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 This study delves into the application of Long Short-Term Memory (LSTM) for predicting Remaining 
Useful Life (RUL) in Turbofan Engines using the Jet Engine Simulated Dataset (C-MAPSS), 
systematically examining the combined impact of diverse data pre-processing techniques on RUL 
prediction, with a particular focus on the application of filtering and normalization. The initial 
filtering of the dataset employs Savitzky-Golay (SG), wavelet transform, and exponential moving 
average (EMA) techniques to effectively mitigate noise. Subsequently, minimum-maximum and z-
score normalization techniques are implemented. Each filtering method, paired with distinct 
normalization approaches, is meticulously evaluated, and the performance of LSTM models in RUL 
prediction is assessed for each combination. The quantitative analysis of experimental outcomes 
indicates that normalization and filtering contribute to the improvement of the training phase in 
LSTM models, ultimately enhancing the accuracy of RUL prediction. The study emphasizes that the 
selection of an optimal data pre-processing structure plays a crucial role in influencing the efficiency 
of network training, underscoring the potential for optimizing RUL prediction through the application 
of the LSTM model. 
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1. Introduction  

Today, deep learning and data analytics techniques are 
widely used to monitor the health status of equipment and 
optimize predictive maintenance (PdM) in aviation industry. 
PdM is a maintenance method based on the condition data of the 
equipment. Based on historical equipment condition data, it 
predicts when equipment may be damaged in the future. PdM is 
used to monitor the past health data of equipment and make 
timely adjustments to the equipment. This is quite a different 
approach from the routine maintenance methods of the past. 
PdM saves unnecessary costs, allows for early repairs when 
equipment reaches the stage of breakdown and increases 
operational availability of the aircraft. It can prevent unforeseen 
equipment downtime caused by unexpected failures and 
improper operation. There are three primary approaches 
employed for predicting RUL of an equipment: data-driven, 
physics-based, and hybrid-based. While physics-based and 
hybrid-based approaches [1, 2] are widely utilized to enhance 
prediction accuracy, their complexity and demand for in-depth 
knowledge of aircraft systems render them less cost-effective 
and less preferable for adoption by airlines and aircraft 
manufacturers. In the aviation industry, particularly among 
airlines and aircraft manufacturing companies, a clear 
inclination exists towards cost-effective methodologies. 
Specifically, there is a preference for data-driven prognostic 
approaches over physics-based or hybrid-based alternatives. 
This preference is grounded in the inherent complexities and 
knowledge-intensive nature of aircraft systems. In aviation 
industry prioritizing operational efficiency and cost-
effectiveness, the preference is for cost-efficient methodologies  
such as data-driven prognostic approaches. These strategies 
leverage data and advanced deep learning models, to deliver 

precise predictions regarding health of equipment and RUL. 
Aligned with the industry's commitment to real-time 
monitoring, predictive maintenance, and cost optimization, the 
data-driven approach not only tackles challenges associated 
with overfitting, limited data, and model complexity but also 
significantly elevates operational reliability.  

Various data-driven deep learning models, such as Long 
Short-Term Memory (LSTM), Convolutional Neural Network 
(CNN), Feed Forward Neural Network (FNN), Deep Belief 
Network (DBN), and Graphical Neural Network (GNN), have 
proven effective in predicting RUL [3-5]. To further optimize 
model performance and tailor them to specific tasks, various 
LSTM variants, such as BiLSTM, GRU, Peephole LSTM, and 
Vanilla LSTM, have also been developed [6]. Ensemble models, 
such as CNN-LSTM, are also used in RUL prediction, aiming 
to provide more comprehensive and reliable predictions by 
leveraging the strengths of different deep learning architectures 
[1, 6].  

To monitor the health of equipment or systems, physical 
sensors measure various physical parameters, such as 
temperature, pressure, vibration, power, acoustic wave and 
speed. Virtual sensors, on the other hand, combine and calculate 
parameters to provide insights into the equipment or system's 
health. These parameters can be valuable indicators of 
equipment or system’s health. For instance, a sudden surge in 
engine temperature can alert us to a potential issue with the 
engine's cooling system. Time-series data, collected at regular 
intervals, captures this valuable information, enabling the 
monitoring of aircraft systems. Time-series data is especially 
beneficial because it allows us to identify trends and patterns 
that may not be evident from a single data point. For example, a 
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gradual increase in engine vibration over time could signal wear 
and tear on the engine's components.  

