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Abstract
The “local class field theory”, which can be defined as the description of the extensions of a
given local field K with finite residue field of q = pf elements in terms of the algebraic and
analytic objects depending only on the base K is one of the central problems of modern
number theory. The theory developed for the abelian extensions, around the fundamental
works of Artin and Hasse in the first quarter of the 20th century.
It is natural to ask if one could construct this theory including the non-abelian extensions
of the base field. There are two approches to this problem. One approach is based on
the ideas of Langlands, and the other on Koch. Koch’s method was later generalized
by Fesenko and Koch-de Shalit for specific type of non-abelian extensions of the base
field. Laubie extended Koch-de Shalit’s work and constructed a local non-abelian class
field theory for K. On the other hand, İkeda and Serbest extended Fesenko’s works to
construct a non-abelian local class field theory for K, containing a pth root of unity.
In this study, we extended İkeda-Serbest’s construction of the local reciprocity map for K
containing a pth root of unity to any local field. Also we have shown that the extended
map satisfies the certain functoriality and ramification theoretic properties.
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1. Introduction
Let K be a local field; that is a complete discrete valuation field with finite residue class

field OK/pK =: κK of qK = q = pf elements with p a prime number: Here, OK denotes
the ring of integers in K with the unique maximal ideal pK . As usual, the unit group of
K is denoted by UK and the ith higher unit group of K by U iK , where 0 ≤ i ∈ Z. One
of the main problems of algebraic number theory is to describe the arithmetical structure
of each Galois extensions L/K lying in the fixed separable closure Ksep of K, in terms
of the certain invariants depending on the base field K. By the “arithmetical structure”
of the extension L/K, we mean the ramification theoretic properties of the Galois group
Gal(L/K).
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When the extensions of K are abelian, the answer of this problem, which is known as
the local abelian class field theory establishes a unique “natural” algebraic and topological
isomorphism called the Artin reciprocity law

ArtK : Gab
K

∼−→ K̂×

of K, introduced by Artin and Takagi. Here, Gab
K denotes the maximal abelian Hausdorff

quotient group GK/G′
K of the absolute Galois group GK = Gal(Ksep/K) of K, where G′

K
denotes the closure of the 1st-commutator subgroup [GK , GK ] of GK . On the other hand
K̂× denotes the profinite completion of the multiplicative group K×. By the naturality of
ArtK , we mean, it satisfies “existence”, “functoriality” and “ramification theoretic” certain
properties. See [6], [10], [11], [22] and [23] for details.

There are two “apparently different” approaches for the solution to the problem in-
cluding non-abelian extensions. One approach, based on the idea to construct a “natural”
correspondence between the set of the n dimensional representations of the absolute Galois
group GK of K, and the set of the automorphic representations of GL(n,K) (Langlands’
philosophy). Another approach proposes to use of the property of GK to be a profinite
group (Koch’s philosophy).

The studies based on Koch’s approach are as follows: Koch and de Shalit constructed
the metabelian local class field theory to describe the arithmetic structure of 2-step abelian
extensions of K ([18,19]), and Gurevich extended this theory for n-step abelian extensions
(see [9]). There is a construction of non-abelian local class field theory which belongs to
Laubie ([21]), by generalizing the work of Koch and de Shalit. On the other hand, Fesenko
described the arithmetical structure of each totaly ramified arithmeticaly profinite (APF )
Galois extension satisfying K ⊆ L ⊆ KϕK , where ϕK is a fixed extension of the Frobenius
automorphism of Knr to Ksep (Lubin-Tate splitting over K), and KϕK denotes the fixed
field of ϕK . Also he showed that, that the theories of Koch-de Shalit and Gurevich can
be obtained as partial cases of his theory. Note that, Fesenko’s construction needs the
assumption

µp(Ksep) ⊂ K (1.1)
where, µp(Ksep) denotes the group of all pth roots of unity ([3–5]).

Later, İkeda and Serbest generalized Fesenko’s theory to APF Galois extensions lying in
K ⊆ L ⊆ KϕdK

, where d equals the degree of the residue field extension κL/κK . Moreover,

they introduced certain APF Galois extensions K ⊆ Γ(n)
d for each positive integers n, d,

and proved that
GK = lim←−

(n,d)
Gal(Γ(n)

d /K)

Hence they constructed the local non-abelian reciprocity map

ΦΦΦ(ϕK)
K : GK

∼−→ ∇(ϕK)
K

for K ([13–16]). Here, ∇(ϕK)
K denotes the certain group, which is defined in terms of the

Fontaine-Winterberger field of norms (for detailed information about field of norms, see
[7, 8]). Also they showed that ΦΦΦ(ϕK)

K is natural, that is, it satisfies existence, functoriality,
and ramification theoretic properties. Furthermore, in [15], they remarked a method to
construct the local non-abelian reciprocity map ΦΦΦ(ϕK)

K for a general local field K, not need
to satisfy the condition (1.1). Moreover, Kazancıoğlu in his thesis has shown that Laubie
reciprocity map and İkeda-Serbest reciprocity map are equivalent ([17]).

The aim of present paper is to remove the condition (1.1), and construct the non-abelian
class field theory for any local field K in the light of [15].

The organization of the paper is as follows: In section 2 we construct the non-abelian
reciprocity map ΦΦΦ(ϕK0 )

K of any local field K. We make this construction by glueing the
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abelian reciprocity map ArtK0/K of K0/K and the non-abelian reciprocity map ΦΦΦ(ϕK0 )
K0

of K0. Here K0 = K(ζp), where ζp denotes a primitive pth root of unity. Note that, the
theory of extensions of profinite groups plays fundamental role in our construction. In
section 3, we prove the certain funtoriality and ramification theoretic properties of ΦΦΦ(ϕK0 )

K .

2. Local non-abelian reciprocity map
From now on, K will denote any local field; that is, it does not need to satisfy the

condition (1.1). İkeda and Serbest remarked a method to construct the local non-abelian
reciprocity map for K (see section 8 of [15]). In this section, we will construct the non-
abelian reciprocity map for K by following their strategy. Briefly, this can be done as
follows: Consider the local field K0 = K(ζp) where ζp denotes a primitive pth root of
unity. Since K0/K is abelian, by isomorphism theorem of local abelian class field theory,
there exists a unique topological isomorphism

ArtK0/K : Gal(K0/K) ∼−→ K×/NK0/KK
×
0 (2.1)

called the Artin map for K0/K. On the other hand, since K0 contains pth roots of unity,
by the main theorem of local non-abelian class field theory of İkeda and Serbest, there
exists a unique topological group isomorphism

ΦΦΦ(ϕK0 )
K0

: GK0
∼−→ ∇(ϕK0 )

K0

for K0. Here, as usual, ϕK0 denotes the Lubin-Tate splitting over K0. In order to construct
the local non-abelian reciprocity map for K, the main idea is to glue properly ArtK0/K

with ΦΦΦ(ϕK0 )
K0

. This can be done by following construction steps: As a first step, we will
reconstruct the profinite group GK in terms of Gal(K0/K) and GK0 . As a second step,
we shall construct a topological group structure in terms of the topological groups ∇(ϕK0 )

K0

and K×/NK0/KK
×
0 . We shall denote the resulting topological group by ∇(ϕK0 )

K . As a final
step, we will define a topological group isomorphism

ΦΦΦ(ϕK0 )
K : GK

∼−→ ∇(ϕK0 )
K .

