PECVD Tekniği ile Büyütülmüş İnce Filmlerde Oluşan Ge ve SiGe Nanokristallerin Geçirgen Elektron Mikroskobu (TEM) ,Raman ve Fotoışıma Spektroskopisi Teknikleri ile İncelenmesi

Bünyamin Şahin ve Sedat Ağan

Kırıkkale Üniversitesi, Fen Bilimleri Enstitüsü, Fizik Bölümü, Kırıkkale, Türkiye, Kırıkkale Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümü, Kırıkkale, Türkiye sahin38@gmail.com, sedatagan@gmail.com

Özet : Yaptığımız bu deneysel çalışmada; SiO_x yapı içerisinde oluşturulmuş Ge ve SiGe nanokristalleinin optiksel ve elektriksel özelliklerini TEM, Raman ve Fotoışıma spekroskopileri teknikleri yardımıyla araştırdık. SiO_x yapı içerisindeki Ge nanokristaller farklı tavlama sürelerinde Plazma ile hızlandırılmış kimyasal buharlatırma tekniği (PECVD yardımıyla oluşturuldu. Çalışmamızın amacı SiO_x yapı içerisindeki Ge ve SiGe nanokristallerin boyut ve boyut dağılımlarını tavlama sürecine bağlı olarak araştırmaktır. TEM, Raman ve Fotoışıma ölçümleri yardımıyla nanokristallerin karakterizasyonu ve ışık yayabilme özelliklerindeki değişim irdelenmiştir.

Anahtar Kelimeler: Kuantum nokta yapı, PECVD, TEM, Fotoışıma, Silikon oksit.

Abstract: We report an experimental study, optical properties of Ge and SiGe nanocrystals in SiOx structures are investigated by using Transmission Electron Microscopy (TEM), Raman and Photlüminescence Spectroscopy techniques. Ge nanocrystals in silicon oxide thin films have been grown with different annealing time by Plasma Enhanced Chemical Vapor Deposition (PECVD) technique. The aim of our work is to determine size and size distiributions Ge, SiGe nanocrystals in SiO_x martix due to annealing processes. TEM, Raman and Photolüminescence (PL) measuruments have been used to characterize their cyrstallization and light emission properties.

Index Terms : Quantumdot, PECVD, TEM, Photolüminescence Silicon Oxide

I. GIRIŞ

1871 yılında Mendelev tarafından Germanyumun bulunmasıyla, 1947 yılında Baden, Brattain ve Shockley Germanyumun transistör olarak kullanılabileceğini ileri sürmüştür. 20. yüzyıl; transistorün icadıyla yarıiletken cihazların hızla gelişiminin gözlemlendiği bir yüz yıldır. Teknolojideki son gelişmeler nanometrik ölçekte kuantum telleri (tek boyutlu), kuantum kuyuları (iki boyutlu) ve kuantum noktaları (sıfır boyutlu) yapılarının oluşumunu mümkün kılmaktadır. Kuantum kuyusu daha yüksek iletim bandı enerjisine sahip, daha büyük bant aralıklı ince yapılardır. Kullanılan iki yarıiletken malzemenin enerjileri arasındaki fark elektronu bu ince tabakaya bağlar. Elektronların serbest hareketlerinin tüm bovutlarda sınırlandırılması, kuantum noktaları olarak adlandırılan sanki sıfır boyutlu imiş gibi nano yapıların ortaya çıkmasını sağlamıştır. Bu tür nano ölçekli kuantum mekaniksel yapılar farklı fiziksel özellikleri ve meydana getirdikleri deneysel ve teorik farklılıkları nedeni ile bilim dünyasında büyük bir ilgi toplamaya başlamıştır. Örneğin nano boyuttaki malzemelerin momentum, enerji ve kütle gibi özellikleri sürekli olarak değil de kesikli olarak ifade edilebilmektedir. Buna bağlı olarak elektriksel ve kimyasal davranışları ile optik özellikleri kuantumlu olarak tanımlanmaktadır.