This study aims to enhance the accuracy of RUL estimation 
by employing sensor data processed through various 
normalization and filtering techniques as input for the LSTM 
model. The LSTM model was chosen based on the literature and 
its success in the field of RUL prediction. The study underscores 
the direct impact of selecting appropriate data pre-processing 
methods on the training efficiency of the LSTM model, 
emphasizing its potential to optimize RUL prediction. It also 
highlights the pivotal role played by machine learning and data 
analytics techniques in optimizing health monitoring and PdM 
for aviation industry. Furthermore, conducting additional 
investigations and comparisons with other deep learning models 
and ensemble methods can contribute to the progression of RUL 
prediction research.Enhancing the accuracy of RUL estimation 
hinges significantly on the pre-processing of sensor data. The 
normalization and filtering techniques employed in this stage 
play a pivotal role in refining the structure of the measured 
sensor data. These techniques are specifically designed to 
diminish noise and improve the overall quality of the data. In 
particular, normalization and filtering methods are extensively 
utilized to enhance the structure of the measured sensor data and 
minimize extraneous noise. The SG filtering technique, one 
among these methods, has found widespread application in 
various domains for noise reduction in time series data [7-9].  
Another effective technique for reducing noise in time series 
data, such as sensor data or electrocardiogram (ECG) signals 
indicating heart rhythm, is the wavelet transform method [10-
12]. In this method, sensor data is analysed at different scales 
and frequencies. Noise is usually concentrated in the high 
frequency components, while the actual sensor measurement 
data becomes more prominent in the low frequency 
components. By setting a threshold value, the noise components 
are detected and the components exceeding the threshold value 
are filtered out. This process reduces the noise in the sensor 
measurements while preserving the important components of 
the actual sensor data. As a result, cleaner and more meaningful 
data is obtained [13]. Finally, the EMA filtering technique is a 
method also used for time series data. This technique aims to 
obtain a smoother trend by reducing sudden fluctuations in the 
data. It is an effective filtering method to reduce the undesirable 
effects caused by sudden fluctuations, especially in noisy sensor 
data [14]. The EMA filtering technique has been successfully 
applied to sensor data in both the training and test datasets used 
in RUL prediction studies [15-18]. 

Normalization is used when sensor data are in different units 
or scales. Sensor measurement data used for RUL prediction 
often have different units or scales. For example, one sensor 
may represent temperature values while another sensor may 
represent vibration values. These different scales can make it 
difficult for the deep learning model to accurately learn patterns 
and relationships. Normalization transforms the data into a 
specific range or standard distribution, eliminating scale 
differences and enabling models to produce more consistent and 
comparable results [19].  In general, minimum-maximum 
normalization [20-22] and z-score normalization [23, 24] are 
widely used normalization techniques for RUL prediction. In 
this study, these widely used normalization and filtering 
techniques are applied separately and together on sensor data in 
test and training datasets and their effects on LSTM and RUL 
prediction performance are compared.  

A review of the literature reveals that there are studies 
comparing only filtering techniques with each other [25, 26] and 
only normalization techniques with each other [27, 28]. 
However, this study, which compares normalization and 
filtering techniques in various combinations and investigates the 
most effective combined data pre-processing methods for use in 
LSTM. This study seeks to contribute to the aviation industry 
by offering practical insights into the prognostic approaches 
employed for aircraft systems. 

 
2. Data set and methodology 
2.1 C-MAPSS dataset 

This study employs the C-MAPSS dataset, which comprises 
simulated data generated by NASA's model-based Turbofan 
engine degradation simulation program, C-MAPSS [29]. This 
dataset has subsets as training, test and validation data.  

Fdgure 1 shows the maximum life cycles of 100 engines in 
the training dataset, along with the frequency of number of 
engines. Approximately three engines in the dataset were able 
to operate until the 350th cycle. Nearly 30 engines failed at the 
200th cycle and stopped operating. Fdgure 2 presents the last 
operated cycles of 100 engines in the test dataset, showing the 
distribution of engine numbers. The engines are operated until 
specific cycles, and the NASA-provided test data does not 
include the exact end-of-life cycle for each engine. This 
information is provided in the validation dataset, which serves 
as the actual RUL values for the engines from the test set. 

