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This study applies these control methods to the DC motor system to examine the robustness and 

performance of four optimal control methods. Optimal controllers aim to control the system to minimize 

a selected performance index. These control methods offer advantages such as improving energy 

efficiency, reducing costs, and enhancing system security. The Linear Quadratic Regulator (LQR) based 

controller is the primary optimal control method. Two well-known traditional control techniques include 

the Proportional-Integral-Derivative (PID) and Integral Sliding Mode Controller (ISMC). However, they 

do not usually contain optimal properties. In this study, the optimal control algorithms, defined by 

obtaining controller parameters through the Riccati equation, are applied to achieve accurate position-

tracking control in a DC motor system using Matlab/Simulink. The integral term-based algorithms seem 

to be robust and eliminate steady-state errors. The optimal PID controller could not provide the minimum 

performance index, unlike the other controllers in the study. LQR and optimal ISMC algorithms could 

allow the performance index to be a minimum. An illustrative comparison of the performances of all 

optimal control algorithms has been presented through graphical representation, along with 

corresponding interpretations. 
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1. INTRODUCTION 

DC motors are extensively utilized in applications involving velocity and position control, especially robotics 

(He et al, 2023). They actuate components in various electronic projects, including inverted pendulum systems 

(Mondal & Dey, 2020), self-balancing robots (Feng et al., 2023), and uncrewed vehicles (Tanveer & Ahmad, 

2023). DC motors are preferred over their AC counterparts due to their lower power consumption and ease of 

maintenance. However, achieving precise control over the angular position of a DC motor remains challenging. 

Position control of DC motors has been thoroughly investigated in the literature, resulting in well-defined 

system transfer functions and state space equations. When working with such systems, controllers that utilize 

the known system model for control law derivation offer significant advantages in design simplicity, hardware 

implementation, and adaptability. DC motors are favored for their cost-effectiveness, low power consumption, 

and precision in servo applications. However, the main challenge in controlling systems with DC motors is 

accurately calculating the necessary electrical power to attain the desired motor angular position or speed. 

An optimal control system seeks to maximize system benefit while minimizing costs, involving a viable control 

strategy within defined constraints to optimize a system's performance. In a controlled dynamic system, the 

goal is to find the best control plan from a set of permissible plans, enabling the system to transition from its 

initial state to a desired target state while enhancing system performance. In linear systems, optimal control 
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typically translates into a linear-quadratic problem. This approach is widely acknowledged for systematically 

designing controllers to optimize performance according to a specified index. In the literature, there are studies 

in the field of optimal control of DC motors using various artificial neural networks (Khomenko et al., 2013; 

Wang et al., 2019) or metaheuristic algorithms (Mamta & Singh, 2020; Rasheed, 2020). However, despite 

yielding successful results, these algorithms come with a high computational burden. 

The (LQR) is a linear optimal controller that harnesses the state space model to derive the control, utilizing 

state variables of the system for control law formulation. LQR is formulated to minimize both the square of 

the error and the energy required to attain the same objective concurrently. Solving the algebraic Riccati 

equation results in the optimal control law, characterized by a steady gain matrix for linear time-invariant 

systems. After selecting the appropriate weighting matrices in the performance index, the state feedback gain 

can be tailored to meet specific requirements. However, the robustness of a state feedback control system 

relying solely on a constant gain matrix cannot be guaranteed. To ensure robustness in LQR control, we employ 

the integral of the output variable within the control system. This type of control function, known in the 

literature as LQR with integral action, exhibits robustness against system uncertainties and steady-state errors 

(Ruderman et al., 2008). 

PID controllers are a straightforward and effective way to regulate plants. The PID controller is widely used 

in control engineering for its simplicity and effectiveness, and it has a rich history in the field. The three 

controller gain parameters are typically set as constants. Nonetheless, manual fine-tuning of the PID controller 

demands substantial human intervention, constituting a significant limitation. PID controller parameters are 

usually determined to achieve the desired system behaviour using pole placement. The desired behaviour of 

the system can be in terms of settling time for system state variables or optimizing energy consumption within 

the system. An alternative but more complex approach involves using optimal controllers, which seek the 

optimal solution by solving the algebraic Riccati equation. These strategies require a linear system and 

complete state feedback for implementation. However, a system incorporating a PID controller can be 

transformed into a feedback system where the Riccati equation can be applied through specific mathematical 

manipulations. Mukhopadhyay (1978) includes such a study. 

