝑗=1

𝑚
𝑖=1        (1) 

𝑠. 𝑡.  

∑ 𝑥𝑖𝑗 = 𝑎𝑖 , 𝑖 = 1,2, … , 𝑚𝑛
𝑗=1         (2) 

∑ 𝑥𝑖𝑗 = 𝑏𝑗, 𝑗 = 1,2, … , 𝑛𝑚
𝑖=1         (3) 

𝑥𝑖𝑗 ≥ 0, ∀𝑖, 𝑗          (4) 

𝑦𝑖𝑗 = {
1, 𝑥𝑖𝑗 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , ∀𝑖, 𝑗        (5) 

If necessary, detailed information about the mathematical model can be obtained from the study 

of Yousefi et al., (2018). 

3.1. Proposed Heuristics 

The definitions of the nomenclature of the proposed heuristic are as follows. 

Nomenclature 

𝑚: Number of supply centers 

𝑛: Number of demand centers 

𝐶: Unit variable transportation cost matrix (𝑚𝑥𝑛) 

𝐹: Fixed cost per route matrix (𝑚𝑥𝑛) 

𝑠: Supply vector (𝑚𝑥1) 

𝑑: Demand vector (𝑛𝑥1) 

𝑛𝑜𝑟𝐶: Normalized 𝐶 matrix between 1 and 2 (𝑚𝑥𝑛) 

𝑛𝑜𝑟𝐹: Normalized 𝐹 matrix between 1 and 2 (𝑚𝑥𝑛) 

𝑛𝑠𝐹: Cost per supply unit of 𝑛𝑜𝑟𝐹 (𝑚𝑥𝑛) 

𝑛𝑑𝐹: Cost per demand unit of 𝑛𝑜𝑟𝐹 (𝑚𝑥𝑛) 

𝑢𝐶: Restructured unit cost matrix 

Steps of the Proposed Heuristic 

A1] Read the dataset. Read 𝑖𝑛𝐶 and 𝑖𝑛𝐹 matrices. These matrices represent unit variable 

transportation cost and fixed cost per route, respectively. They are associated with supply quantities and 

demand quantities. 

A2] Preparation of problem data for solving through transformation. 

Identification and configuration of input data, 𝑚, 𝑛, C, 𝐹, 𝑠, and 𝑑. 
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𝐶 = [𝑐𝑖𝑗]𝑚𝑥𝑛          (6) 

𝐹 = [𝑓𝑖𝑗]𝑚𝑥𝑛          (7) 

𝑠 = [𝑠𝑖]𝑚𝑥1          (8) 

𝑑 = [𝑑𝑗]𝑛𝑥1          (9) 

A3] Calculation of the normalized 𝐶 matrix between 1 and 2. 

𝑛𝑜𝑟𝐶 =  𝑟𝑒𝑠𝑐𝑎𝑙𝑒(𝐶, 1, 2)        (10) 

A4] Calculation of the normalized 𝐹 matrix between 1 and 2. 

𝑛𝑜𝑟𝐹 =  𝑟𝑒𝑠𝑐𝑎𝑙𝑒(𝐹, 1, 2)        (11) 

A5] Calculation of fixed costs per unit of supply and demand. 

𝑛𝑠𝑓𝑖𝑗 =
𝑛𝑜𝑟𝑓𝑖𝑗

𝑠𝑖
, ∀ 𝑖, j         (12) 

𝑛𝑠𝐹 =  [𝑛𝑠𝑓𝑖𝑗]𝑚𝑥𝑛         (13) 

𝑛𝑑𝑓𝑖𝑗 =
𝑛𝑜𝑟𝑓𝑖𝑗

𝑑𝑗
, ∀ 𝑖, 𝑗         (14) 

𝑛𝑑𝐹 =  [𝑛𝑑𝑓𝑖𝑗]𝑚𝑥𝑛         (15) 

A6] Obtaining the restructured unit variable transportation cost matrix. 