2.1. Construction steps of the local non-abelian reciprocity map ΦΦΦ(ϕK0 )
K

Throughout this part of the section, we will adapt the methods used in [2] for our
setting.

2.1.1. Reconstruction of GK in terms of Gal(K0/K) and GK0. Since GK0 �GK and
GK/GK0

∼= Gal(K0/K), one can view GK as a group extension of GK0 by Gal(K0/K).
Namely, there is an exact sequence of the form

1 // GK0
inc. // GK

resK0 // Gal(K0/K) // 1 , (2.2)

where resK0 is the restriction map defined by resK0 : σ 7→ σ|K0 .
By Proposition 1.3.2 of [24], we fix a continuous section

s : Gal(K0/K)→ GK

which is normalized, i.e. it satisfies s(1Gal(K0/K)) = 1GK .

Remark 2.1. Since Gal(K0/K) is a finite group, then one can also define a continuous
section s as follows: Choose a complete set of representatives S ⊂ GK for GK/GK0, with
1GK ∈ S. The set S is finite, hence closed subset of GK . For each τ ∈ Gal(K0/K),
define s(τ) as the unique element of S satisfying resK0(s(τ)) = τ . Then, the map s :
Gal(K0/K) → GK which sends each τ ∈ Gal(K0/K) to s(τ) defines a normalized con-
tionuous section.
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The continuous section s determines a pair of continuous maps (f, ψ∗)

f : Gal(K0/K)×Gal(K0/K)→ GK0 (2.3)

and
ψ∗ : Gal(K0/K)→ Aut(GK0) , (2.4)

satisfying
ψ∗(τ) ◦ ψ∗(τ ′) = α(f(τ, τ ′)) ◦ ψ∗(ττ ′); (2.5)

f(τ, τ ′)f(ττ ′, τ ′′) =
(
ψ∗(τ)f(τ ′, τ ′′)

)
f(τ, τ ′τ ′′), (2.6)

f(1Gal(K0/K), 1Gal(K0/K)) = 1GK0
(2.7)

for each τ, τ ′, τ ′′ ∈ Gal(K0/K). Here α : GK0 → Aut(GK0) denotes the canonical conju-
gation action of GK0 , and ψ∗(τ)f(τ ′, τ ′′) = s(τ)f(τ ′, τ ′′)s(τ)−1. We call such a pair (f, ψ∗)
with properties (2.5), (2.6) and (2.7) a factor system. We have a group structure

Ef,ψ∗ := (GK0 ×Gal(K0/K), ∗),

where the group operation is defined by

(γ, τ) ∗ (γ′, τ ′) =
(
γ(ψ∗(τ)γ′)f(τ, τ ′), ττ ′

)
for each γ, γ′ ∈ GK0 , and τ, τ ′ ∈ Gal(K0/K). Note that, (1GK0

, 1Gal(K0/K)) is the identity
element, and for any element (γ, τ), one has the left inverse

(
f(τ−1, τ)−1(ψ∗(τ−1)γ−1), τ−1)

)
,

and the right inverse
(
ψ∗(τ−1)(γf(τ, τ−1)), τ−1). These two inverses are necessarily equal

because of associativity. On the other hand, the map

ξK : Ef,ψ∗ → GK

given by
ξK : (γ, τ) 7→ γs(τ)

is an isomorphism. Note that, Ef,ψ∗ sits in the following exact sequence

1 // GK0
ι // Ef,ψ∗

Pr2 // Gal(K0/K) // 1 .

In particular the diagram

GK
resK0

&&MM
MMM

MMM
MMM

1 // GK0

inc.
;;wwwwwwwww

ι
##F

FF
FF

FF
FF

Gal(K0/K) // 1

Ef,ψ∗

Pr2

88rrrrrrrrrr

ξK

OO

is commutative.

Proposition 2.2. For each σ ∈ GK , the map ς : GK → GK0, defined by ς : σ 7→
σ (s(σ|K0))−1 is a continuous surjection, which satisfies ς(1GK ) = 1GK0

and ς(γσ) = γς(σ)
for all γ ∈ GK0. On the other hand, the map ρK : GK → GK0 × Gal(K0/K) defined by
ρK : σ 7→ (ς(σ), σ|K0) is a homeomorphism.

Proof. See Proposition 1.3.4 (a) and (c) of [24]. □

Note that ρK is the inverse of ξK . Thus ξK : Ef,ψ∗ → GK is a homeomorphism.

Proposition 2.3. The group Ef,ψ∗ is profinite.
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Proof. Clearly, the topology on Ef,ψ∗ is locally compact and totally disconnected by
Proposition 2.2. On the other hand, for each (γ, τ), (γ′, τ ′) ∈ Ef,ψ∗ , the operation

(γ, τ) ∗ (γ′, τ ′)−1 =
(
γ(ψ∗(ττ ′−1)(γ′f(τ ′, τ ′−1)))f(τ, τ ′−1), ττ ′−1

)
is continuous, since its projections to each of its components are continuous. It means
Ef,ψ∗ is a topological group. Hence it is profinite. □

2.1.2. The construction of a topological group in terms of ∇(ϕK0 )
K0

and K×/NK0/KK
×
0 .

For each Θ ∈ Aut(GK0), let ΓΘ denote the automorphism of ∇(ϕK0 )
K0

defined by the com-
position

ΓΘ : ∇(ϕK0 )
K0

(
ΦΦΦ

(ϕK0 )
K0

)−1

// GK0
Θ // GK0

ΦΦΦ
(ϕK0 )
K0 // ∇(ϕK0 )

K0
.