Nano teknolojinin birçok alanda yaygın olarak kullanıldığı bilinmektedir. Bu alanlardan biride yarıiletken kuantum nokta yapılardır ve bununla ilgili birçok araştırma alanları söz konusudur. Bu yarıiletken kuantum yapıların morfolojik karakteri ve yapısı ile ilgili çalışmalardan elde elden bulgular, elektronik ve optik malzemelerin tasarımında büyük önem arz etmektedir. Ge nanokristaller optiksel ve elektronik özelliklerinden dolayı quantum bilgisayarları, taransistörler, ışık yayıcılar ve foto dedektörlerin üretimi gibi geniş çapta bir uygulama alanına sahiptirler [1-3].

Nano boyutta 1 nm büyüklükte altın tanesi kırmızı bir renk almaktadır. Kimyasal yöntemlerle elde edilen ve çapları 1 nm ile 70 nm arasında değişen altın nanokristallerin renkleri de büyüklüğüne bağlı olarak değişmektedir. CdSe (kadmiyumselenyum) nano parçacıklar Şekil 1-1'de gösterildiği gibi morötesi ışıkla aydınlatıldığında, boyutlarına bağlı olarak farklı yönlerde ışıma yaparlar.

Şekil 1. Farklı boyutlardaki CdSe (kadmiyum-selenyum) nano parçacıkların yaptığı ışımalar.Yine aynı şekilde nanokristal boyutundaki artışa bağlı olarak dalga boyundaki değişimi Şekil 1.2. deki gibi farklı bir gösterimle temsil etmemizde mümkündür.

Şekil 2. Nanokristal boyutundaki değişimin ışıma dalga boyuna etkisi.

Öte yandan kuantum nokta yapıların bellek elemanı olarak kullanılması durumunda , bellekte tutma zamanının (retention time) kuantum nokta yapıların biçim ve büyüklüğü ile doğrudan ilişkili olduğu görülmüştür [4]. Yine bellekte tutma zamanı Si seviyelerinin dizilimi ile de ilişkilendirilmiştir [5]. Son zamanlarda yapılan çalışmalarda Ge noktaların kendi kendine oluşabilen (self assembly) büyütme teknikleri ile başarılı bir şekilde oluşturulabileceğini gösterilmiştir, bu kristaller yardımı ile üretilen kızıl ötesi fotodedektörler Ge kristalinin optik yutulma katsayısı yüksek fonon saçılması uzun taşıyıcı yaşam süreleri göz önüne alındığında yoğun bir ilgi toplamaktadır [6-8].

II. DENEYSEL ÇALIŞMA

İnce film üretmek için çeşitli teknikler kullanılır. Özellikle ince film hazırlamak için farklı ultra teknikler uvgulanmaktadır. Bunlar; fiziksel buhar biriktirme (PVD) ve kimyasal buhar biriktirme (CVD) teknikleridir. Bu prosesler içinde ince polimer film kaplamalarda en sık kullanılan CVD metodudur. CVD işleminin daha düşük sıcaklıklarda yapılabilmesine olanak tanımak amacı ile bu tekniğin plazma destekli türü olan plazma-destekli kimyasal buhar biriktirme (PECVD) ve Radyo frekansı (RF) yöntemleri son yıllarda üzerinde en çok yoğunlaşılan kaplama yöntemlerindendir. Bu tekniklerin diğer yöntemlere göre en önemli üstünlüğü kaplanacak malzemeyi yüksek sıcaklığa cıkarmadan kaplamaya olanak sağlamasıdır.

Kimyasal buhar biriktirme (CVD) tekniğinde ince film büyütme sıcaklığı 700–900 ^oC arasında değişirken Plazma-Destekli Kimyasal Buhar Biriktirme (PECVD) Yönteminde büyütme sıcaklığı daha düşük sıcaklıklarda, 150 – 350 ^oC arasında gerçekeşebilmekte ve bu yönüyle daha avantajlı olmaktadır. Yüksek büyütme sıcaklıkları altındaki uygulamalarda difüzyonlar ve benzer sorunların oluşabilmesi mümkün olmaktadır. Sekil 2.9 da görüleceği gibi Plazma-Destekli Kimyasal Buhar Biriktirme (PECVD) sistemi ana hatlarıyla şu şekildedir.

