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Abstract 

The study aims to compare the Gaussian Kernel, Logistic Kernel, and Uniform Kernel methods for 

determining the bandwidth parameter in the Kernel equating on TIMSS data. A bandwidth parameter needs to be 

determined when Kernel equating is used to equate two test forms. The bandwidth parameters determine the 

smoothness of the continuous score distributions, so their effect on equating results is critical. Gaussian Kernel, 

Logistic Kernel, and Uniform Kernel methods were used for bandwidth selection, and the results were compared 

according to the Percentage Relative Error (PRE), the Standard Error, and the Standard Error of Equating Difference 

(SEED). The findings of the study show that the three different approaches to minimizing the penalty function have 

similar results. Although the standard errors of the equated scores obtained with the uniform Kernel method were 

slightly smaller, the results were almost the same as the other two approaches. When the three equating methods were 

compared according to the percent relative error, the distribution obtained from Gaussian Kernel equating was more 

consistent with the population distribution. 
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Kernel Eşitlemede Farklı Bant Genişliği Seçimi Yöntemlerinin 

Karşılaştırılması 

Öz 

Bu çalışma, Kernel eşitleme yönteminde bant genişliği parametresinin belirlenmesi için sunulan yöntemleri 

gerçek bir veri seti üzerinde karşılaştırmayı amaçlamaktadır. Kernel eşitlemenin süreklileştirme adımında eşitleme 

yapabilmek için bir bant genişliği parametresinin belirlenmesi gerekir. Bant genişliği parametresi, sürekli puan 

dağılımlarının düzgünlüğünü belirler, bu nedenle eşitleme sonuçları üzerindeki etkileri kaçınılmazdır. Bant genişliği 

seçiminde Gauss Kernel, Lojistik Kernel ve Tek Biçimli Kernel yöntemleri kullanılmıştır ve sonuçlar bağıl hata 

yüzdesi, standart hata ve eşitleme farkına ait standart hataya göre karşılaştırılmıştır. Çalışmanın bulguları, 

penalty/ceza fonksiyonunun minimize edilmesine yönelik üç farklı yaklaşımın benzer sonuçlar verdiğini 

göstermektedir. Tek Biçimli Kernel yöntemiyle elde edilen eşitleme puanlarının standart hataları biraz daha küçük 

olsa da sonuçlar diğer iki yaklaşımla neredeyse aynıdır. Üç eşitleme yöntemi bağıl hata yüzdelerine göre 

karşılaştırıldığında ise Gauss Kernel eşitlemesinden elde edilen dağılımın evren dağılımıyla daha tutarlı olduğu 

görülmektedir.  

Anahtar Sözcükler: Kernel eşitleme, bant genişliği parametresi seçimi, süreklileştirme 
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INTRODUCTION 

In the process of ensuring the fairness of a test administered at different times or different versions of the 

same standardized test for test takers, test equating studies have emerged. Test equating is a statistical process that 

involves adjusting test scores to allow different test forms to be used interchangeably. The equating function has 

five important properties (Dorans & Holland, 2000):  

The Same Construct: The tests being equated should measure the same construct,  

The Equity:  For test takers, it makes no difference whether they take any of the tests to be equated,  

The Equal Reliability: Two tests cannot be equated if they measure the same construct but have different 

reliability,  

The Symmetry: The inverse of the equating function equating scores in form X to scores in form Y should 

equate scores in form Y to scores in form X,  

Population invariance: There should be no difference between the selection of sub-populations for X and 

Y tests, in other words, for the equating function equating X scores to Y scores, the populations of these forms 

should be invariant. 

All these properties are to ensure that the test scores to be equated are used interchangeably. Checking these 

five properties is important for us to decide whether the equating is appropriate or not. On the other hand, meeting 

these five properties alone is not sufficient for test equating. This decision also depends on the purpose for which 

the test will be administered (Kolen & Brennan, 2014). For example, some tests are administered once a year and 

students are ranked based on the goals of the institution. If the test is administered to identify the highest-

performing student, then test equating is not necessary. On the other hand, if several test forms are administered 

for a common purpose and the differences between the relative item difficulties of these test forms are not intended 

to affect student assessment, test equating should be used. However, Dorans and Holland (2000) stated that instead 

of taking these features as a theoretical basis for test equating, we should focus on the question of whether two 

tests can be equated. 