Sliding mode control (SMC) theory, initially developed for variable structure systems, has since become 

emblematic of this class of control systems. During its early development, SMC theory was secondary to linear 

control theory. Recent efforts have refocused on variable structure control strategies using sliding-mode 

techniques for DC servo drive systems. SMC offers distinct advantages, including robust performance in 

unmodeled dynamics, insensitivity to parameter variations, and resilience against external disturbances. These 

benefits find practical application in controlling position and speed in DC servo systems (Durdu & Dursun, 

2019; Eli et al., 2023; Saputra, et al., 2023). 

The SMC design process consists of two primary stages. Initially, a sliding surface is selected to represent the 

desired closed-loop performance. Subsequently, a control strategy is formulated to guide the system state 

trajectory towards this surface. The period before reaching the sliding surface is called the "reaching phase." 

External disturbances, including matched ones, affect the system during this reaching phase. An Integral 

Sliding Mode was introduced to eliminate the reaching phase and maintain a sliding mode. ISMC is mainly 

employed in cases where a steady-state error in the system needs correction. An integrator-term compensator 

is added to the sliding surface expression to eliminate the steady-state error. Adding a compensator to the SMC 

system introduces extra dynamics, increasing the system's order compared to the original setup. Typically, 

performance evaluation involves quadratic functions of state variables and control inputs. Solving the algebraic 

Riccati equation provides the optimal control law for a linear time-invariant system with a constant gain matrix. 

Once weighting matrices are chosen, the feedback gain can be customized for specific needs. However, the 

robustness of the optimal gain may not match that of the pole-placement gain. Integrating LQR design 

principles into the SMC framework is crucial. This situation is presented in by Utkin (1977).  

In Yu et al. (2004), a method that integrates LQR and SMC techniques is proposed for the design of the DC 

motor position control system. A. Yosef (2011) proposed an integral control-based SMC for DC motor servo 

control. In Gorczyca et al. (2011) presented a work about optimal control of the linear and the nonlinear DC 

motor model. The nonlinear optimal control solutions are obtained using the mean square error method. 
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Marva et al. proposed a controller strategy comprising the optimal control law and integral sliding mode (Jouini 

et al., 2019). Maghfiroh et al. (2022) improved the LQR control of the DC motor. Their study was about the 

optimization of the LQR algorithm. Aravind et al. (2017) deal with implementing linear quadratic Gaussian 

and extended Kalman filters for DC motors. Xiang and Wei (2021) made a work about a DC motor position 

tracking system based on LQR. Pratama et al. (2022) employed an optimal quadratic regulator PID for DC 

motor angular velocity control. 

In this article, some of the mentioned optimal control algorithms may require a different number of measurable 

state variables than others. This study has not analyzed the algorithms' need for measurable state variables. 

Readers searching for a solution in this regard can refer to the topics of observers and estimators in control and 

system theory. Observers like Luenberger (Davis, 2002) and Kalman (Simon, 2006) are the most used 

algorithms for estimating unmeasurable state variables. 

This study presents a comparative simulation analysis that centres on implementing four distinct optimal 

control methods for the positional control of a DC motor. Notably, all methods commonly employ the Riccati 

equation as a fundamental component. Furthermore, these algorithms are formulated to minimize or maximize 

a designated performance index. The study meticulously explores the impact of these algorithms on the state 

variables and performance indices of the DC motor model. The findings are effectively illustrated through 

comparative graphs. This unique methodology serves the purpose of discerning the practical efficacy of these 

methods in the context of DC motor applications, thus offering a valuable contribution to industrial and 

automation literature. 

This paper is structured in the following manner: The section titled 'Preliminaries and Mathematical 

Background' provides an overview of a range of optimal control algorithms rooted in the Riccati equation and 

conventional control methods. The section titled 'DC Servo Machine Mathematical Model' offers an in-depth 

exposition of the mathematical underpinnings of the DC machine model. The section 'Computational Findings' 

details the numerical computations associated with the optimal control algorithms. The section on 'Simulation 

Results' presents the outcomes of the aforementioned optimal control approaches. Finally, the 'Conclusions' 

section offers a summarization of the paper. 