 

 
F8gure 1 Frequency versus maxdmum ldfe of engdnes dn tradn 

dataset 
 

 
F8gure 2 Last operatdng cycles of engdnes dn test dataset 
 
The size of the training data consists of 20631 rows and 26 

columns, while the test data consists of 13096 rows and 26 
columns. In both datasets, the column labels are defined as unit 
ID, cycles, operational setting {1-3} and sensor {1-21}. The unit 
IDs takes values between 1, 2, ..., 100. The cycle is a unit 
representing the operating time of each engine in steps. Each 
cycle contains the measurement values of the sensors used to 
monitor the health status of the engine. In the training data, there 
is an association between the cycles and the RUL, as the sensor 
data is provided until the last operated cycle of the engines' 
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lifetime, the maximum cycle. RUL values are calculated in this 
dataset as follows: 
 

𝑅𝑈𝐿(𝑡) 	= 	𝑀𝑎𝑥(𝑡)!"#$%& 	− 	𝑡   (1) 
 

For example, engine 1 or unit ID ‘1’ stopped operating at 
cycle, 192, in the training dataset. In this case, unit ID ‘1’ has 
cycles, t, in the range 1, 2, 3, 4, ..., 192. Applying the formula 
used to calculate the RUL value of the engine at cycle, t=1, we 
obtain RUL (1) =192-1=191.  A new column containing the 
calculated RUL values for each cycle has been added to the 
training dataset. In the training dataset, the RUL values were 
directly linked to the corresponding sensor values. The RUL 
values were then fed into the LSTM model as target input 
without undergoing any data pre-processing. This means that 
the RUL values were provided to the model in their original 
form, without any filtering or scaling. The LSTM model was 
trained on this data, along with the sensor data, to learn the 
relationship between sensor readings and RUL values. Since the 
maximum cycles of the engines in the test dataset were not 
known in advance, sensor data were provided up to a certain 
cycle and the RUL values at each cycle were attempted to be 
estimated and evaluated using the validation dataset which 
includes actual RUL values. 

 
2.2 Filtering techniques 
2.2.1 Savitzky-Golay filtering 

SG filtering is utilized for smoothing and noise reduction in 
time-series data, with its parameters, polynomial degree (l) and 
window size (n), crucially influencing its performance. In the 
context of engine sensor data, such as sensor 7 over the initial 
175 operating cycles of unit ID ‘1’, a polynomial degree of 4 
and a window size of 3 were chosen. The rationale behind these 
parameter choices is the need to balance noise reduction with 
responsiveness to changes in the sensor data. A lower 
polynomial degree and larger window size are preferred for 
smoother data, whereas data with rapid changes may require a 
higher degree and smaller window. Visual inspection of the 
filtered sensor data, as shown in Fdgure 3, is essential for fine-
tuning these parameters to ensure optimal noise reduction 
without sacrificing important feature trends. 

The SG filter estimates the values of a signal in a given range 
using an approximate polynomial function and then filters the 
signal using this function. The mathematical formula of the 
polynomials used in the SG filter is given below: 

 
𝑦$ =	𝑐' +	𝑐(𝑥$ +	𝑐)𝑥$) +⋯+ 𝑐"𝑥$"  (2) 
 
In this study, the SG filtering technique is consistently 

applied to the entire sensor data, including both the training and 
test data sets, in various comparison scenarios. For each of the 
21 distinct sensors, the measured values at cycle 't' are 
represented as xt1, xt2, ..., xt20, xt21. Correspondingly, the filtered 
values for these sensors are designated as yt1, yt2, ..., yt20, yt21. In 
this context, yt, represents the processed sensor value predicted 
by the polynomial to serve as input to the deep learning model, 
while xt denotes the raw sensor value. The coefficients of the 
polynomial, c0, c1, c2, c3, ..., cn, are calculated within the SG 
filter by minimizing the sum of the squared errors [30]. 

 
2.2.2 Wavelet transform  

In this investigation, filtering is implemented using the 
Daubechies wavelet type, incorporating two different 

parameters for the noise reduction function: the threshold value 
and the decomposition level. By iteratively adjusting both the 
decomposition level and threshold value in the wavelet-based 
noise reduction process, we can navigate the trade-off between 
removing noise and preserving the data trends. Opting for a 
higher decomposition level and a lower threshold value can 
yield a more detailed denoised data, potentially retaining more 
of the original data but at the risk of keeping more noise. 
Conversely, choosing a lower decomposition level and a higher 
threshold value can effectively eliminate noise but may 
introduce more distortion to the data [13, 31]. This iterative 
exploration allows for fine-tuning the transform parameters 
based on the specific characteristics of the data and the desired 
balance between noise reduction and data fidelity. 