In order to equate test scores, firstly it is necessary to select the appropriate test equating design and test 

equating method. One of these test equating methods is the Kernel equating described by Holland and Thayer 

(1989) and later developed by von Davier et al. (2004). Kernel equating differs from other traditional equating 

methods in that it uses different smoothing approaches to continuousize discrete score distributions.  

Kernel equating is a family of equipercentile equating functions and a special case of the linear equating 

function, so it is a combined test equating approach. This method is so named because of the Kernel function used 

in nonparametric density estimation (Silverman, 1986; Tapia & Thompson, 1978). Kernel equating involves five 

steps (von Davier et al., 2004): pre-smoothing, estimation of score probabilities, continuizing the discrete score 

distributions, equating, and computing the standard error of the equating. In the continuousization step, it is aimed 

to continuousize the discrete test score distribution. For this, bandwidth parameters need to be chosen. Gaussian 

Kernel, logistic Kernel or uniform Kernel approaches can be used to continuousize the discrete functions (von 

Davier et al., 2004).  

There are many studies in the literature comparing Kernel equating with other equating methods. In one of 

these studies, Livingston (1993) compared Kernel equating with other traditional equating methods and found that 

Kernel equating gives more precise results in terms of standard errors and is more effective than other equating 

methods with its explicit formula for standard error calculation. In another study comparing Kernel and other 

observed score equating methods in a real data set, it was found that the difference between Kernel and other 

traditional equating methods was very small in the equivalent groups design, and in the common-item non-

equivalent groups (CINEG) design, Kernel equating gave similar results with equipercentile equating excluding 

low score ranges (Mao, et al., 2006). In another study conducted with SAT data, Kernel equating results were quite 

similar to other equating methods (Liu & Low, 2008). However, when the anchor score distributions of the two 

populations in different forms were similar, it was observed that even the equating methods with different 

assumptions gave the same or very similar results. In the study examining loglinear presmoothing in terms of 

equating bias, chained and post-stratification equating methods and Kernel equating were evaluated according to 

sample sizes, and it was concluded that presmoothing methods with fewer parameters were more biased and 
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standard error estimation was more precise and accurate in large samples (Moses & Holland, 2007). In the study 

investigating the effect of atypical extremes on test equating, Kernel estimation yielded more accurate results than 

traditional equating methods at the ends of the distribution (Cid & von Davier, 2015). There are many studies 

comparing Kernel equating with other equating methods. In general, Kernel equating has shown similar results 

with other equating methods. In addition to studies comparing the Kernel equating method with traditional 

equating methods, there are also studies on the continuization step of Kernel equating. 

Liou, et al. (1996) examined the function of simplified formulas to calculate the standard error of the 

smoothed score distributions that are continuousized using Uniform and Gaussian Kernel functions. The simplified 

formulas gave good results for equating both observed and smoothed scores. In another study, Lee, and von Davier 

(2008) examined the impact of different Kernel functions on equating results. Using an equivalent group design, 

the results show that the characteristics of the tail function of Kernel functions have a large impact on the 

continuized score distributions. On the other hand, the equated scores obtained using different Kernel functions 

do not vary much except for the outliers. In another study evaluating the performance of various functions for 

Kernel density estimation, it was found that uniform Kernel estimation gave poor results compared to other Kernel 

methods (Soh, et al., 2013). In addition, bandwidth analysis shows that the performance deteriorates as the 

bandwidth increases. 

It has been stated that the choice of the appropriate bandwidth parameter is important in the step of 

continuousizing the discrete score distribution. The continuousization step, which is considered the most important 

step of Kernel equating, is very important in terms of ensuring the similarity of the continuized discrete score 

distribution to the population distribution. Therefore, it is not surprising that studies focused on these issues. 

Holland and Thayer (1987) stated that choosing the appropriate bandwidth for the data minimizes the sum 

of squares of the difference between the continuous distribution and the observed distribution. Moreover, 

Häggström and Wiberg (2014) emphasized that the choice of band is important because it has a direct impact on 

the equated scores. It was emphasized that the choice of bandwidth has more influence, especially for extreme 

scores. Livingston (1993) showed empirically that the bandwidth is not affected by bias in equating for small 

values. When the sample size is larger than 1000, the standard error formula works quite efficiently. Although the 

increase in the bandwidth increases the accuracy of the standard error estimation, it is notable that standard error 

estimations with large bandwidths may be biased in distributions whose score distributions are smoothed using a 

log-linear model. In another study, a data-adaptive bandwidth tended to be unstable in small samples by 

minimizing the square of the difference between the observed and continuous distributions (Liou et al., 1996). In 

this case, an extremely small bandwidth (B = 0.007, and N_X = 100) can be chosen for equating highly scattered 

distributions. 