Şekil 3. Plazma-Destekli Kimyasal Buhar Biriktirme (PECVD) sistemi.

Sistem, içerisinde plazmanın elde edildiği reaktör, birbirine paralel olan disk şeklindeki iki elektrot, gazların bileşenlerine ayrılması için radyo frekanslı gerilim uygulayan RF jeneratörü, reaktöre kontrollü bir şekilde gaz akışını sağlayan: iğne vana, akış ölçer ve düzenleyicilerin olduğu gaz girişleri ile çıkıştaki mekanik vakum pompasından meydana gelmektedir. Paralel iki elektrot arasına doğru akım (DC) uygulanarak elektrik alanın katkısıyla elektrotlar arasında bir kaç pF değerinde bir kapasitans oluşur ve RF sinyali buraya uygulanır. Gazlar anot-katot arasına gönderilerek plazmanın sadece bu iki elektrot arasında oluşması sağlanmaktadır. Bu plazma oluşması istenilen kaplamanın cinsine göre ortamda bulunan SiH₄, GeH₄, gibi gerekli bulunan gazları bileşenlerine ayırır ve alttaş üzerinde ince bir film tabakası halinde kaplanmasını sağlar. Başlangıç olarak bu teknikte tabakalar arasına uygulanan elektrik alan ortamda bulunan gazların kinetik enerjilerinin artmasına ve bu sayede gaz ortamından ayrılan bazı gaz moleküllerin iyonize olmasına sebep olur ve iyonize olmuş moleküllerin birbirleri arasında etkileşimleri sonucunda reaksiyon başlatılır. İşlem devam ederken ortamda yeni elektronlar üretilmesi durmaz ve bu oluşum plazmanın oluşumu ile sonuçlanır.

Şekil 4. a) Alttaş üzerine SiO₂ in büyütülmesi. b) Oluşan iki katlı yapının üzerine yeniden SiO₂ içerisinde Germanyum nanokristallerin büyütülmesi.

Şekil 4. (a) da plazma ortamında Silisyum alttaş üzerine SiH₄ gazı ile beraber N_2O gazlarının beraber gönderilmesi ile elde edilen ilk SiO₂ tabakasının oluşumunu (b) ikinci bir aşama olarak ortama GeH₄ gazının belirli bir miktarda gönderilmesine bağlı olarak da son kat SiO₂ içerisinde Germanyum nanokristallerin oluşumunu görmekteyiz.

Plazma-Destekli Kimyasal Buhar Biriktirme (PECVD) tekniği ile Si alttaş üzerine büyütülen SiO₂ matrisi içerisinde oluşturulmaya çalışılan Ge nanokristallerin film büyütme işleminden hemen sona oluşması beklenemez, bu aşamada oluşan yapılar kristal değil amorf yapılardır. Ostwald kümelenme teorisine göre malzeme içerisinde bulunan farklı türdeki yapılar (SiO₂ matrisi içerisindeki Ge gibi) ancak dışarıdan bir etkileşme yardımı ile bir araya gelerek bir düzen oluşturabilirler. Hazırlanan örnekler fırınlama işleminde N₂, O₂, Ar, H₂ gibi soy gazlar ya da vakum altında tutulabilirler. Öte yandan yarıiletken nanokristallerin oluşumunun değişik fırınlama ortamları ile bağlantılı olduğu farklı çalışmalarda ortaya konmuştur.

Büyütülmüş filmlerin fırınlanması aşamasında Ge atomlarının oksitlenmesini engellemek için vakum altında ya da N_2 atmosferi altında fırınlama önemlidir. Yine aynı şekilde, SiO₂ matris içerisinde çok sayıda kırılmış, kopuk bağ yapılarının varlığı biliniyor olmasına rağmen, H₂ ortamında fırınlanmış örneklerde SiO₂ içerisindeki nanokristaller ve matris

arasındaki yüzeyde mevcut olan bağları onarıcı bir etkiye sahip olduğu gözlemlenmiştir [9-11].

Şekil 5. Azot Fırını.