𝑢𝐶 =  𝑛𝑜𝑟𝐶 +  𝑛𝑠𝐹 +  𝑛𝑑𝐹        (16) 

A7] Providing 𝑚, 𝑛, and 𝑢𝐶 to be integrated and solved with the (VAM+MODI) algorithm, and 

obtaining the solution. 

A8] Calculation of the actual cost of the solution obtained with the (VAM+MODI) algorithm. 

3.2. Illustrative Example 

The illustrative example is constructed using the data provided in the Table 1 and Table 2 which 

is taken from Adlakha et al. (2006) article where the problem is referred to as 𝑃10.  

A1] Read the dataset. Read 𝑖𝑛𝐶 and 𝑖𝑛𝐹 matrices. 

Table 1. Unit Variable Transportation Costs 

𝑖𝑛𝐶  𝑊1 𝑊2 𝑊3 𝑊4 Supply 

 𝑃1 34 97 57 37 76 

 𝑃2 99 49 8 70 83 

 𝑃3 50 78 47 63 63 

 Demand 73 31 66 52 222 

Source: (Adlakha et al., 2006) 
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Table 2. Fixed Costs per Route 

𝑖𝑛𝐹  𝑊1 𝑊2 𝑊3 𝑊4 Supply 

 𝑃1 91 47 44 68 76 

 𝑃2 26 62 60 45 83 

 𝑃3 57 40 32 96 63 

 Demand 73 31 66 52 222 

Source: (Adlakha et al., 2006) 

A2] Preparing the Read Problem Data for Solution through Transformation. Defining and 

configuring the input data as 𝑚, 𝑛, 𝐶, 𝐹, 𝑠, 𝑑.  

Table 3. Number of Supply and Demand Centers 

Variable Value 

𝑚 3 

𝑛 4 

Table 4. Unit Variable Transportation Costs 

𝐶 matrix 𝑊1 𝑊2 𝑊3 𝑊4 

𝑃1 34 97 57 37 

𝑃2 99 49 8 70 

𝑃3 50 78 47 63 

Table 5. Fixed Costs per Route 

𝐹 matrix 𝑊1 𝑊2 𝑊3 𝑊4 

𝑃1 91 47 44 68 

𝑃2 26 62 60 45 

𝑃3 57 40 32 96 

Table 6. Supply and Demand Quantities 

 𝑃1 𝑃2 𝑃3 - Total 

𝑠 76 83 63 - 222 

 𝑊1 𝑊2 𝑊3 𝑊4 Total 

𝑑 73 31 66 52 222 

A3] Calculation of the 𝐶 matrix normalized between 1 and 2 
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Table 7. Normalized Unit Variable Transportation Costs 