The bandwidth variable is mathematically complicated as it involves many calculations. In practice, a fixed 

bandwidth seems to be appropriate for minimizing the square of the differences, but it is clearly still in need of 

further investigation based on the results of the research. For this purpose, in this study different approaches to 

selecting the bandwidth parameter used to minimize the penalty function are discussed and presented. In this 

context, the comparison of three different bandwidth selection approaches (Gaussian, Logistic and Uniform) is 

considered to be useful in evaluating the accuracy of the continuization step. It is also thought to contribute to the 

field of "optimal bandwidth selection", which continues to be discussed in the literature. Thus, the research 

problem is "What is the effect of Uniform, Logistic and Gaussian bandwidth selection approaches on equating 

results in kernel equating?” 

The fact that Kernel equating provides a clear formula for the standard error by using the information in 

the presmoothing step and allows comparison using the standard error of the difference between the two equating 

functions gives it an advantage over other equating methods. In this context, the study examined how the equating 

results of the scores obtained from equivalent test forms according to the Kernel equating method change according 

to different bandwidths. 

METHOD 

Equating Design 

In the data collection process of the study, a CINEG design was used for test equating. This design is 

commonly used in exams where only one test form can be administered. For this design, different test forms called 

old form (Y) and new form (X), with a common set of items (anchor / A) are administered to each of the individuals 



Comparison of Different Bandwidth Determination Methods 

199 

of two groups (𝐺1, 𝐺2) from different populations (P, Q) as shown in Table 1. The common set of items should be 

as similar as possible to the test forms in terms of both statistical and content characteristics (Kolen & Brennan, 

2014). 

Table 1. Common-Item Non-Equivalent Groups Design 

Population Sample  X A Y 

P 𝐺1 ✓  ✓   

Q 𝐺2  ✓  ✓  

Note. P and Q represent different universe, A: anchor items, X : new form, Y : old form 

In the study, since the eighth and ninth booklets of the TIMSS 2011 eighth grade mathematics subtest, 

which had 19 common items, were taken by the whole study group and these common items were included in the 

scoring together with the other items, a CINEG design with internal common items was used. 

Study Group and Data Collection Tools 

In the study, the eighth and ninth booklets of the TIMSS 2011 eighth grade mathematics subtest, which 

have 19 common items, were used. Accordingly, 494 students taking the eighth booklet and 502 students taking 

the ninth booklet, totally 996 students, constituted the study group. The eighth and ninth booklets of the TIMSS 

2011 eighth grade mathematics subtest consisting of 34 multiple-choice questions were used as data collection 

tools. 

Data Analysis 

The data were analysed in three stages. In the first stage, moments were obtained by calculating the 

descriptive statistics of the old form (Y), new form (X) and anchor items (A) used in the study. 

Distributions and Moments for the forms of X, Y and A 

In this study, Form X scores were equated to Form Y scores. Table 2 shows the descriptive statistics of 

Forms X and Y, which consist of 19 common items.  

Table 2. Descriptive Statistics for Forms X and Y 

Form Mean S.D. Skewness Kurtosis Min Max. N 

X 11.051 7.546 0.981 0.008 0 33 494 

Y 12.092 8.394 0.843 -0.414 0 34 502 

According to the means in the Table 2, it can be said that Form X is more difficult than Form Y. However, 

according to the skewness and kurtosis values, it was seen that the distributions of the different groups of students 

who took both forms did not differ much from the normal distribution. When the standard deviation values of the 

forms X and Y were analysed, it was seen that the variance in Form Y was larger. This table is important in terms 

of comparing the moments of the score distributions after presmoothing and equating. 

In the second stage, Kernel equating was used to obtain equated scores for different bandwidth selection 

approaches. These bandwidth approaches used in the research were described briefly. 

The Gaussian Kernel Method. 

This approach requires using a Gaussian Kernel function to continuousize the discrete score distribution in 

the third step of Kernel equating. 