Şekil 6. 900 $^0\mathrm{C}$ de t=30 dakika süreyle tavlanmış 60 sccm GeH4 katkılı numune için TEM görüntüsü.

Şekil 7. 900 0 C de t=60 dakika süreyle tavlanmış 60 sccm GeH₄ katkılı numune için TEM görüntüsü.

Sekil 6. da 900 °C de t=60 dakika süreyle tavlanmış 60 sccm numune için ele edilen GeH₄ katkılı TEM sonucu görülmektedir. Görüldüğü gibi t=30 dakika süreyle tavlanmış numunede oluşum yeni yeni başlarken, t=60 dakika süreyle tavlanmış Şekil 7. deki numunede film içerisinde oluşmuş 2-4 nm boyutlarında nanokristal yapılar görülmektedir. Kristalleşmelerin meydana gelmeye başladığı görülmektedir. Her iki numune icin kısaca aynı sartlarda hazırlanmış ancak 30 ve 60 dakika gibi farklı sürelerde tavlanmış numunelerinin TEM sonuçlarının farklı olduğunu söylemek mümkün olmaktadır. Zira artan tavlama sıcaklığı ve süresine bağlı biçimde nanokristallerin bir araya gelerek daha büyük yapıda nanokristaller meydana getireceği beklenen bir durumdur ve yukarıdaki resimlerde de açık bir biçimde görülmektedir [12].

Şekil 8. de PECVD yöntemiyle büyütülmüş olan filmin karakteristik özelliğine ilişkin elde edilen Raman spektroskopisi ölçümü görülmektedir. Bu yöntem kimyasal yapı analizinde kullanılan tahribatsız bir yöntemdir. SiO₂ yapısı içerisindeki Ge-Ge ve Si-Ge yapılarının oluşumu hakkında kesin sonuçlar verebilmektedir. Aynı piklerin darlığı yada genişliğine bakarak nanokristallerin boyutları hakkında yorum yapılabilineceği de ileri sürülmüştür [13-14].

Şekil 8. 60 sccm GeH₄ ve 250 sccm SiH₄ gaz akış oranları kullanılarak oluşturulan SiO₂: Ge filmlerde. T=900 $^{\circ}$ C sıcaklık ve t=60 dakika süreli tavlamada elde edilen numune için Raman spektroskopisi .

Şekil 8. de T=900 ⁰C sıcaklıkta ve t=60 dakika sürede tavlanan örnekte 300 cm⁻¹ civarında Ge-Ge kristalinin oluşmuş olduğu görülmektedir. Yine aynı grafikte 430 cm⁻¹ civarındaki gözlemlenen pikte yapı içerisindeki Si-Ge alaşım nokta yapının varlığına işaret etmektedir.

Çalışmamızın bu aşamasında da yarıiletken nanokristallerin fotonik uygulamalarına yol gösterici bir araştırma amaçlanmıştır. Yalıtkan tabaka içerisinde elde edilen Germanym nanokristal kuantum nokta yapıların fotonik uygulamalarında farklı ısıl tavlamanın dalga boyu ve enerjideki değişimleri araştırılmıştır. Fotoışıma (FL) şiddeti ile nanokristal boyutları arasındaki ilişki deneysel olarak açığa çıkarılmaya çalışılmıştır. Fotoışıma ölçümleri yapılan filmler PECVD yöntemi yardımıyla 120 secm GeH₄ gaz akış oranında büyütülmüş daha sonra Nitrojen atmosferinde 950 °C sıcaklık değerinde 40, 60 ve 120 dakika değişen sürelerde tavlama işlemine tabi tutulmuşlardır. Büyütülen bu numunelerimizin fotolüminesans ölçüm sonuçlarını Şekil 9. da görmekteyiz.

Şekil 9. 950 °C sıcaklık değerinde 40, 60 ve 120 dakika sürelerde tavlanarak hazırlanan SiO₂:Ge film için düşük sıcaklık değerinde (15 K) elde edilen fotoışıma spektroskopisi.