𝑛𝑜𝑟𝐶 𝑊1 𝑊2 𝑊3 𝑊4 

𝑃1 1.2857 1.978 1.5385 1.3187 

𝑃2 2.0000 1.4505 1.0000 1.6813 

𝑃3 1.4615 1.7692 1.4286 1.6044 

A4] Calculation of the F matrix normalized between 1 and 2 

Table 8. Normalized Fixed Costs per Route 

𝑛𝑜𝑟𝐹 𝑊1 𝑊2 𝑊3 𝑊4 

𝑃1 1.9286 1.3000 1.2571 1.6000 

𝑃2 1.0000 1.5143 1.4857 1.2714 

𝑃3 1.4429 1.2000 1.0857 2.0000 

A5] Calculation of the Fixed Costs per Unit Supply and Unit Demand 

Table 9. Distribution of Fixed Costs per Unit of Supply 

𝑛𝑠𝐹 𝑊1 𝑊2 𝑊3 𝑊4 

𝑃1 0.025376 0.017105 0.016541 0.021053 

𝑃2 0.012048 0.018244 0.0179 0.015318 

𝑃3 0.022902 0.019048 0.017234 0.031746 

Table 10. Distribution of Fixed Costs per Unit of Demand 

𝑛𝑑𝐹 𝑊1 𝑊2 𝑊3 𝑊4 

𝑃1 0.026419 0.041935 0.019048 0.030769 

𝑃2 0.013699 0.048848 0.022511 0.024451 

𝑃3 0.019765 0.03871 0.01645 0.038462 

A6] Obtaining the Reconfigured Unit Variable Transportation Cost Matrix 

Table 11. Reconfigured Unit Variable Transportation Costs 

𝑢𝐶 𝑊1 𝑊2 𝑊3 𝑊4 

𝑃1 1.3375 2.0371 1.5741 1.3705 

𝑃2 2.0257 1.5176 1.0404 1.7211 

𝑃3 1.5042 1.8270 1.4623 1.6746 
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A7] Providing 𝑚, 𝑛, and 𝑢𝐶 for an Integrated Solution Using the (VAM+MODI) Algorithm 

and Obtaining the Solution 

Table 12. (VAM+MODI) Assignment Solution 

Optimal 𝑊1 𝑊2 𝑊3 𝑊4 Total Supply 

𝑃1 24 0 0 52 76 76 

𝑃2 0 17 66 0 83 83 

𝑃3 49 14 0 0 63 63 

Total 73 31 66 52 222 - 

Demand 73 31 66 52 - 222 

Table 13. Calculated Real Costs for the (VAM+MODI) Solution 

Explanation Results 

Proposed Approach Solution Cost 8021 

Article Solution (Adlakha et.al.2006) 8021 

Deviation (%) 0 

3.3. Performance Analysis of the Proposed Heuristics 

Test problems were obtained from Yousefi et al. (2017). The structural properties of the dataset 

and data generation parameters are provided in Table 14. 

Table 14. Fixed-Charge Transportation Test Problems Characteristics 

Problem size Total 

supply 

Problem 

type 
Range of variable costs Range of fixed costs 

    Lower limit Upper limit Lower limit Upper limit 

Small 5 × 10 5000 A 3 8 50 200 

 10 × 10 8000 B 3 8 100 400 

 10 × 20 10000 C 3 8 200 800 

Medium 15 × 15 15000 D 3 8 400 1600 

 10 × 30 15000      

 20 × 30 20000      

Large 50 × 50 50000      

 30 × 100 30000      

 50 × 200 50000      

Source: (Yousefi et.al.,2017) 

In the study by Yousefi et al. (2017), the authors compared three different heuristic algorithms, 

including one they developed themselves, with solutions generated by Lingo. To perform a fair 

comparison, gaps in the Lingo solutions were subtracted to create a Best Known Solution (BKS) 

definition for the problems. The deviations presented in the results table provided by the authors were 
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also calculated again with BKS as the reference. The performance of the proposed method was similarly 

assessed using BKS as the reference. Yousefi et al. (2017) presented solutions from Genetic Algorithm 

(GA), Simulated Annealing (SA), Keshtel Algorithm (KA), a new algorithm proposed by the authors 

named Heuristic Consolidated Cost (HCC), and Lingo solutions in Table 15. 

Table 15. Comparison Table of Solution Results 

P. Group P. Size Lingo BKS GA SA KA HCC Proposed Algorithm 

A 

5×10 21810 21810 21935.8 22299.1 21873.1 21850 21906 

10×10 28401 28401 28813.5 29525.35 28908.6 28435 28494 

10×20 35372 35372 36951.9 37800.75 37079.9 35558 35558 
15×15 49955 49955 52376.3 53709.6 52133.1 50030 50044 

10×30 50830 50830 52594.5 53229.95 52323 50956 52392 
20×30 65270 65270 67897.9 68695.4 68887.6 65676 65676 

50×50 158856 158681.2584 162212.6 164213.3 163422.1 158684 158668 
30×100 102207 102207 104571.4 105763.1 105496.1 102260 104112 

50×200 173151 168372.0324 171823 172999.5 172543.3 168496 170750 

Average  76206 75655 77686 78693 78074 75772 76400 

B 

5×10 24348 24348 24434.1 24990.25 24476.15 24725 24725 
10×10 31017 31017 31304 31940.55 31302.85 31333 31333 