Define 𝑓(𝑥𝑖) as a smoothed frequency distribution for the discrete score variable and Ф as the ordinate of 

a standard normal distribution. The continuous distribution of the random variable x* in the form in R(𝑥𝑖, 𝑥
∗) 

associated with the difference between 𝑥𝑖 and 𝑥∗  is as follows:                                                    

𝑓𝑘𝑒𝑟𝑛𝑒𝑙(𝑥
∗)  =

1

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
 ∑ 𝑓(𝑥𝑖)Ф[𝐾

𝑖=0  R (𝑥𝑖, 𝑥
∗)] 
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At each discrete score point, the Kernel equating method uses a normally distributed Kernel to spread the 

score distribution over the range -∞, +∞. The wider the band parameter, the more intense the distribution at each 

discrete score point. Although the primary purpose of using a Gaussian Kernel is to make the distribution of scores 

continuous, it also provides a more uniform distribution of scores. The final distribution of the random variable of 

𝑥∗ is a continuous probability distribution for scores in the range -∞ to +∞. These continuous scores have the same 

mean and standard deviation as the distribution of discrete smoothed scores. However, scores may differ in 

kurtosis, skewness, and higher-order moments (Kolen & Brennan, 2014).  

The Logistic Kernel Method. 

The Logistic Kernel approach uses a logistic function in the third step of Kernel equating, which is the 

continuization of the discrete score distribution. The following logistic function is used to minimise the penalty 

function in this step (von Davier, 2010):                      

𝑓ℎ𝑥

(1)
(x; r) =

1

𝑠(𝑎𝑥ℎ𝑥)
2 ∑ 𝑟𝑖𝑖 𝑘(𝑅𝑖𝑋(𝑥))[1 − 2𝐾(𝑅𝑖𝑋(𝑥))]. 

The denser extremes and peaks of the logistic distribution led to larger cumulants than the normal 

distribution. 

Uniform Kernel Method. 

The Uniform Kernel approach requires the use of the uniform function in the third step of Kernel equating, 

which is the continuization of the discrete score distribution. For the optimal bandwidth parameter in the uniform 

Kernel, the distance between two consecutive possible scores (2bℎ𝑥) should be close to 1 (von Davier, 2010).  

In the last stage of the data analysis, the standard errors of the equated scores were calculated, and the 

results obtained were compared. Kernel equating has a standard error computation method is provided based on 

the estimation of standard errors for score probabilities obtained using log-linear models (Anderson et al., 2013). 

This equation allows to calculate the standard error of the equating for all equating designs: 𝑆𝐸𝐸𝑌(x) = 

√𝑉𝐴𝑅(�̂�𝑌(𝑥)). 

Another criterion used to compare different equating methods is the Percentage Relative Error (PRE) (von 

Davier, et al., 2004). PRE is a measure of equating bias. This value, which is obtained by calculating the difference 

between the moments of the distribution, is an indicator of the distance of the distribution of equated scores from 

the population distribution (Cid & von Davier, 2015). Before the PRE equation, the moments of Y and 𝑒𝑌(X) are: 

µ𝑝(Y) = ∑ (𝑦𝑘)𝑝𝑆𝑘𝑘  and µ𝑝(𝑒𝑌(X)) = ∑ (𝑒𝑌(𝑥𝑗) )
𝑝𝑟𝑗

𝑗 . Accordingly, 𝑃𝑅𝐸(𝑝) for the pth moment is calculated as 

follows: 𝑃𝑅𝐸(𝑝)= 100 
µ𝑝(𝑒𝑌(X))−µ𝑝(Y)

µ𝑝(Y)
. 

SPSS (version 21) and RStudio Desktop (version 1.4.1106) “kequate” package (Andersson et al., 2013) 

were used to analyze the data. 

FINDINGS 

In the pre-smoothing step, bivariate observed frequency distributions consisting of test scores and anchor 

item scores were obtained in accordance with the CINEG design, and both Form X and Form Y raw scores were 

smoothed according to these frequencies. The distribution of score probabilities was estimated according to the 

log-linear model. Models were evaluated according to the deviation of goodness-of-fit indices and AIC. 

Table 3. Descriptive Statistics and Correlation Values of X, Y and Anchor Tests 

P Q 

Test Scores n Mean S.D. Test Scores n Mean S.D. 