Recall that, ΦΦΦ(ϕK0 )
K0

is the non-abelian reciprocity map for K0. Thus, we have a homomor-
phism

Γ : Aut(GK0)→ Aut(∇(ϕK0 )
K0

)
which is defined by Γ(Θ) = ΓΘ. Consider the norm-residue map

θK0/K : K×/NK0/K K
×
0

∼−→ Gal(K0/K)

for K0/K, which is the inverse of (2.1) . We induce the map

f̃ : K×/NK0/KK
×
0 ×K

×/NK0/KK
×
0 −→ ∇

(ϕK0 )
K0

(2.8)

by the composition

K×/NK0/KK
×
0 ×K×/NK0/KK

×
0

f̃
//

(θK0/K ,θK0/K)

��

∇(ϕK0 )
K0

Gal(K0/K)×Gal(K0/K)
f

// GK0

ΦΦΦ
(ϕK0 )
K0

OO
(2.9)

where f is given by (2.3). Also we induce,

ψ̃∗ : K×/NK0/K K
×
0 → Aut(∇(ϕK0 )

K0
) (2.10)

by the composition

K×/NK0/K K
×
0

ψ̃∗
//

θK0/K

��

Aut(∇(ϕK0 )
K0

)

Gal(K0/K)
ψ∗

// Aut(GK0)

Γ

OO
(2.11)

where ψ∗ is given by (2.4).

Lemma 2.4. Let
α̃ : ∇(ϕK0 )

K0
→ Aut(∇(ϕK0 )

K0
)
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denote the canonical conjugation action of ∇(ϕK0 )
K0

. Then the following diagram is comu-
tative:

GK0
α //

ΦΦΦ
(ϕK0 )
K0

��

Aut(GK0)

Γ
��

∇(ϕK0 )
K0

α̃ // Aut
(
∇(ϕK0 )
K0

)
where α is the canonical conjugation action of GK0.

Proof. For each γ ∈ GK0 , it is easy to show that the equation

(Γ(α(γ))) (g) =
(
α̃(ΦΦΦ(ϕK0 )

K0
(γ))

)
(g)

holds for all g ∈ ∇(ϕK0 )
K0

. □

Now we are ready to prove the following.

Proposition 2.5. For each n, n′, n′′ ∈ K×/NK0/K K
×
0 , the properties

ψ̃∗(n) ◦ ψ̃∗(n′) = α̃
(
f̃(n, n′)

)
◦ ψ̃∗(nn′) (2.12)

and

f̃(n, n′)f̃(nn′, n′′) =
(
ψ̃∗(n)f̃(n′, n′′)

)
f̃(n, n′n′′) (2.13)

hold for f̃ and ψ̃∗.

Proof. One can show that,

ψ̃∗(n)ψ̃∗(n′) = Γ
(
α
(
f
(
αK0/K(n), αK0/K(n′)

) ))
◦ ψ̃∗(nn′)

by using (2.11). On the other hand, by Lemma 2.4 we get

Γ
(
α
(
f
(
θK0/K(n), θK0/K(n′)

) ))
= α̃

(
f̃(n, n′)

)
.

Hence (2.12) follows.
To prove (2.13) holds, note that

f̃(n, n′)f̃(nn′, n′′) =

ΦΦΦ(ϕK0 )
K0

(
f(θK0/K(n), θK0/K(n′))f(θK0/K(n)θK0/K(n′), θK0/K(n′′))

)
. (2.14)

By the cocycle condition (2.6) of f , we have

f(θK0/K(n), θK0/K(n′))f(θK0/K(n)θK0/K(n′), θK0/K(n′′)) =
ψ∗(θK0/K(n))f(θK0/K(n′), θK0/K(n′′))f

(
θK0/K(n), θK0/K(n′)θK0/K(n′′)

)
.
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It follows that,

ΦΦΦ(ϕK0 )
K0

(
f(θK0/K(n), θK0/K(n′))f(θK0/K(n)θK0/K(n′), θK0/K(n′′))

)
=

= ΦΦΦ(ϕK0 )
K0

(
ψ∗(θK0/K(n))f(θK0/K(n′), θK0/K(n′′))

)
◦(

ΦΦΦ(ϕK0 )
K0

(
f
(
θK0/K(n), θK0/K(n′)θK0/K(n′′)

) ))
=
(

ΦΦΦ(ϕK0 )
K0

◦ ψ∗(θK0/K(n)) ◦ΦΦΦ(ϕK0 )
K0

−1)(
ΦΦΦ(ϕK0 )
K0

(
f
(
θK0/K(n′), θK0/K(n′′)

)))
◦ΦΦΦ(ϕK0 )

K0

(
f
(
θK0/K(n), θK0/K(n′)θK0/K(n′′)

))
=
(
ψ̃∗(n)f̃(n′, n′′)

)
f̃(n, n′n′′). (2.15)

Hence, (2.13) follows from (2.14) and (2.15). □

Thus, the pair (f̃ , ψ̃∗) is a factor system to the profinite groups∇(ϕK0 )
K0

andK×/NK0/K K
×
0 .

So, we have the profinite group structure

∇(ϕK0 )
K :=

(
∇(ϕK0 )
K0

×K×/NK0/KK
×
0 , ∗̃

)
where the group operation ∗̃ is defined by

(g, n)∗̃(g′, n′) =
(
g(ψ̃∗(n)g′)f̃(n, n′), nn′

)
(2.16)

for each (g, n), (g′, n′) ∈ ∇(ϕK0 )
K0

×K×/NK0/KK
×
0 . Moreover, we have the group extension

1 // ∇(ϕK0 )
K0

inj. // ∇(ϕK0 )
K

Pr2 // K×/NK0/KK
×
0

// 1 .

2.1.3. Definition of the local non-abelian reciprocity map ΦΦΦ(ϕK0 )
K .

Theorem 2.6. For all (γ, τ) ∈ Ef,ψ∗ the bijection(
ΦΦΦ(ϕK0 )
K0

,ArtK0/K

)
: Ef,ψ∗ → ∇(ϕK0 )

K

is a topological group isomorphism.

Proof. Obviously the map is a topological isomorphism. Now, let us show that it is also
an isomorphism of groups: Let (γ, τ), (γ′, τ ′) ∈ Ef,ψ∗ . Then,

(ΦΦΦ(ϕK0 )
K0

(γ),ArtK0/K(τ))∗̃(ΦΦΦ(ϕK0 )
K0

(γ′),ArtK0/K(τ ′))

=
(

ΦΦΦ(ϕK0 )
K0

(γ)
(
ψ̃∗(ArtK0/K(τ))(ΦΦΦ(ϕK0 )

K0
(γ′))

)
f̃
(
ArtK0/K(τ),ArtK0/K(τ ′)

)
,ArtK0/K(ττ ′)

)
.