10×20 39858 39858 40644.5 40926.8 40547.95 40252 42117 
15×15 58766 58766 60148 60689.8 60330.05 58932 59110 

10×30 60445 59344.901 62441.5 63150.85 62835.2 59362 60917 

20×30 70740 70740 72331.4 73034.1 72478.05 70759 70918 
50×50 167981 167258.6817 172111.3 173574.8 172359.3 167260 167099 

30×100 112122 112122 115098.5 116308.6 115591.3 112289 112313 
50×200 192867 186174.5151 192000.9 194021 192974.2 186393 192716 

Average  84238 83292 85613 86515 85877 83478 84583 

C 

5×10 25296 25296 25401 26025.05 25418.35 25338 25461 

10×10 36873 36873 37544 38093.65 37584.2 37844 37359 

10×20 44645 44645 45883.7 46570.35 45874.25 45443 46492 

15×15 58725 58725 60685 61285.05 60333.05 59319 59614 

10×30 63258 63258 64674.7 65375.85 64917.25 64159 64331 

20×30 78237 78237 81147.1 82099.25 81213.15 79835 79841 

50×50 185074 184074.6004 187934.3 189080.1 188735.7 184083 182606 

30×100 132153 131796.1869 135643.6 136937.2 136038.5 131800 134092 

50×200 233710 220365.159 227418.2 229242.5 228110.2 221096 229009 

Average  95330 93697 96259 97190 96469 94324 95423 

D 

5×10 30107 30107 30313.8 31436.3 30392.7 30836 31228 

10×10 39760 39760 40150.4 41224.75 40128.25 41013 41751 

10×20 60267 60267 62000.2 62720.35 62066.75 63133 64784 

15×15 73913 73913 76503.5 77622.4 76764.7 75829 74884 

10×30 80971 80971 82872 84249.8 83175 82705 85275 

20×30 99204 98985.7512 100622.2 102059.3 101144.6 102203 105881 

50×50 218209 215765.0592 218694.7 220083 219398.2 215793 220838 

30×100 171059 170528.7171 174298.8 177568.4 176040.5 170533 176590 

50×200 308963 285481.812 298771.8 303272.1 301846.3 287137 310552 

Average  120273 117309 120470 122248 121217 118798 123531 

The deviation values of the solution values in Table 15 from the BKS are shown as percentages 

in Table 16 and Figure 2. 
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Table 16. Comparison of Solutions with BKS 

P. Group P. Size Lingo 

Dev (%) 
GA Dev 

(%) 
SA Dev 

(%) 
KA 

Dev (%) 
HCC 

Dev (%) 
Proposed Heuristic 

Dev (%) 

A 

5×10 0.00 0.58 2.24 0.29 0.18 0.44 

10×10 0.00 1.45 3.96 1.79 0.12 0.33 

10×20 0.00 4.47 6.87 4.83 0.53 0.53 

15×15 0.00 4.85 7.52 4.36 0.15 0.18 

10×30 0.00 3.47 4.72 2.94 0.25 3.07 

20×30 0.00 4.03 5.25 5.54 0.62 0.62 

50×50 0.11 2.23 3.49 2.99 0.00 -0.01 

30×100 0.00 2.31 3.48 3.22 0.05 1.86 

50×200 2.76 2.05 2.75 2.48 0.07 1.41 

Average 0.32 2.83 4.47 3.16 0.22 0.94 

B 

5×10 0.00 0.35 2.64 0.53 1.55 1.55 

10×10 0.00 0.93 2.98 0.92 1.02 1.02 

10×20 0.00 1.97 2.68 1.73 0.99 5.67 

15×15 0.00 2.35 3.27 2.66 0.28 0.59 

10×30 1.82 5.22 6.41 5.88 0.03 2.65 

20×30 0.00 2.25 3.24 2.46 0.03 0.25 

50×50 0.43 2.90 3.78 3.05 0.00 -0.10 

30×100 0.00 2.65 3.73 3.09 0.15 0.17 

50×200 3.47 3.13 4.21 3.65 0.12 3.51 

Average 0.72 2.42 3.66 2.66 0.46 1.70 

C 

5×10 0.00 0.42 2.88 0.48 0.17 0.65 
10×10 0.00 1.82 3.31 1.93 2.63 1.32 
10×20 0.00 2.77 4.31 2.75 1.79 4.14 
15×15 0.00 3.34 4.36 2.74 1.01 1.51 
10×30 0.00 2.24 3.35 2.62 1.42 1.70 
20×30 0.00 3.72 4.94 3.80 2.04 2.05 
50×50 0.54 2.10 2.72 2.53 0.00 -0.80 