Şekil 9. da görüldüğü üzere düşük sıcaklık değerinde (14 K) alınan IR spektrumunda ≈ 1516, ≈ 1524 ve ≈ 1533 nm civarında spektrum pikleri elde edilmistir. Artan sıcaklığa bağlı olarak dalga boyunun azaldığı dolayısıyla enerjinin de arttığı görülmektedir. Artan sıcaklık değerine bağlı olarak varlığından kırmızıya doğru kaymanın bahsetmek mümkündür. Elde edilen bu spektrum bölgesi telekomünikasyonda iletişim için uygun dalga boyu bölgesine karşılık gelmektedir [15-16].

III. SONUÇLAR

Plazma ile Güçlendirilmiş Kimyasal Buharlaştırma Tekniği (PECVD) yöntemi kullanılarak oluşturulan ince filmlerde elde edilen nanokristallerin deney koşullarına ve diğer değişkenlere bağlılığı belirlenmiştir. Bu şekilde değişik kombinasyonların varlığında SiO₂ film içerisinde tavlama sonucu elde edilen nanokristallerinin Ge ve SiGe alaşım yapılı nanokristaller oldukları gözlemlenmiştir. Bu nanokristallerin boyut ve boyut dağılımına ilişkin yapısal özellikleri ise TEM ve Raman spektroskopi teknikleri yardımıyla incelenmiş, elde edilen verilerde artan artan tavlama sıcaklığına bağlı olarak nanokristal boyutunda ve miktarında da bir artışın varlığı tespit edilmiştir.

Yine tavlama süresinin optiksel özeliklere ilişkin etkisi ise Fotoışıma ölçümleri yardımıyla gözlemlenmiş, artan tavlama süresinin fotoışıma dalga boyunda azalmaya sebep olduğu dolayısıyla da daha büyük enerji değerlerinde geçişlere yol açtığı gözlemlenmiştir

IV. KAYNAKLAR

- [1] Wang Y Q, Kong G L at al. PPl. Phys.Lett. 202-281 (2002)
- [2] Shlimak I, Vagner and Safarov V I 2000 Proc. 25th Int. Conf. On the Phiysics of Semiconductors (Osake:Springer)
- [3] Optical properties of semiconductor nanocrystal, Gaponenko S. V., Cambridge University press (1998)
- [4] Nishii J. Kintaka K. Hosono H. Kawazone H. Kato M and Muta K Phys. Rev. B 60 7166 (1999)
- [5] Oha R, Sugiyama N and Uchida K IEDM Tech. Dig. 557 (2002)
- [6] Kanoun M, Souifi A, Baron T, Mazen F. Appl Phys Lett;84:5079 (2004).
- [7] Dana A., Ağan S., Tokay S., Aydınlı A., Finstand T. G. Phys. Sat. Sol. C 4, No.2, 288-291 (2007).
- [8] Ağan S., Dana A., Aydınlı A., J. Phys. Condes. Matter. 18, 5037-5045 (2006).
- [9] Brongersma M. L., Polman A., Min K.S., Boer E., Tambo T. and AtwaterH.A., Appl. Phys. Lett. 72 2577 (1998).
- [10] Neufeld E., Wang S., Apetz R., Buchal Ch., Carius R., White C. W. and Thomas D. K., Thin Solid Films, 294 238 (1997).
- [11] Wilkinson A. R., and Elliman R. G., Phys. Rev. B 68 155302 (2003).
- [12] Ağan. S., Çelik-Aktaş A., Zuo J.M, Dana A., Aydınlı A. Appl. Phys. A 83, 107-110 (2006).
- [13] Fuji M., Hayashi S. and Yamamoto K., Appl. Phys. Lett. 57 2692 (1990).
- [14] Fuji M., Hayashi S. and Yamamoto K., Jpn. J. Appl. Phys. 30 687 (1991)
- [15] K. Eberl, O.G. Schmit, R. Duschl, O. Kienzle, E. Ernst and Y. Rau, Thin Solid Films, 369, 33 (2000).
- [16] Talalaev G., Cirlin G. E., Tonkikh A. A., Zakharov N. D., Werner, Gösele P. U., Tomm J. W. and Elsaesser T., Nanoscale Res. Lett, 1 (2) 137 (2006).