On the other hand, for (γ, τ), (γ′, τ ′) ∈ Ef,ψ∗ , one has(
ΦΦΦ(ϕK0 )
K0

,ArtK0/K

) (
(γ, τ) ∗ (γ′, τ ′)

)
=

=
(

ΦΦΦ(ϕK0 )
K0

,ArtK0/K

)(
γ(ψ∗(τ)γ′)f(τ, τ ′), ττ ′

)
=
(

ΦΦΦ(ϕK0 )
K0

(γ)ΦΦΦ(ϕK0 )
K0

(ψ∗(τ)(γ′))ΦΦΦ(ϕK0 )
K0

(f(τ, τ ′)),ArtK0/K(ττ ′)
)
.
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Hence, it’s enough to show that, the equations

ΦΦΦ(ϕK0 )
K0

(ψ∗(τ)(γ′)) =ψ̃∗(ArtK0/K(τ))
(

ΦΦΦ(ϕK0 )
K0

(γ′)
)

(2.17)

and
ΦΦΦ(ϕK0 )
K0

(f(τ, τ ′)) = f̃(ArtK0/K(τ),ArtK0/K(τ ′)) (2.18)
hold. To show (2.17), for each τ ∈ Gal(K0/K) we get,

ψ̃∗(ArtK0/K(τ)) = Γ
ΦΦΦ

(ϕK0 )
K0

(ψ∗(τ))

by using (2.11). On the other hand, by definition of Γ
ΦΦΦ

(ϕK0 )
K0

we get

Γ
ΦΦΦ

(ϕK0 )
K0

(ψ∗(τ)) = ΦΦΦ(ϕK0 )
K0

(ψ∗(τ))ΦΦΦ(ϕK0 )
K0

−1
.

Hence,
ψ̃∗(ArtK0/K(τ))ΦΦΦ(ϕK0 )

K0
(γ′) = ΦΦΦ(ϕK0 )

K0
(ψ∗(τ))ΦΦΦ(ϕK0 )

K0

−1
(ΦΦΦ(ϕK0 )

K0
(γ′))

= ΦΦΦ(ϕK0 )
K0

(
ψ∗(τ)γ′

)
.

The equation (2.18) follows by puting ArtK0/K(τ), ArtK0/K(τ ′) respectively instead of n
and n′ in the composition given by (2.9). □
Corollary 2.7. The following composition

ΦΦΦ(ϕK0 )
K : GK

ρK // Ef,ψ∗

(
ΦΦΦ

(ϕK0 )
K0

,ArtK0/K

)
// ∇(ϕK0 )

K (2.19)

defines a topological group isomorphism between GK and ∇(ϕK0 )
K .

Proof. Obvious, since ΦΦΦ(ϕK0 )
K is defined as a composition of topological group isomor-

phisms. □
Definition 2.8 (non-abelian reciprocity map). The topological group isomorphism

ΦΦΦ(ϕK0 )
K : GK

∼−→ ∇(ϕK0 )
K

defined by the composition (2.19) in Theorem 2.7 is called the local non-abelian reciprocity
map for K.

The diagram

1 // GK0
� � //

ΦΦΦ
(ϕK0 )
K0

��

GK
resK0 //

ΦΦΦ
(ϕK0 )
K

��

Gal(K0/K) //

ArtK0/K

��

1

1 // ∇(ϕK0 )
K0

inj. // ∇(ϕK0 )
K

Pr2 // K×/NK0/KK
×
0

// 1

is commutative.

Remark 2.9. The inverse
(

ΦΦΦ(ϕK0 )
K

)−1
of local non-abelian reciprocity map ΦΦΦ(ϕK0 )

K is
called the local non-abelian norm-residue homomorphism for K. It satisfies the following
equality (

ΦΦΦ(ϕK0 )
K

)−1
(g, n) =

(
ΦΦΦ(ϕK0 )
K0

)−1
(g) · s(θK0/K(n))
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for each (g, n) ∈ ∇(ϕK0 )
K .

3. Properties of the local non-abelian reciprocity map
In this section, we will show that, the local non-abelian reciprocity map

ΦΦΦ(ϕK0 )
K : GK

∼−→ ∇(ϕK0 )
K

satisfies the certain functoriality and ramification theoretic properties.

3.1. Functoriality
Let F/K be a finite extension of the local field K such that F0 = F (ζp) is a ϕK0-

compatible extension of K0. Fix the Lubin-Tate splitting ϕF0 over F0. Following the same
reasoning as in Section 2.1.1 we induce a group structure

EfF ,ψ∗
F

:= (GF0 ×Gal(F0/F ), ∗)
isomorphic to GF . We denote the corresponding isomorphism by

ξF : EfF ,ψ∗
F

∼−→ GF .

Now, the diagram

Gal(L0/L)

resK0
��

ArtL0/L // F×/NF0/FF
×
0

NF/K∗
��

Gal(K0/K)
ArtK0/K // K×/NK0/KK

×
0

(3.1)

is commutative by functoriality property of ArtK : Gab
K

∼−→ K̂×. Here the left vertical
arrow resK0 denotes the map given by the restriction of σ ∈ Gal(L0/L) to K0, and the
right vertical arrow NF/K∗ denotes the map induced from the norm map NF/K . Also, by
functoriality property of the local non-abelian reciprocity map ΦΦΦ(ϕK0 )

K0
: GK0

∼−→ ∇(ϕK0 )
K0

, the
following diagram

GF0

ΦΦΦ
(ϕF0 )
F0 //

inc.

��

∇(ϕF )
F

N∞
F0/K0

��

GK0

ΦΦΦ
(ϕK0 )
K0 // ∇(ϕK0 )

K0

(3.2)

is commutative. Thus, we induce the following diagram,

GF

ΦΦΦ
(ϕF0 )
F

((ρF
//

inc.

��

EfF ,ψ∗
F

(ΦΦΦ
(ϕF0 )
F0

,ArtF0/F )
//

(inc.,resK0 )

��

∇(ϕF0 )
F

(N∞
F0/K0

,NF/K∗ )

��

GK

ΦΦΦ
(ϕK0 )
K

55

ρK
// Ef,ψ∗

(ΦΦΦ
(ϕK0 )
K0

,ArtK0/K)
// ∇(ϕK0 )

K

(3.3)

which is commutative, since the diagrams (3.1) and (3.2) are commutative.