30×100 0.27 2.92 3.90 3.22 0.00 1.74 
50×200 5.71 3.20 4.03 3.51 0.33 3.92 
Average 0.72 2.50 3.76 2.62 1.04 1.80 

D 

5×10 0.00 0.69 4.42 0.95 2.42 3.72 
10×10 0.00 0.98 3.68 0.93 3.15 5.01 
10×20 0.00 2.88 4.07 2.99 4.76 7.49 
15×15 0.00 3.50 5.02 3.86 2.59 1.31 
10×30 0.00 2.35 4.05 2.72 2.14 5.32 
20×30 0.22 1.65 3.11 2.18 3.25 6.97 
50×50 1.12 1.36 2.00 1.68 0.01 2.35 

30×100 0.31 2.21 4.13 3.23 0.00 3.55 
50×200 7.60 4.66 6.23 5.73 0.58 8.78 
Average 1.03 2.25 4.08 2.70 2.10 4.95 

When we examine Table 16, the first column displays the gaps of the Lingo solver compared to 

the optimal solutions. Successively, the deviations from BKS results as a percentage are presented for 

GA, SA, KA, HCC, and the Proposed Heuristic. The Proposed Heuristic outperformed the GA, SA, and 

KA algorithms for the A, B, C, and D group problems. Furthermore, the HCC algorithm appears to be 

quite competitive in solving A, B, and C group problems. However, it can be observed that it loses 

competitiveness in solving D group problems, where the fixed costs are defined in a high range. 

Nonetheless, it is clear that for HCC and the Proposed algorithm, deviations increase from Group A to 

D. However, for GA, SA, and KA, it's not as clear to say that this deviation is increasing significantly. 

The percentage deviation values of the solutions provided by the methods in Table 16 for different 
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problem groups from the best solution are presented in Figure 2, Figure 3, Figure 4 and Figure 5, 

respectively. 

Figure 2. Deviations from the best solutions for problem group A (%) 

 

Figure 3. Deviations from the best solutions for problem group B (%) 

 

Figure 4. Deviations from the best solutions for problem group C (%) 
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Figure 5. Deviations from the best solutions for problem group D (%) 

 

4. CONCLUSION 

The study addresses the Transportation Problem and Fixed-Cost Transportation Problem, which 

are critical issues in the logistics industry. The Fixed-Cost Transportation Problem, being classified as 

NP-Hard, becomes more challenging to solve with increasing problem size when utilizing mathematical 

methods. Examination of test problems reveals that the Lingo mathematical solver encounters 

difficulties in solving medium-sized problems and fails to reach optimal solutions for larger problem 

instances. Consequently, heuristic algorithms and novel approaches play a significant role in solving 

Fixed-Cost Transportation Problems. 

In this research, a new variable transportation cost matrix is developed by employing certain 

heuristic operations based on unit variable transportation cost and fixed-cost matrices for the Fixed-

Charge Transportation Problem. The study demonstrates efforts to reach optimal solutions using the 

VAM and the MODI. The results obtained in this study suggest that the proposed heuristic approach 

offers promising solutions compared to the literature. When examining the deviations of problem groups 

in comparison to the BKS, it is observed that all groups yield deviations less than 5%. 

These findings indicate that various heuristic methods based on the proposed approach can be 

utilized to produce effective solutions in the logistics industry. For future research, these and similar 

approaches can be recommended as new research methodologies, potentially paving the way for further 

developments in this field. 
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