Specifically, a threshold of 0.1 and a level of 9 are applied 
to process all sensors within both the test and training datasets 
across relevant scenarios. The choice of a threshold value of 0.1 
implies a gentle noise reduction process, suitable for data 
without excessively high noise levels. This cautious approach in 
thresholding helps avoid distorting the essential structure of the 
sensor data. Simultaneously, the decision to use a 
decomposition level of 9 indicates a detailed analysis of the 
sensor data. The wavelet decomposition breaks down the data 
into various frequency bands, and this higher decomposition 
level is motivated by the belief that the data carries valuable 
information in its high-frequency components. The combined 
use of a moderate threshold and a high decomposition level 
seeks a balanced approach, ensuring effective noise removal 
while preserving the granularity of the original data, a crucial 
aspect for subsequent analysis. 

Illustrated in Fdgure 4, which showcases the filtering result 
for a sensor in the training dataset, the figure depicts the 
measured values of sensor 7 during the initial 175 operating 
cycles of unit ID ‘1’ alongside the corresponding filtered values 
over the given cycles.  

 
2.2.3 Exponential moving average (EMA) 

EMA filtering is a method for smoothing and reducing noise 
in time-series data. It works by assigning exponentially 
decaying weights to past data points, with more recent data 
points receiving higher weights and older data points receiving 
lower weights. This approach allows the filter to effectively 
capture recent changes in the data while also incorporating 
information from older data. 

The EMA filter is typically implemented using the following 
formula: 

 
𝑦$ = 	𝛼	 ∗ 	𝑥$ 	+	(1	 − 	𝛼) 	∗ 	𝑦$*(		  (3) 
 
where: 

- yt  is the filtered value at cycle t 
- xt is the raw sensor value at cycle t 
- yt-1  is the filtered value at the previous cycle (t - 1) 
- α is the exponential weighting factor 

 
The values which are belongs to each of the 21 different 

sensors at cycle t are represented as xt1, xt2, ..., xt20, xt21. 
Correspondingly, the filtered values for these sensors are 
designated as yt1, yt2, ..., yt20, yt21. 

The exponential weighting factor α determines the relative 
importance of recent and historical data. A higher α value 
prioritizes more recent data, effectively capturing real-time 
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changes in the data. Conversely, a lower α value emphasizes 
older data, enabling the preservation of longer-term trends [32]. 

In this study, the exponential weighting factor α is set to 0.7. 
This chosen value strikes a delicate balance, effectively 
blending recent and historical data. By setting α to 0.7, the filter 
is designed to prioritize more recent information while still 
incorporating valuable insights from older cycles. This 
approach ensures an effective smoothing of the sensor data 
while preserving the data trends. 

 

 
F8gure 3 Nodse reductdon wdth Savdtzky-Golay on Sensor 7 

 

 
F8gure 4 Nodse reductdon wdth wavelet transform on Sensor 7 

 

 
F8gure 5 Nodse reductdon wdth EMA on Sensor 7 

 
As an illustration, Fdgure 5 shows the filtering result for a 

sensor within the training data set. The figure shows the values 

of sensor 7 measured during the first 175 operating cycles of 
unit ID ‘1’, alongside the filtered values over the cycles. 

 
2.3 Normalization techniques 

Minimum-maximum normalization is a method used to 
transform data into a specific range. This method compresses 
data values into a range of values between 0 and 1, independent 
of their original range. Its mathematical formula can be shown 
as follows [19]: 

 
𝑦$ =

+!*,-.	(+!)
	23+(+!)	*	2#"(+!)

    (4) 
 
Where xt is the sensor data and yt is the normalized sensor 

data at cycle, t. min(xt) and max(xt) represent the minimum and 
maximum sensor values at cycle, t. 

The z-score normalization involves subtracting the mean of 
sensor data at time cycle, t and dividing this difference by the 
standard deviation. This method normalizes the sensor data for 
each cycles using the following formula [19]: 

 
𝑦$ =

(+!	*	4)
5&

     (5) 
 
Where yt is the normalized sensor data at cycle, t and xt is the 
raw sensor data at cycle, t. μ is the mean of the sensor data over 
all time cycles and SD is the standard deviation of these values. 
For 21 different sensors, the measured values at cycle t, are 
denoted as xt1, xt2, ..., xt20, xt21. The normalized values of these 
sensors are also denoted as yt1, yt2, ..., yt20, yt21. In this study, all 
sensors in both the training and test datasets are normalized for 
the relevant scenarios using minimum-maximum with the range 
between {0, 1} and z-score normalization techniques. 
 