X 494 11.051 7.546 Y 502 12.092 8.394 

A 494 5.988 4.750 A 502 6.436 5.039 

        

Correlation Form X Anchor      
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Form X 1 0.968      

Form Y  0.969      

Accordingly, Form X and Form Y showed adequate fit to the observed distribution for the P and Q 

populations based on the chi-squared values (p>0.05) at the points of X, 𝑋2, 𝑋3, 𝑋4, A,  𝐴2, 𝐴3, 𝐴4, XA, 𝑋2𝐴2 and 

Y, 𝑌2, 𝐴2, 𝐴3, 𝐴4, YA, 𝑌2A, Y𝐴2, respectively. 

The score probabilities were estimated by setting the weighting coefficients as w = 0.5. For the estimated 

distributions, bandwidths were determined according to Gaussian, Uniform and Logistic Kernel methods in the 

continuization step. The values that minimize the penalty function for the bandwidths were calculated. The values 

of ℎ𝑥 = 0,538, ℎ𝑦= 0,557 for Gaussian; ℎ𝑥  = 1,0, ℎ𝑦 = 1,0 for uniform; and ℎ𝑥 = 0,395, ℎ𝑦= 0,418 for logistic 

Kernel approach. 

In the next step, the findings regarding the equated scores according to Gaussian, Uniform and Logistic 

Kernel equating methods were presented respectively. Figure 1 shows the relationship between the scores equated 

with the Gaussian Kernel equating method and the raw scores, as well as the difference in the standard error of 

equating in the CINEG design. 

 

Figure 1. Raw scores and equated scores according to Gaussian Kernel equating method. 

According to Figure 1, it can be said that the equated scores with Gaussian Kernel equating method are 

quite similar to the raw scores based on the linear relationship between them. When the standard error values in 

the next figure are examined, it is seen that the standard error is large at the lower values of the scale; however, it 

reaches maximum at the upper end. This indicates that the number of students who had very high scores on the 

test and those who had low scores may be small. 

In the next step, the results were obtained according to the Uniform Kernel equating method. Figure 4 

shows the relationship between the scores equated using the Uniform Kernel equating method and the raw scores 

and the difference in the standard error of the equating in the common-item non-equivalent groups design.          

 

Figure 2. Raw scores and equated scores according to Uniform Kernel equating method. 

The relationship in Figure 2 showed that the scores equated using the uniform Kernel equating method and 

the raw scores were quite similar. In addition, when the standard errors of the equated scores were examined based 
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on their distribution, it is seen that the standard errors were large in the range of 0-5 and 30-34 scores. In the range 

of 5-30, the standard error tends to increase. 

Finally, equating results were obtained according to the Logistic Kernel equating method. Figure 5 shows 

the relationship between the scores equated using the Logistic Kernel equating method and the raw scores and the 

difference in the standard error of the equating in the CINEG design.  

 

Figure 3. Raw scores and equated scores according to Logistic Kernel equating method. 

The relationship between the scores obtained by logistic Kernel equating and the raw scores was linear, as 

shown in Figure 3, and thus the scores were quite similar. When the standard error of the logistic Kernel equating 

was examined, it was seen that the standard error is large at the lower and especially at the upper endpoints. 

In the last step of Kernel equating, the standard error of the equating function can be estimated, as well as 

the standard error of the equating difference (SEED), which allows the comparison of different equating results. 

SEED values, which allow pairwise comparison of equating results, were compared in the following order: 

Logistic-Gaussian, Uniform-Gaussian, Uniform-Logistic. 

 

Figure 4. The difference between Gaussian Kernel and Logistic Kernel in relation to SEED for each score 

range. 
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Figure 5. The difference between Gaussian Kernel and Uniform Kernel in relation to SEED for each score 

range. 

 

Figure 6. The difference between Logistic Kernel and Uniform Kernel in relation to SEED for each score 

range. 

 Figure 4, Figure 6 and Figure 6 showed that for each pairwise comparison, most of the difference between 

the equated values did not exceed the intervals of +2 and -2 standard error band. In this case, it was seen that there 

is a high level of consistency between the scores equated according to all three Kernel equating approaches. This 

is also clearly observed in Figure 7. Additionally, the equated scores obtained according to all three methods and 

standard errors of equated scores can be examined in Appendix 1 and Appendix 2. 
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Figure 7. Equated scores and standard errors for the three Kernel approaches 

The first graph in Figure 7 showed that the three different Kernel approaches in this study give almost the 

same result. However, according to the second graph, the standard errors differ for low and high values. While the 

Logistic and Gaussian Kernel approaches were more in line with each other in terms of standard error values, the 

standard error of the Uniform Kernel approach tended to be higher at low scores and lower than the other 

approaches at high scores. 