2. PRELIMINARIES AND MATHEMATICAL BACKGROUND 

This section summarizes the theories and mathematical expressions used in this paper. Consider the following 

linear system, 

 �̇�(𝑡) = 𝐀𝐱(𝑡) + 𝐁𝐮(𝑡) (1) 

where Ann is the state matrix, Bnr the system input matrix, xn1 is the state vector and ur1 is 

system input vector. The indices n and r refer to the number of state variables and the number of system inputs, 

respectively. The output equation of a linear system, 

 𝐲(𝑡) = 𝐂𝐱(𝑡) (2) 

where Cmn is output matrix. The indices m is referred to the number of outputs.  

The optimal control problem can be calculated as a control input u(t) that satisfies the system to follow an 

optimal state variables trajectory. An initial cost function is established. The control input must minimize the 

cost function as much as possible. 

Dreyfus (1962) offered a method for deriving a series of differential equations that exhibit boundary condition 

properties, referred to as the Euler-Lagrange equations. The exact boundary conditions can be provided using 

the Hamiltonian function, employing the Pontryagin (1986) maximum principle. 
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Hamilton-Jacobi-Bellman (HJB) partial differential equation is one of the main approaches to solving optimal 

control problems (Kirk, 1998). The optimality problem with linear quadratic performance criterion is generally 

solved by Hamilton-Jacobi equations. Solutions of the equations take the form of the matrix Riccati equation. 

When the system is controllable, that equation provides an optimal control law as a linear function of the state 

vector components. 

The most usable quadratic performance index is as follows. 

 𝐽 = ∫ (𝐱𝐓𝐐𝐱 + 𝐮𝐓𝐑𝐮)𝑑𝑡
𝑡1

𝑡0

 (3) 

where J is a scalar quantity, Qnn and Rrr the state and control weighting matrices, respectively. 

Besides, they are always symmetric, positively defined, and square. Optimal control problems include crucial 

performance criteria such as settling time and the consumed energy for system control. These two criteria have 

the opposite operating mentality. When the weight entries of the Q matrix are selected as equal to the weights 

of the R matrix, the system's energy consumption has equal importance with the settling time. When the Q 

matrix weights are selected bigger than the R matrix weights, the settling time is more important than energy 

consumption. Namely, to reduce the settling time, the energy consumption is ignored. When the Q matrix 

weights are selected less than the R matrix weights, the energy consumption is as low as possible. 

2.1. Linear Quadratic State Feedback Controller 

Upon consideration of Eq. (1) and (3), application of the Hamiltonian theorem to these equations yields the 

following expression (Kirk, 1998; Burns, 2001), 

 𝐮𝑙𝑞𝑟 = −𝐊𝑙𝑞𝑟𝐱 = −𝐑
−1𝐁𝑇𝐏𝑙𝑞𝑟𝐱 (4) 

where ulqr is the optimal control input, Plqr
nn is a square symmetric adjoint matrix, Plqr(t) are found by Eq. 

(5). 

 �̇�𝑙𝑞𝑟 = −𝐏𝑙𝑞𝑟𝐀 − 𝐀
𝑇𝐏𝑙𝑞𝑟 −𝐐𝑙𝑞𝑟 + 𝐏𝑙𝑞𝑟𝐁𝐑

−1𝐁𝑇𝐏𝑙𝑞𝑟  (5) 

As time integration in a backward direction advance, Kalman demonstrated that Plqr(t) solutions stabilize at 

constant values. In that case, Eq. (5),  

 0 = −𝐏𝑙𝑞𝑟𝐀 − 𝐀
𝑇𝐏𝑙𝑞𝑟 − 𝐐𝑙𝑞𝑟 + 𝐏𝑙𝑞𝑟𝐁𝐑

−1𝐁𝑇𝐏𝑙𝑞𝑟  (6) 

Eq. (5)-(6) are continuous solutions of the matrix Riccati equation. Solving Eq. (6) yields the Plqr matrix. 

Substituting the Plqr matrix into Eq. (4) concluded optimal control input with feedback matrix Klqr. The linear 

feedback control system is considered in Figure 1. When the matrix Klqr is substituted into Figure 1, the control 

system becomes a linear quadratic feedback control system or LQR (Burns, 2001). Attention should be drawn 

to the existence of state feedback in Figure 1. It should be noted that the state feedback algorithms may need 

to possess observable state variables or use an observer for such situations. 