2.4 Long-short-term memory networks (LSTM) 

LSTM models are the most widely used choice for RUL 
prediction using time series data due to their ability to handle 
sequential data, capture long-term dependencies, resist noise, 
adapt to different RUL prediction scenarios and continuously 
improve through learning [35]. These characteristics make 
LSTM models powerful techniques for accurately predicting the 
RUL of equipment, enhancing its reliability, and optimizing 
PdM management. 

When the LSTM is analysed structurally, the representation 
of the internal structure of the cell is given in Fdgure 6. 

 

 
F8gure 6 An illustration of the internal structure of the LSTM 

cell [33] 
 
The LSTM network computes unit activations based on a 

given input across a time cycle. These activations are regulated 
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by the gates and cell states within the network. The following 
equations define the activations of the LSTM units; 

 
𝑔$ 	= 	𝑡𝑎𝑛ℎ(𝑊6 	 ∗ 	 [ℎ$*(, 𝑥$] 	+	𝑏6)	 

                    (6) 

𝑖$ 	= (𝑊# 	 ∗ 	 [ℎ$*(, 𝑥$] 	+	𝑏#) 
𝑓$ 	= 	σ(𝑊7 	 ∗ 	 [ℎ$*(, 𝑥$] 	+	𝑏7) 
𝑜$ = σ(𝑊8 	 ∗ 	 [ℎ$*(, 𝑥$] 	+	𝑏8) 
𝑐$ 	= 	 𝑓$ 	 ∗ 	𝑐$*( 	+	 𝑖$ 	 ∗ 	𝑔$ 
ℎ$ 	= 	 𝑜$ 	 ∗ 	𝑡𝑎𝑛ℎ(𝑐$) 

 
Within the LSTM algorithm, the arrays i, f, o and c, denoting 

the input gate, forget gate, output gate and cell activation, are 
central components of the cell. These arrays, of the same size as 
the hidden array h, carry essential information. The W terms 
correspond to the weight matrices governing the gate sequences 
within the cell structure. 

Conventionally, an activation function such as tanh is 
applied in the output layer of the LSTM configuration. These 
equations describe the gating activations within the LSTM units 
that influence the cell state updates. Consequently, the LSTM 
network establishes connections by processing inputs across 
time cycles and using memory mechanisms to capture 
sequential data patterns [34].  

In Equation (6), xt  is the input to the LSTM model and in 
this study, the raw sensor data is referred as xt, and the processed 
sensor data is referred as yt .  

This study aims to investigate the effect of different filtering 
and normalisation techniques on the performance of the LSTM 
model using the C-MAPSS dataset. In order to compare the data 
pre-processing techniques in different scenarios, the hyper-
parameters of the LSTM model were set to be the same for all 
scenarios. These hyper-parameters are given in Table 1. 

 
Table 1. LSTM model hyper-parameters 

Hyper-parameter Value 
Number of LSTM layers 3 
Number of dense layers 3 
Learning speed 0.01 & 0.001 
Activation function tanh 
Number of trainings 10 
Batch size 64 
Optimizer Adam 

 
The root mean square error (RMSE) performance metric and 

Pearson correlation coefficient (PCC) were used to evaluate the 
performance of the LSTM models. The mathematical 
expressions of RMSE and PCC are given in Equation (7) and 
Equation (8) respectively. 

 

𝑅𝑀𝑆𝐸 = &!
"
∑ (𝑦# 	− 	ŷ#)$"
İ&! 		  (7) 

 

𝑃𝐶𝐶 =
∑ ()!*+"!,(ŷ!*+ŷ!,
$
!%&

.∑ ()!*+"!,
'$

!%& .∑ (ŷ!*+ŷ!,
'$

!%&

  (8) 

  
In Equation (7) and Equation (8), yi represents the actual 

RUL value for observation i, ŷi represents the predicted RUL 
value and N represents the number of observations. The RMSE 
is commonly used to calculate the error between the actual and 
predicted values and to evaluate the predictive performance of 
the model. Lower RMSE values indicate that the model makes 

better predictions and fewer errors. Higher values indicate poor 
performance of the model.  

The PCC value is between -1 and 1 and represents the 
similarity between the actual and predicted values. Its 
interpretation is as follows; 

 
- If PCC is close to -1: There is a strong negative relationship. 