Between the score range of 5 and 30, the standard errors of the equated scores according to all three 

approaches are almost the same. For extreme values, peaks were observed in the standard error values. In this case, 

it can be said that the number of individuals scoring in this range is low. 

In the study, percentage relative error (PRE) was also calculated to compare the moments of distribution of 

the scores equated according to different Kernel approaches with the moments of distribution of the Y-form scores 

in the target population. 

Table 4. Percentage Relative Error (PRE) of the Equated Score Distribution 

 Equating Methods  

Gaussian  

PRE (𝒀𝒙) 

Logistic 

PRE (𝒀𝒙) 

Uniform  

PRE (𝒀𝒙) 

1 0.003 0.006 -0.010 

2 0.002 0.005 -0.077 

3 0.016 0.023 -0.099 

4 0.030 0.042 -0.120 

5 0.044 0.061 -0.152 

6 0.060 0.084 -0.194 

7 0.079 0.115 -0.244 

8 0.106 0.157 -0.300 

9 0.140 0.212 -0.359 

10 0.183 0.283 -0.420 

The PRE values in Table 4 are close to each other for all three Kernel equating approaches. This supports 

the graphs in Figure 9. The deviation percentages of the first 10 moments from the target population vary between 
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0.002-0.183 for Gaussian Kernel equating, 0.005-0.283 for Logistic Kernel equating and 0.009-0.420 for Uniform 

Kernel equating. Considering the PRE values, it can be concluded that the equating results obtained from the 

bandwidth selected according to the Gaussian Kernel approach show a better fit to the distribution in the 

population. 

DISCUSSION AND CONCLUSION 

In this study, using a real data set, the equated scores according to different bandwidth selection strategies 

in the continuization step of Kernel equating are comparatively examined. Gaussian, Logistic and Uniform Kernel 

bandwidth selection approaches were used. PRE, Standard Error and SEED were used as criteria for comparing 

the equated results. 

It was observed that the scores obtained with three different Kernel equating under the CINEG design with 

common items were quite similar to the raw score distribution in all three methods.  When all three equating 

approaches were compared according to standard errors, it was observed that the error distributions were quite 

similar to each other, but the Logistic and Gaussian Kernel approaches gave closer results. However, as in Lee and 

von Davier (2008), these methods differed only at the endpoints. Häggström and Wiberg's study (2014) also 

emphasized that the choice of bandwidth has more impact, especially for endpoints. When the three equating 

approaches are compared according to the percentage relative error, it is seen that although the PRE values are 

close to each other, the Gaussian Kernel equating has a relatively lower PRE value. 

The results of the study show that Gaussian Kernel equating has a lower percentage relative error, but in 

terms of standard errors, the standard error distributions obtained using Gaussian Kernel and Logistic Kernel 

equating are quite similar. This finding is also supported by von Davier (2011) who compared the results of 

Gaussian, Logistic and Uniform Kernel equating. In addition, another study by Liu et al. (1996) found no 

difference between Uniform and Gaussian Kernel methods, while Soh et al. (2013) found that Uniform Kernel 

estimation gives poor results compared to other Kernel methods. 

According to the results of the study, it can be said that the effect of different bandwidths selected according 

to Gaussian Kernel, Logistic Kernel and Uniform Kernel approaches on the equating results is almost similar. As 

mentioned in many studies (Andersson, 2014; Liang & von Davier, 2014; Wang, 2008) where bandwidth selection 

approaches are developed, the choice of this parameter aims to minimize the penalty function in the continuization 

step and keep the fit distribution quite close to the distribution in the target population. In this respect, the choice 

of the bandwidth parameter is important for the continuization step of Kernel equating. In this context, in line with 

the findings of this study, researchers may be advised to use Gaussian Kernel or Logistic Kernel approach, which 

are less affected by the score distribution, in selecting the bandwidth parameter. However, bandwidth selection 

can also be determined based on cross validation techniques. In studies comparing Gaussian, Logistic and Uniform 

Kernel approaches based on minimizing the penalty function with techniques based on cross-validation, the results 

are similar with minor differences (Andersson & von Davier, 2014; Häggström & Wiberg, 2014; Wallin et al., 

2021). 