It is commonly assumed that LQRs, as depicted in Figure 1, are primarily used for scenarios where the set 

point is equal to zero. However, the set point regulation requires driving the system states to the desired set 

point state vector xd from any initial state and under disturbance. The set point regulation is generally proposed 

in industrial applications. This paper aims to use the linear quadratic techniques for set point regulation 

processes. As a first step, the calculation of the desired control input, ud, that needs to be applied to obtain the 

desired state vector is required. The derivative terms within Eq. (1) are equated to zero, resulting in the 

calculation of the control input, ud, corresponding to the obtained xd vector is derived. 
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Figure 1. LQR block diagram 
 

0 = 𝐀𝐱𝑑 + 𝐁𝐮𝑑  (7) 

where xd is a constant steady-state vector, also called system equilibrium point. Considering matrix B has full 

rank, the desired control input, ud, is determined as, 

 𝐮𝑑 = −(𝐁
𝑇𝐁)−1𝐁𝑇𝐀𝐱𝑑 (8) 

The desired state vector, xd, might be feasible by directly applying the control input, ud, to the open-loop 

system. However, open-loop applications would not ensure slight overshoot or robustness against disturbances. 

Utilizing a feedback control algorithm is a dependable approach to improve system transient behaviour and 

reject disturbances. The control algorithm necessitates the determination of the system's error dynamics as 

follows, 

 
�̃� = 𝐱 − 𝐱𝑑,⟹ 𝐱 = �̃� + 𝐱𝑑
�̃� = 𝐮 − 𝐮𝑑 ⟹ 𝐮 = �̃� + 𝐮𝑑

} (9) 

 

Differentiating state error expression in Eq. (9) and substituting in (1) provides the following, 

 �̇� = �̇̃� + �̇�𝑑 = 𝐀(�̃� + 𝐱𝑑) + 𝐁(�̃� + 𝐮𝒅) (10) 

Here, xd is the equilibrium point and contains constant entries. Since the derivative of a constant is zero, by 

substituting �̇�𝑑 = 0 and Eq. (7) into Eq. (10), the following expression is derived, 

 �̇̃� = 𝐀�̃� + 𝐁�̃� (11) 

Eq. (11) defines the error dynamics and allows for direct application of an LQR algorithm.  

 𝐽𝑙𝑞𝑟 = ∫ (�̃�𝐓𝐐�̃� + �̃�𝐓𝐑�̃�)𝑑𝑡
𝑡1

𝑡0

 (12) 

The following form of the feedback control optimizes the cost function Eq. (12) 

 
�̃� = −𝐊𝑙𝑞𝑟�̃� (13) 

where the matrix Klqr is defined by 

 
𝐊𝑙𝑞𝑟 = 𝐑

−1𝐁𝑇𝐏 (14) 

Incorporating Eq. (13) into Eq. (11), the closed-loop system equation is obtained as follows, 

 
�̇̃� = (𝐀 − 𝐁𝐊𝑙𝑞𝑟)�̃� (15) 
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The eigenvalues of A-BKlqr are placed in the left half of the complex s-plane. That proves the system is 

asymptotically stable and provides a steady state. In the steady state, the system state x becomes xd. Substituting 

Eq. (9) into Eq. (15) yields the following equation, 

 
�̇� = (𝐀 − 𝐁𝐊𝑙𝑞𝑟)𝐱 − (𝐀 − 𝐁𝐊𝑙𝑞𝑟)𝐱𝑑 (16) 

The error variables Eq. (8)-(9) and the feedback control Eq. (13) satisfy the following equation. 

 
𝐮 = −[(𝐁𝑇𝐁)−1𝐁𝑇 − 𝐊𝑙𝑞𝑟] 𝐱𝑑 − 𝐊𝑙𝑞𝑟𝐱 (17) 

In summary, the equilibrium point at the set point is calculated first. Then, the processes defined by Eq. (6),(8), 

and Eq. (14) are executed, respectively. Finally, optimal control input Eq. (17) is obtained. The entire algorithm 

is executed as depicted in Figure 2 (Naidu, 2002; Anderson & Moore, 2007). 

-(BT
B)-1

B
T
A+Klqr = +x Ax Bu C

x
yxd

+

Klqr

-

u

 

Figure 2. LQR tracking control block diagram 

2.2. LQR With Integral Control Action (LQRI) 

Control algorithms aim to achieve stability, the desired transient response, and minimize steady-state error. 

The LQR algorithm may not eliminate steady-state error if there are no closed-loop system poles at the origin 

of the complex plane. The same situation arises when the DC gain of the closed-loop system with a state 

feedback controller differs from unity. 