10 S. Bedikyan

We denote NF/K := (N∞
F0/K0

,NF/K∗). If K ⊆ F ⊆ F ′ is a tower of extensions of
finite degree, such that F0/K0 and F ′

0/K0 are compatible with ϕK0 (cf 0.4 of [19]), the
transitivity

NF ′/K = NF/K ◦NF ′/F

follows from the commutativity of the diagram (3.3). We denote

NF := NF/K(∇(ϕF0 )
F ) = N∞

F0 ×NF/K F
×/NK0/K K

×
0 ,

which is a closed subgroup of ∇(ϕK0 )
K . Here, N∞

F0
is the closed subgroup of ∇(ϕF0 )

F0
defined

by the functoriality property of the non-abelian map ΦΦΦ(ϕK0 )
K0

(cf. (7.6) of [15]).
When L/K is an infinite extension, such that L0/K0 is a union of finite ϕK0-compatible

subextensions E0/K0, we have the closed subgroup N∞
L0

=
⋂
E0 N

∞
E0

of ∇(ϕK0 )
K0

, where E0
runs all over finite ϕK0-compatible subextensions of L0/K0 (cf. (7.7) of [15]). Also we
have the closed subgroup NL/K L

×/NK0/K K
×
0 of the group K×/NK0/K K

×
0 , with

NL/K L
× =

⋂
E

NE/K E
×,

where E runs over all finite subextensions of L/K, such that E0/K0 is a ϕK0-compatible
extension. We denote the closed subgroup N∞

L0
×NL/K L

×/NK0/K K
×
0 of ∇(ϕK0 )

K by

NL := N∞
L0 ×NL/K L

×/NK0/K K
×
0 .

Observe that, NL satisfies
NL =

⋂
E

NE ,

where E runs over all finite Galois subextensions of L/K, such that E0 = E(ζp) is a
ϕK0-compatible extension.

More generally, if L/K is any finite Galois extension, then L has a finite extension L′

such that, L′
0/L0 is a finite unramified extension compatible with ϕK0 . Following the same

reasoning as in Section 2.1.1 we have the topological group structures
EfL,ψ∗

L
:= (GL0 ×Gal(L0/L), ∗),

and
EfL′ ,ψ∗

L′ := (GL′
0
×Gal(L′

0/L
′), ∗)

isomorphic with GL, and GL′ respectively. Also we denote the corresponding isomorphisms
by

ρL : GL
∼−→ EfL,ψ∗

L
,

and
ρL′ : GL′

∼−→ Ef′L,ψ∗
L′ .

Now, by the functoriality property of ΦΦΦ(ϕK0 )
K0

, the following diagram

GL′
ΦΦΦ

(ϕ
L′

0
)

L′
//

inc.
��

∇
(ϕL′

0
)

L′

N∞
L′/K

��

GL

inc.
��

GK
ΦΦΦ

(ϕK0 )
K // ∇(ϕK0 )

K

(3.4)

is commutative. If we combine (3.4) with (3.1), we induce the diagram
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Gal(L′
0/L

′)
inj

yysss
ss
ss
ss
ss
s

resL0

��

∼

θL′
0/L

′
// L′×/NL′

0/L
′ L′×

0

NL′/L

��

injxxqqq
qqq

qqq
qq

GL′
ρL′

∼
//

inc

��

EfL′ ,ψ∗
L′

(inj,resL0 )

��

(
ΦΦΦ

(ϕ
L′

0
)

L′
0

,ArtL′
0/L

′

)
// ∇

(ϕL′
0

)
L′

NL′/K

��

Gal(L0/L)

injxxqqq
qqq

qqq
qq

resK0

��

∼
θL0/L // L×/NL0/L L

×
0

NL/K

��

GL
ρL
∼

//

inc

��

EfL,ψ∗
L

(inj,resK0 )

��

Gal(K0/K) ∼
θK0/K

//

inj
xxrrr

rrr
rrr

rrr
K×/NK0/K K

×
0

injxxppp
ppp

ppp
pp

GK ρK

∼ // Ef,ψ∗
∼(

ΦΦΦ
(ϕK0 )
K0

,ArtK0/K

) // ∇(ϕK0 )
K

(3.5)

which is commutative. Thus the closed subgroup ΦΦΦ(ϕK0 )
K (GL) of ∇(ϕK0 )

K satisfies

ΦΦΦ(ϕK0 )
K (GL) = N∞

L0 ×NL/K L
×/NK0/K K

×
0 ,

where N∞
L0

= ΦΦΦ(ϕK0 )
K0

(GL0) is the closed subgroup of ∇(ϕK0)
K0

, which is defined by the
functoriality property of the local non-abelian reciprocity map ΦΦΦ(ϕK0 )

K0
(cf. (7.13) of [15]).

We denote this closed subgroup by

NL := ΦΦΦ(ϕK0 )
K (GL).

If L/K is an infinite Galois extension, we have the closed subgroup N∞
L0

=
⋂
E0 N

∞
E0

of
∇(ϕK0 )
K0

, where E0 runs all over finite subextensions of L0/K0 (cf. (7.14) of [15]). Again,
we have

NL/K L
× =

⋂
E

NE/K E
×,

where E runs over all finite subextensions of L/K. We denote the closed subgroup N∞
L0
×

NL/K L
×/NK0/K K

×
0 of ∇(ϕK0 )

K by

NL := N∞
L0 ×NL/K L

×/NK0/K K
×
0 .

Observe that,
NL =

⋂
E

NE ,

where E runs over all finite Galois subextensions of L/K.

3.2. Isomorphism Theorem
Let L be any Galois extension of the local field K. In this section, we shall calculate

the kernel of the continuous surjection

ΦΦΦ(ϕK0 )
L/K : ∇(ϕK0 )

K

(ΦΦΦ
(ϕK0 )
K )−1

−−−−−−−→
∼

GK
resL−−→ Gal(L/K). (3.6)
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Consider the subextension L ∩K0 of L/K. We have the following diagram

LK0 = L0

JJJ
JJJ

JJJ
J

K0

L

����������������

JJJ
JJJ

JJJ
J

L ∩K0

����������������

K

of field extensions such that, there is an isomorphism

rL0
L : Gal(L0/K0) ∼−→ Gal(L/L ∩K0)

which sends each σ of Gal(L0/K0) to its restriction σL to L. This is well known fact from
Galois theory (for the proof, see Theorem 1.14 of [20]). Now, as K0 = K(ζp), we have the
following continuous surjection

∇(ϕK0))
K0

ΦΦΦ
(ϕK0 )
L0/K0−−−−−→ Gal(L0/K0)

(rL0
L )−1

−−−−−→
∼

Gal(L/L ∩K0) (3.7)

whose kernel is the closed subgroup N∞
L0

of ∇(ϕK0))
K0

. Here ΦΦΦ(ϕK0 )
L0/K0

denotes the norm residue
isomorphism for L0/K0, which is induced by the isomorphism theorem for the local non-
abelian reciprocity map ΦΦΦ(ϕK0 )

K0
for K0.