It indicates an inverse relationship between actual and 
predicted values. One variable increases while the other 
decreases. 

- If the PCC is close to 1: There is a strong positive 
relationship. Indicates a direct relationship between actual 
and predicted values. When one variable increases, the other 
also increases. 

- When PCC outputs NaN (invalid number): This indicates 
that there are not enough predicted values for the PCC to be 
calculated or that the predicted values have the same value. 

 
3. Findings and discussion 

In this study, different scenarios with different combinations 
of data pre-processing techniques were developed and applied 
to a same LSTM model. The aim of the experiments was to 
carefully investigate and evaluate the effectiveness of different 
data pre-processing combinations in improving the accuracy of 
RUL predictions using a LSTM model, ultimately identifying 
the optimal pre-processing strategies that lead to the most 
accurate RUL estimates. The labels for the scenarios are 
provided in Table 2, while the defined combinations of 
scenarios being compared and labels are listed in Table 3. 

 
Table 2. Labels for scenarios 

Script 
Label 

Techniques 

SN1 Raw data + LSTM 
SN2 Raw data + SG filter + LSTM 
SN3 Raw data + wavelet transform + LSTM 
SN4 Raw data + EMA + LSTM 
SN5 Min-max normalization + LSTM 
SN6 SG filter + Min-max normalization + LSTM 
SN7 Wavelet transform + Min-max normalization 

+ LSTM 
SN8 EMA + Min-max normalization + LSTM 
SN9 Z-score normalization + LSTM 
SN10 SG filter + Z-score normalization + LSTM 
SN11 Wavelet transform + Z-score normalization + 

LSTM 
SN12 Z-score normalization + EMA + LSTM 

 
Table 3. Comparative scenarios and labels 

Comparative Scenario Label Scenarios 
comparativeSN_1 SN2, SN3, SN4 
comparativeSN_2 SN6, SN7, SN8 
comparativeSN_3 SN10, SN11, SN12 
comparativeSN_4 SN1, SN5, SN9 
comparativeSN_5 SN2, SN6, SN10 
comparativeSN_6 SN3, SN7, SN11 
comparativeSN_7 SN4, SN8, SN12 

 
While defining the comparative scenarios, we wanted to 

determine the best filtering technique (comparativeSN_1) 
applied to the raw sensor data. In addition, the best filtering 
technique when applied with the minimum-maximum 
normalization method (comparativeSN_2) and the best filtering 
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technique when applied with the z-score normalization 
technique (comparativeSN_3) were investigated. In addition, 
the impact of the normalization technique on the performance 
of the LSTM model is investigated in the comparative scenarios, 
comparativeSN_4, comparativeSN_5, comparativeSN_6 and 
comparativeSN_7. 

 
3.1 Impact of normalization techniques on the performance of 

the LSTM model 
In order to evaluate the performance of normalization 

techniques on the LSTM model, different comparative scenarios 
were determined and the results were compared (Table 4, Table 
5, Table 6 and Table 7). In the comparative scenarios, LSTM 
models are trained using raw sensor data, minimum-maximum 
and z-score normalized sensor data with different filtering 
techniques and model performances are compared with RMSE 
and PCC metrics.  

According to the results obtained and the prediction-actual 
RUL value graphs, in scenarios where no normalization 
technique is applied (e.g., Figure 7 ) the model outputs have high 
RMSE values and there is no correlation between actual and 
predicted RUL values in the graphs.  

When the LSTM model is trained using processed data 
through normalization techniques and raw data without any 
filtering methods, insights from Table 4 and Figure 10 reveal 
the following: the most efficient scenario emerges when 
normalized data is employed with the z-score normalization 
method. 

When the best normalization technique was investigated in 
combination with the SG filtering technique, it was observed 
that the z-score normalization technique had a more positive 
effect on the performance of the LSTM model compared to 
minimum-maximum normalization (Figure 9 and Table 5). 
    When the best normalization technique was investigated in 
combination with the wavelet transform technique, it was 
observed that the minimum-maximum normalization technique 
had a more positive effect on the performance of the LSTM 
model compared to z-score normalization (Figure 11 and Table 
6). 

When the best normalization technique was investigated to 
be applied together with EMA, it was observed that the z-score 
normalization technique had a more positive effect on the 
performance of the LSTM model compared to minimum-
maximum normalization (Figure 12 and Table 7). 
     According to the results of all comparative scenarios, the 
technique with the most positive effect on the performance of 
the LSTM model was observed as the z-score normalization 
method.  