One of the limitations of this study is the use of PRE, Standard Error, and SEED as criteria for comparing 

bandwidth selection methods. It has been stated that PRE does not provide much information about bandwidth 

selection (Häggström & Wiberg, 2014). The criteria should be enhanced with mean squared error and other bias 

indicators so that the basis for selecting the appropriate bandwidth becomes stronger.  

The bandwidth selection approaches in this study are based mainly on minimizing the penalty function. 

Due to the complexity of minimizing the penalty function, researchers have proposed simplified methods derived 

from the modified standard errors of equating (Andersson & von Davier, 2014) and cross-validation techniques 

(Liang & von Davier, 2014). These different approaches can be compared with approaches based on minimizing 

the penalty function. 

In this study, the effects of three different approaches were examined under a CINEG design; studies 

comparing these methods under different designs can be conducted. In addition, different bandwidth selection 

methods can be compared with simulation data to examine the effect of sample size and score distributions in 

Kernel equating. Furthermore, how bandwidth selection methods perform at different test lengths could be 

examined. 
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APPENDIX 

Appendix 1. Results of Kernel Equating According to Different Bandwidth Selection Approaches 

Raw Scores Uniform Logistic Gaussian 

0 -0.332 -0.527 -0.474 

1 0.431 0.386 0.377 

2 1.504 1.468 1.453 

3 2.648 2.641 2.633 

4 3.829 3.829 3.826 

5 5.005 5.002 5.003 

6 6.156 6.150 6.154 

7 7.275 7.270 7.274 

8 8.361 8.361 8.365 

9 9.416 9.424 9.426 

10 10.447 10.461 10.462 

11 11.458 11.476 11.476 

12 12.455 12.475 12.473 

13 13.443 13.463 13.460 

14 14.429 14.446 14.443 

15 15.417 15.432 15.429 

16 16.413 16.426 16.423 

17 17.422 17.433 17.430 

18 18.447 18.456 18.454 

19 19.489 19.496 19.494 

20 20.547 20.552 20.550 

21 21.618 21.622 21.620 

22 22.699 22.702 22.701 

23 23.787 23.790 23.789 

24 24.880 24.882 24.882 
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25 25.976 25.977 25.978 

26 27.074 27.074 27.075 

27 28.169 28.170 28.171 

28 29.260 29.263 29.265 

29 30.341 30.350 30.352 

30 31.403 31.419 31.423 

31 32.424 32.444 32.451 

32 33.350 33.365 33.368 

33 34.068 34.132 34.094 

34 34.402 34.842 34.691 

 

 

Appendix 2. Standard Errors of Equated Scores According to Different Bandwidth Selection Approaches 

Raw Scores Uniform Gaussian Logistic 

0 0.066 0.141 0.167 

1 0.292 0.216 0.218 

2 0.322 0.244 0.239 

3 0.201 0.223 0.220 

4 0.185 0.191 0.189 

5 0.169 0.168 0.167 

6 0.161 0.161 0.160 

7 0.162 0.164 0.163 

8 0.167 0.173 0.172 

9 0.174 0.183 0.183 

10 0.181 0.194 0.193 

11 0.189 0.204 0.203 

12 0.200 0.216 0.215 

13 0.213 0.229 0.228 

14 0.228 0.243 0.243 

15 0.245 0.259 0.259 

16 0.263 0.275 0.275 

17 0.281 0.291 0.291 



Özdemir, 2025 

210 

 

18 0.299 0.306 0.306 

19 0.316 0.321 0.321 

20 0.334 0.333 0.333 

21 0.343 0.343 0.343 

22 0.349 0.350 0.348 

23 0.354 0.353 0.351 

24 0.356 0.355 0.352 

25 0.359 0.357 0.355 

26 0.367 0.367 0.366 

27 0.385 0.391 0.390 

28 0.416 0.431 0.431 

29 0.455 0.486 0.485 

30 0.487 0.539 0.535 

31 0.487 0.557 0.551 

32 0.431 0.494 0.499 

33 0.308 0.367 0.396 

34 0.078 0.270 0.364 

 

 

 