On the other hand, since L ∩K0/K is abelian, the following diagram

K×/NK0/K K
×
0

ArtK0/K

∼
//

eCFT
K0/L∩K0

��

Gal(K0/K)

resL∩K0
��

K×/NL∩K0/K(L ∩K0)×
ArtL∩K0/K

∼
// Gal(L ∩K0/K)

is commutative by the existence theorem of the local abelian class field theory. Here,
eCFT
L0/L∩K0

is the natural inclusion defined via the existence theorem of local abelian class
field theory. Thus the composition

K×/NK0/K K
×
0

ArtK0/K−−−−−→
∼

Gal(K0/K)
resL∩K0−−−−−→ Gal(L ∩K0/K), (3.8)

has kernel
ker

(
resL∩K0 ◦ArtK0/K

)
= NL/K L

×/NK0/K K
×
0

where
NL/K L

× =
⋂

K ⊆
finite

E⊆L
NE/K E

×.

Other observation is that, since we have

Gal(L/L ∩K0) � Gal(L/K)

and
Gal(L/K)/Gal(L/L ∩K0) ∼= Gal(L ∩K0/K),
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one can view Gal(L/K) as a group extension of Gal(L/L∩K0) by Gal(L∩K0/K). So, it
makes sense to reconstruct Gal(L/K) in terms of Gal(L/L ∩K0) and Gal(L ∩K0/K) in
order to find the kernel of (3.6).

3.2.1. Reconstruction of Gal(L/K) in terms of Gal(L/L∩K0) and Gal(L∩K0/K).
Since Gal(L/L ∩K0) � Gal(L/K) and Gal(L/K)/Gal(L/L ∩K0) ∼= Gal(L ∩K0/K), one
can view Gal(L/K) as a group extension of Gal(L/L ∩K0) by Gal(L ∩K0/K). Namely,
there is an exact sequence of the form

1 // Gal(L/L ∩K0) �
� // Gal(L/K)

resLL∩K0 // Gal(L ∩K0/K) // 1

where resLL∩K0
is the restriction map, which sends each σ ∈ Gal(L/K) to the restriction

σL, to L ∩K0.
Since those groups in the above exact sequence are profinite, from the same reasoning

with Section 2.1.1, we have the profinite group structure
HfL/K ,ψ

∗
L/K

:= (Gal(L/L ∩K0)×Gal(L ∩K0/K), ∗) ,

isomorphic with Gal(L/K). We denote the corresponding isomorphism
ξL/K : HfL/K ,ψ

∗
L/K
→ Gal(L/K)

which is defined by
(σ, τ) 7→ σsL/K(τ)

for each (σ, τ) ∈ HfL/K ,ψ
∗
L/K

. Recall that, HfL/K ,ψ
∗
L/K

sits in the following exact sequence

1 // Gal(L/L ∩K0) inc. // HfL/K ,ψ
∗
L/K

Pr2 // Gal(L ∩K0/K) // 1 .

In particular the following diagram

Gal(L/K)
resLL∩K0

((QQ
QQQ

QQQ
QQQ

Q

1 // Gal(L/L ∩K0)

inc.
66mmmmmmmmmmmm

inj. ((PP
PPP

PPP
PPP

PP
Gal(L ∩K0/K) // 1

HfL/K ,ψ
∗
L/K

Pr2

66nnnnnnnnnnnnn

ξL/K

OO

is commutative.

3.2.2. Proof of the isomorphism theorem. Before we state the isomorphism theorem
of K, we have the the following lemma:

Lemma 3.1. The square

GK
resL // Gal(L/K)

Ef,ψ∗

ξ

OO

(resL,resL∩K0 )
// HfL/K ,ψ

∗
L/K

ξL/K

OO

is commutaive.

Proof. Let (σ, τ ∈ Ef,ψ∗ , where σ ∈ GK0 and τ ∈ Gal(K0/K)). Then, by restricting
ξ(σ, τ) = σs(τ), to L, we get

resL(σs(τ)) = σLsL(τ),
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where σL and sL(τ) denote the restriction of σ and s(τ) to L respectively. On the other
hand,

resL∩K0(sL(τ)) = resL∩K0(s(τ))
= resL∩K0(resK0(s(τ))) = resL∩K0(τ) =: τL∩K0 ,

which means
ξ−1
L/K(σLsL(τ)) = σLτL∩K0 = (resL, resL∩K0)(σ, τ),

and this completes the proof. □

Now the isomorphism theorem for the local non-abelian reciprocity map ΦΦΦ(ϕK0 )
K , can be

stated as follows:

Theorem 3.2 (isomorphism theorem). The continuous homomorphism, given by (3.6)
has kernel

ker
(

ΦΦΦ(ϕK0 )
L/K

)
= N∞

L0 ×NL/K L
×/NK0/K K

×
0 .

Proof. Since the kernel of (3.7) is N∞
L , and the kernel of (3.8) is NL/K L

×/NK0/K K
×
0 ,

the proof follows from Lemma 3.1. □

3.3. Existence theorem
The existence theorem for a general local field K is stated as follows:

Theorem 3.3 (existence). The rule
L/K 7→ NL

gives one to one correspondence between the closed subgroups of ∇(ϕK0 )
K and the Galois

extensions of K. The group N∞
L0
×NL/KL

×/NK0/KK
×
0 is of finite index in ∇(ϕK0 )

K if and
only if L/K is finite, and if this is the case, we have

[L : K] =
(
∇ϕK0
K : N∞

L0 ×NL/KL
×/NK0/KK

×
0

)
.

Proof. From the commutativity of the diagram (3.5), we have NL = ΦΦΦ(ϕK0 )
K (GL), and we

see that the correspondence L/K 7→ NL is an injection. The remaining part of the proof
follows from Theorem 3.2. □

3.4. Galois conjugation
Let σ : K → Ksep be any embedding of the local field K, and fix an extension

σ̃ : Ksep ∼−→ Ksep

of σ to Ksep. Denote σ(K) by
Kσ := σ(K) .

As K0 = K(ζp), we have σ̃(K0) = Kσ(ζp). We denote
Kσ

0 := Kσ(ζp).
In the sense of [12], we see that σ̃ϕK0 σ̃

−1 is a Lubin-Tate splitting of Kσ
0 . Thus, we have

the local non-abelian reciprocity map

ΦΦΦ(σ̃ϕK0 σ̃
−1)

Kσ
0

: GKσ
0

∼−→ ∇(σ̃ϕK0 σ̃
−1)

Kσ
0

for the local field Kσ
0 in the sense of İkeda and Serbest. Now, the correspondence

φσ̃ : γ 7→ σ̃γσ̃−1 (3.9)
for each γ ∈ GK , defines a topological group isomorphism

φσ̃ : GK
∼−→ GKσ
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and for each x ∈ K×, the correspondence
σ̂ : x (mod NK0/K K

×
0 ) 7→ σ̃(x) (mod NKσ

0 /K
σ(Kσ

0 )×)
defines an isomorphism

σ̂ : K×/NK0/K K
×
0

∼−→ (Kσ)×/NKσ
0 /K

σ(Kσ
0 )× .