In a study, investigation of normalization techniques across 
various time series datasets was conducted to explore 
alternatives to the commonly favoured z-score normalization 
method [28]. Z-score normalization is typically the preferred 
[23, 24] choice over minimum-maximum normalization for 
most applications due to its greater robustness, versatility, and 
overall effectiveness. Z-score normalization's ability to handle 
outliers, preserve distribution shape, and ensure equal scaling 
across features makes it suitable for a wide range of analytical 
tasks. However, min-max normalization remains useful when 
there is a specific need to preserve the original data range, and 
its simplicity and faster application make it a viable option in 
certain scenarios. The choice between the two methods 
ultimately depends on the specific requirements and 
characteristics of the data in a given application. 

Table 4. comparativeSN_4 result 
Scenarios RMSE PCC 
SN1 41.78 NaN 
SN5 15.80 0.9314 
SN9 14.81 0.9223 
 The best scenario, SN9 The best scenario, SN9 

  
Table 5. comparativeSN_5 result 

Scenarios RMSE PCC 
SN2 42.03 NaN 
SN6 15.45 0.9201 
SN10 13.57 0.9466 
 The best scenario, 

SN10 
The best scenario, 
SN10 

 
Table 6. comparativeSN_6 result 

Scenarios RMSE PCC 
SN3 42.10 NaN 
SN7 22.70 0.8503 
SN11 24.18 0.8374 
 The best scenario, SN7 The best scenario, SN7 

 
Table 7. comparativeSN_7 result 

Scenarios RMSE PCC 
SN4 42.04 NaN 
SN8 15.32 0.9301 
SN12 14.28 0.9393 
 The best scenario, 

SN12 
The best scenario, 
SN12 

 
Table 8. comperativeSN_1 result 

Scenarios RMSE PCC 
SN2 42.03 NaN 
SN3 42.10 NaN 
SN4 42.04 NaN 
 The best scenario, SN2  

 
3.2 Effect of filtering techniques on the performance of the 

LSTM model 
In order to evaluate the performance of the filtering 

techniques on the LSTM model, several comparative scenarios 
were defined and the results were compared (Table 8, Table 9 
and Table 10). In the comparison scenarios with defined 
combinations, the raw sensor data and normalised sensor data 
were filtered using SG, wavelet transform and EMA techniques. 
The performance of the LSTM models trained on these filtered 
data is compared using the RMSE and PCC metrics. 

The performance of the LSTM model with raw sensor data, 
as depicted in Table 8 and Fdgure 7, demonstrates poor results. 
Elevated RMSE values indicate significant predictive errors, 
while the stark dissimilarity between the actual and predicted 
graphs underscores the model's inability to effectively capture 
the underlying patterns within the sensor data. 
      Examining the scenarios using SG, wavelet transform, and 
EMA filtering on the minimum-maximum normalized sensor 
data, it became evident from Table 9 that SN8 stood out as the 
most effective approach. Specifically, applying EMA filtering 
with the minimum-maximum normalization technique 
produced the most favourable results, as evidenced in Figure 8. 
Furthermore, SN6 and SN7, employing different filtering 
techniques, demonstrated relatively low RMSE values and 
notably strong correlations in their respective plots. 
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Upon reviewing Table 10, it became evident that among the 
scenarios applying SG, wavelet transform, and EMA filtering 
techniques to sensor data, normalized using the z-score method, 
SN10 emerged as the most effective (as shown in Figure 9). 
Specifically, utilizing the SG filter on the sensor data 
normalized with the z-score method yielded the most optimal 
outcome. Additionally, it's worth noting that EMA filtering 
technique, as seen in SN12, showcased comparable result. 

After assessing how filtering and normalization techniques 
impacted the LSTM model's performance, we can now contrast 
the scenarios that yielded the best results. Table 11 presents a 
comparison of these top-performing scenarios. 

Upon analysis in Table 11, SN8, SN9, SN10, and SN12 
displayed remarkably close RMSE and PCC values, indicating 
successful outcomes. Notably, the LSTM model trained using 
the SG technique in tandem with z-score normalization method 
emerged as the optimal scenario, showcasing the lowest RMSE 
and the highest PCC. Nevertheless, the results derived from 
implementing the wavelet transform and EMA filtering also 
showed a positive influence on the LSTM model's performance. 
This observation suggests that optimizing the LSTM model, 
fine-tuning filtering techniques, as well as employing wavelet 
transform or EMA techniques, can lead to optimal performance 
results, proving to be viable methods. 