On the other hand, there exists a topological group isomorphism

σ̃+ : ∇(ϕK0 )
K0

∼−→ ∇(σ̃ϕK0 σ̃
−1)

Kσ
0

defined by the composition

GK0

φ
σ̃

|GK0 // GKσ
0

ΦΦΦ
(σ̃ϕK0 σ̃

−1)
Kσ0��

∇(ϕK0 )
K0

ΦΦΦ
(ϕK0 )
K0

−1
OO

σ̃+
// ∇(σ̃ϕK0 σ̃

−1)
Kσ

0

where φσ̃ is the isomomorphism given by the equation (3.9).
Consider the extension of GKσ by Gal(Kσ

0 /K
σ)

1 // GKσ
0
� � // GKσ

resKσ0 // Gal(Kσ
0 /K

σ) // 1

where the map resKσ
0

is defined by resKσ
0
(γ) = γ |Kσ

0
. Observe that, there is an isomor-

phism
φσ̃K0

: Gal(K0/K) ∼−→ Gal(Kσ
0 /K

σ)
defined by

φσ̃K0
: τ 7→ σ̃K0τ σ̃

−1
K0

for each τ ∈ Gal(K0/K), where
σ̃K0 : K0

∼−→ Kσ
0

is the restriction σ̃ |K0 of the automorphism σ̃ : Ksep → Ksep. Now, for each γ ∈
Gal(Kσ

0 /K) define the map
sσ̃ : Gal(Kσ

0 /K)→ GKσ

by
sσ̃(γ) = σ̃s(φ−1

σ̃K0
(γ))σ̃−1 .

This is a normalized continuous section for resKσ
0
. Hence, from the same reasoning with

step1 of Section 2, we construct a topological group operation “∗̃σ̃” on ∇(σ̃ϕK0 σ̃
−1)

(Kσ)0
×

(Kσ)×/NKσ
0 /K

σ(Kσ
0 )×, and we denote this topological group by ∇(σ̃ϕK0 σ̃

−1)
Kσ . By Theorem

2.7, we have
ΦΦΦ(σ̃ϕK0 σ̃

−1)
Kσ : GKσ

∼−→ ∇(σ̃ϕK0 σ̃
−1)

Kσ

which is the local non-abelian reciprocity map for Kσ.

Theorem 3.4 (Galois conjugation). The following diagram

∇(ϕK0 )
K

ΦΦΦ
(ϕK0 )
K

−1

//

(σ̃+,σ̂)
��

GK

φ
σ̃

��

∇(σ̃ϕK0 σ̃
−1)

Kσ

ΦΦΦ
(̃σϕK0 σ̃

−1)
Kσ

−1
// GKσ
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is commutative.

Proof. From Remark 2.9, we see that, for each (g′, a) ∈ ∇(σ̃ϕK0 σ̃
−1)

Kσ , the inverse of the
local non-abelian reciprocity map ΦΦΦ(σ̃ϕK0 σ̃)

Kσ satisfies

ΦΦΦ(σ̃ϕK0 σ̃
−1)

Kσ

−1
(g′, a) =

(
ΦΦΦ(σ̃ϕK0 σ̃

−1)
Kσ

0

−1
(g′)

)
sσ̃(αKσ

0 /K
σ(a))

where αKσ
0 /K

σ is the local norm-residue map for the abelian extension Kσ
0 /K

σ . This
implies

ΦΦΦ(σ̃ϕK0 σ̃
−1)

Kσ

−1 (
(σ̃+, σ̂)(g, n)

)
= ΦΦΦ(σ̃ϕK0 σ̃

−1)
Kσ

0

−1
(σ̃+(g)) · sσ̃(αKσ

0 /K
σ(σ̂(n))) (3.10)

for each (g, n) ∈ ∇(ϕK0 )
K .

By the Galois conjugation law for the local non-abelian reciprocity map ΦΦΦ(σ̃ϕK0 σ̃
−1)

Kσ
0

, the
equation

ΦΦΦ(σ̃ϕK0 σ̃
−1)

Kσ
0

−1
(σ̃+(g)) = σ̃ΦΦΦ(ϕK0 )

K0

−1
(g)σ̃−1 (3.11)

holds for each g ∈ ∇(ϕK0 )
K0

, and from the Galois conjugation principle of the abelian local
class field theory for the extension K0/K,

αKσ
0 /K

σ(σ̂(n)) = σ̃K0αK0/K(n)σ̃−1
K0

(3.12)

holds for each n ∈ K×/NK0/K K
×
0 . If we put (3.11) and (3.12) in the equation (3.10) we

get

ΦΦΦ(σ̃ϕK0 σ̃
−1)

Kσ

−1 (
(σ̃+, σ̂)(g, n)

)
= σ̃ΦΦΦ(ϕK0 )

K0

−1
(g)σ̃−1 · sσ̃

(
σ̃K0αK0/K(n)σ̃−1

K0

)
.

But, by the definition of sσ̃, we have

sσ̃(αKσ
0 /K

σ(σ̂(n))) = sσ̃(σ̃K0αK0/K(n)σ̃−1
K0

) = σ̃s(αK0/K(n))σ̃−1.

Thus, we conclude that

ΦΦΦ(σ̃ϕK0 σ̃
−1)

Kσ

−1 (
(σ̃+, σ̂)(g, n)

)
= σ̃ΦΦΦ(ϕK0 )

K0
(g) · s(αK0/K(n))σ̃−1

= σ̃ΦΦΦ(ϕK0 )
K (g, n)σ̃−1 .

This completes the proof. □

3.5. Ramification Theory

Let Knr
0,d denote the unique unramified degree d extension of K0; Γ(n)

0,d denote the max-
imal n-abelian extension of Knr

0,d in (K0)ϕdK0
, where (K0)ϕdK0

denotes the fixed field of
ϕdK0

.
Following [16], we define the partial ordering “ �” on (Z × Z) by (n′, d′) � (n, d) iff

n′ ≤ n and d′|d for each (n, d), (n′, d′) ∈ Z × Z. For an increasing net w := (w(n,d)) over
R≥−1 defined on the partially ordered set (Z× Z,�),

ψK0/K(w) := (ψK0/K(w(n,d)))

is also an increasing net. Here, ψK0/K denotes the Herbrand function for the extension
K0/K. Thus, for each increasing net w, the projective limit

G
ψK0/K(w)
K0

= lim←−
(n,d)

Gal(Γ(n)
0,d/K0)ψK0/K(wn,d)
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over the transition homomorphisms

r
ψK0/K(w(n,d))
ψK0/K(w(n′,d′)) : Gal(Γ(n)

0,d/K0)ψK0/K(w(n,d)) → Gal(Γ(n′)
0,d′ /K0)ψK0/K(w(n,d))

↪→ Gal(Γ(n′)
0,d′ /K0)ψK0/K(w(n′,d′))

is a subgroup of GK0 called the ψK0/K(w)-higher ramification subgroup of GK0 in upper
numbering (see [16] for the definition of w-higher ramification subgroup in upper numbering
G
w
K of the absolute Galois group of a local field K for each increasing net w).
On the other hand, as Γ(n)

0,d/K0 is APF , so Γ(n)
0,d/K is an APF extension. Thus, for each

increasing net w
G
w
K := lim←−

(n,d)
Gal(Γ(n)

0,d/K)w(n,d)

over the transition homomorphisms

r
(n,d)
(n′,d′) : Gal(Γ(n)

0,d/K)w(n,d) → Gal(Γ(n′)
0,d′ /K)w(n,d) ↪→ Gal(Γ(n′)

0,d′ /K)w(n′,d′)

for each (n′, d′) � (n, d), is a subgroup of GK . Again we call GwK by w-higher ramification
subgroup in upper numbering of GK .

Proposition 3.5. For a given increasing net w = (w(n,d)), the projective limit
lim←−
n,d

Gal(K0/K)w(n,d)

over the embeddings
Gal(K0/K)w(n,d) ↪→ Gal(K0/K)w(n′,d′) (w(n′,d′) ≤ w(n,d))

satisfies
lim←−
n,d

Gal(K0/K)w(n,d) = Gal(K0/K)w

where the number w ∈ R ∪ {∞} is defined by w = sup{w(n,d)}. We define
Gal(K0/K)∞ := {1Gal(K0/K)}

when w =∞.

Proof. Let w <∞. Note that, for each real number w′ satisfying
dψK0/K(w)e − 1 < w′ ≤ dψK0/K(w)e

we have
Gal(K0/K)ψK0/K(w) = Gal(K0/K)w′

by definition of the higher ramification groups. On the other hand, since Herbrand function
is increasing,

ψK0/K(w) = sup{ψK0/K(w(n,d))}.
Let us fix a couple (n0, d0) ∈ Z≥1 × Z≥1 satisfying

dψK0/K(w)e − 1 ≤ ψK0/K(w(n0,d0)) < ψK0/K(w).
For a given

(σ(n,d)) ∈ lim←−
(n,d)

Gal(K0/K)ψK0/K(w(n,d))

the following equality
σ(n0,d0) = σ ∈ Gal(K0/K)ψK0/K(w)

holds. On the other hand for each (n, d) ∈ Z≥1 × Z≥1, we have

σ = σ(n0,d0) = r
(nn0,dd0)
(n0,d0) (σ(nn0,dd0)) = σ(nn0,dd0)
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Hence,
σ(n,d) = r

(nn0,dd0)
(n,d) (σ(nn0,dd0)) = σ .

This shows
(σ(n,d)) = (σ) .

If w =∞, then there exists a (n1, d1) ∈ Z×Z, such that Gal(K0/K)w(n1,d1) = {1Gal(K0/K)}.
The proof follows by taking w = w(n1,d1) and by making the preceding calculations. □

Let us consider the normalized continuous section s : Gal(K0/K)→ GK for the exten-
sion of GK0 by Gal(K0/K), which has given by (2.2). Now, for each τ ∈ Gal(K0/K)w,
one can suppose that, s satisfies

s(τ) ∈ GwK
by Remark 2.1. In this case, for each τ , τ ′ ∈ Gal(K0/K) one can show that f(τ, τ ′) ∈ GwK0

,

and ψ∗(τ) |GK0
∈ Aut(GK0). From these observations, it can be shown that (GψK0/K(w)

K0
×

Gal(K0/K)w, ∗) is a subgroup of Ef,ψ∗ . We denote the topological group (GψK0/K(w)
K0

×
Gal(K0/K)w, ∗) by

E
w
f,ψ∗ := (GψK0/K(w)

K0
×Gal(K0/K)w, ∗) .

Moreover, restriction of the topological group isomorphism ξ : Ef,ψ∗ → GK defined by
(2.1.1) to Ewf,ψ∗ gives the topological group isomorphism

ξw := ξ |Ew
f,ψ∗

: Ewf,ψ∗
∼−→ G

w
K . (3.13)

Now, consider the topological group isomorphism

Ef,ψ∗

(
ΦΦΦ

(ϕK0 )
K0

,ArtK0/K

)
−−−−−−−−−−−−→ ∇(ϕK0 )

K

given in Lemma 2.6. Then for any increasing R≥0-net w = (w(n,d)), we define the subgroup
(1∇

(ϕK0 )
K )w of ∇(ϕK0 )

K by

(1∇
(ϕK0 )
K )w :=

(
ΦΦΦ(ϕK0 )
K0

,ArtK0/K

)
(Ewf,ψ∗).

Lemma 3.6. For a given increasing net w = (w(n,d)), assume that w <∞. Consider the
subgroups

(1∇
(ϕK0 )
K0

)ψK0/K(w) :=
〈
1Ẑ
〉
× lim←−

(n,d)

(
U�
X̃(Γ(n)

0,d/K0)

)ψ
Γ(n)

0,d /K0nr
d

(ψK0/K(w(n,d)))
YΓ(n)

0,d/K0
nr
d

/YΓ(n)
0,d/K0

nr
d

of ∇(ϕK0 )
K , and

U
dwe
K NK0/K K

×
0 /NK0/K K

×
0

of K×/NK0/K K
×
0 . Then,

(1∇
(ϕK0 )
K )w = (1∇

(ϕK0 )
K0

)ψK0/K(w) × U dwe
K NK0/K K

×
0 /NK0/K K

×
0 .

On the other hand if w =∞, then we have

(1∇
(ϕK0 )
K )w = (1∇

(ϕK0 )
K0

)ψK0/K(w) ×
〈
1K×/NK0/K K×

0

〉
.

Proof. The proof follows from Theorem 6.10 of [1], which is the sharpened version of
ramification theory for ΦΦΦ(ϕK0 )

K0
of İkeda and Serbest (cf. [16]), and from ramification

theory for the abelian extension K0/K. □
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Theorem 3.7 (Ramification theory for K). Let w = (w(n,d)) be an increasing net. For
each σ ∈ GK we have

σ ∈ GwK ⇔ ΦΦΦ(ϕK0 )
K (σ) ∈ (1∇

(ϕK0 )
K )w

Proof. As σ ∈ GK , we have
ξ−1(σ) = ξ−1

w (σ) ∈ Ewf,ψ∗ ,

where ξw is defined in (3.13). Thus, from the definition of the group (1∇
(ϕK0 )
K )w, we get

ΦΦΦ(ϕK0 )
K (σ) ∈ (1∇

(ϕK0 )
K )w .

□
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