 
Table 9. comperativeSN_2 results 

Scenarios RMSE PCC 
SN6 15.45 0.9201 
SN7 22.70 0.8503 
SN8 15.32 0.9301 
 The best scenario, 

SN8 
The best scenario, 
SN8 

 
Table 10. comparativeSN_3 results 

Scenarios RMSE PCC 
SN10 13.57 0.9466 
SN11 24.18 0.8374 
SN12 14.28 0.9393 
 The best scenario, 

SN10 
The best scenario, 
SN10 

 
Table 11. Comparing the most effective scenarios 

Scenarios RMSE PCC 
SN7 22.70 0.8503 
SN8 15.32 0.9301 
SN9 14.81 0.9223 
SN10 13.57 0.9466 
SN12 14.28 0.9393 

 The best scenario, 
SN10 

The best scenario, 
SN10 

 
 

 
Figure 7 The most effective scenario, denoted as SN2, 
evaluated within the context of the comparativeSN_1 

 

 
Figure 8 The most effective scenario, denoted as SN8, 
evaluated within the context of the comparativeSN_2 

 

 
Figure 9 The most effective scenario, denoted as SN10, 

evaluated within the context of the comparativeSN_3 and 
comparativeSN_5 

 

 
Figure 10 The most effective scenario, denoted as SN9, 

evaluated within the context of the comparativeSN_4 
 
 

 



Erdoğan and Mercimek TIJMET (2023) 6(2) 
 

 
57 

 
Figure 11 The most effective scenario, denoted as SN7, 
evaluated within the context of the comparativeSN_6 

 
Figure 12 The most effective scenario, denoted as SN12, 

evaluated within the context of the comparativeSN_7 
 
4. Results  

The ability to accurately predict the RUL of equipment is 
crucial for PdM maintenance and asset management strategies. 
LSTM networks have emerged as powerful tools for RUL 
prediction, but their performance can be significantly impacted 
by the quality of the input data. This study delved into the 
impact of different data pre-processing techniques on the 
performance of LSTM model for RUL prediction, focusing on 
the C-MAPSS dataset, a benchmark for prognostics research. 

Raw sensor data often exhibits inherent noise, non-
stationarity, and various scales, which can hinder the LSTM 
model's ability to learn meaningful patterns and make accurate 
predictions. Data pre-processing techniques, such as 
normalization and filtering, play a critical role in preparing the 
data for effective model training and prediction. Normalization 
techniques like z-score normalization standardize the data 
within a specific range, ensuring that all features contribute 
equally to the model's learning process. Filtering techniques, on 
the other hand, aim to reduce noise and smooth out the data, 
allowing the LSTM model to focus on the underlying patterns 
rather than spurious fluctuations. 

The study systematically evaluated the impact of various 
data pre-processing combinations on the LSTM model's 
performance. The results indicated that directly using raw data 
yielded suboptimal performance, with higher RMSE and lower 
PCC values. Conversely, employing normalization techniques 
consistently improved the model's performance, effectively 
scaling the data and enhancing its learning capabilities. 

Among the normalization techniques, z-score normalization 
consistently demonstrated the best performance, reducing 
RMSE and enhancing PCC values. When combined with SG 
filtering, a technique specifically designed for time series data, 
the model achieved the lowest RMSE and highest PCC values, 
showcasing the synergistic effect of normalization and filtering. 
This dual approach effectively standardized the data and 
simultaneously reduced noise, leading to more accurate and 
consistent RUL predictions. 

Beyond z-score normalization and SG filtering, the study 
also explored the effects of other filtering techniques, including 
wavelet transform and EMA. Both techniques demonstrated 
positive impacts on the LSTM model, further improving its 
ability to handle noisy data and produce reliable RUL 
predictions. Wavelet transform decomposed the data into 
different frequency bands, allowing the model to focus on the 
most relevant features, while EMA smoothed out short-term 
fluctuations and emphasized long-term trends. 

The findings of this study underscore the significance on 
combination of data pre-processing in enhancing the 
performance of LSTM models for RUL prediction. By carefully 
selecting and combining appropriate normalization and filtering 
methods, researchers can significantly improve the accuracy 
and robustness of their models. Furthermore, applying these 
methods to other time series datasets and conducting 
comparative analyses can provide further insights into the 
optimal data pre-processing combinations for RUL prediction. 
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