Steady-state error elimination decreases the disparity between the system's input and output. This action is 

provided by adding an integral term of the open-loop system. This section discusses using integral terms with 

a linear quadratic feedback controller (Dorf & Bishop, 2010; Ogata, 2010). 

The basic mentality here is to enlarge the original closed-loop system with a linear quadratic controller. 

Substituting Eq. (4) into Eq. (1) concluded the following equation. 

 
�̇� = (𝐀 − 𝐁𝐊𝑙𝑞𝑟)𝐱 (18) 

Eq. (18) is stable when the eigenvalues of A-BKlqr expression are at the left half complex plane. Linear 

quadratic state feedback controller enables stabilization. However, comprehensive control of steady-state error 

is achieved by implementing the following procedures. 

The integration of error between output and reference input, xi, is as follows, 

 
𝐱𝑖 = ∫(𝐫 − 𝐲)𝑑𝑡 = ∫(𝐫 − 𝐂𝐱)𝑑𝑡 (19) 

where the reference control input vector of the system is r, the integration error is taken as a new state variable. 

The derivative of Eq. (19) is as follows, 

 �̇�𝑖 = 𝐫 − 𝐂𝐱 (20) 

By combining Eq. (20) with the original system equations (1) and (2), the augmented state space system is 

obtained as follows. 
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[
�̇�
�̇�𝑖
] = [

𝐀 0𝑛×𝑚
−𝐂 0𝑚×𝑚

] [
𝐱
𝐱𝑖
] + [

𝐁
0𝑚×𝑟

] 𝐮 + [
0𝑛×𝑚
𝐈𝑚×𝑚

] 𝐫 

𝐲 = [𝐂 0𝑚×𝑚] [
𝐱
𝐱𝑖
] 

(21) 

Im×m is the m×m dimensional identity matrix. Eq. (21) includes a new state space vector. In this situation, the 

state-feedback controller has the following form. 

 𝐮 = − [𝐊𝑥 𝐊𝑖𝑛]⏟      
𝐊𝑙𝑞𝑟𝑖

[
𝐱
𝐱𝑖
] = −𝐊𝑥𝐱 − 𝐊𝑖𝑛𝐱𝑖 (22) 

the Kx
r×n is the original state feedback control matrix, and Kin

r×m is the integral control feedback matrix. 

Kx and Kin form the matrix Klqri
r×(m+n). The extended system matrices are as in Eq. (23). 

 
𝐱𝑙𝑞𝑟𝑖 = [

�̇�
�̇�𝑖
], 𝐀𝑙𝑞𝑟𝑖 = [

𝐀 0𝑛×𝑚
−𝐂 0𝑚×𝑚

],  𝐁𝑙𝑞𝑟𝑖 = [
𝐁

0𝑚×𝑟
], 𝐂𝑙𝑞𝑟𝑖 = [𝐂 0𝑚×𝑚], 𝐁𝑟 = [

0𝑛×𝑚
𝐈𝑚×𝑚

] (23) 

Substituting Eq. (22) into Eq. (21) yields 

 
�̇�𝑙𝑞𝑟𝑖 = (𝐀𝑙𝑞𝑟𝑖 − 𝐁𝑙𝑞𝑟𝑖𝐊𝑙𝑞𝑟𝑖)𝐱𝑙𝑞𝑟𝑖 + 𝐁𝑟𝐫 (24) 

The eigenvalues of Alqri-BlqriKlqri are placed in the left half of the complex s plane for asymptotically stable. 

The cost function related to the augmented state-space system is defined as follows. 

 
𝐽𝑙𝑞𝑟𝑖 = ∫ (𝐱𝑙𝑞𝑟𝑖

𝑻 𝐐𝑙𝑞𝑟𝑖𝐱𝑙𝑞𝑟𝑖 + 𝐮
𝐓𝐑𝐮)𝑑𝑡

𝑡1

𝑡0

 (25) 

The matrices are substituted in Eq. (26), and the extended costate Plqri matrix is calculated. 

 
0=-PlqriAlqri-(Alqri)TPlqri-Qlqri+PlqriBlqri (R)-1(Blqri)TPlqri (26) 

Qlqri extended state weight matrix, Plqri matrix is used in Eq. (27), and feedback control matrix Klqri is obtained. 

 
𝐊𝑙𝑞𝑟𝑖 = [𝐊𝑥 𝐊𝑖𝑛] = 𝐑

−1𝐁𝑙𝑞𝑟𝑖
𝑇 𝐏𝑙𝑞𝑟𝑖  (27) 

R and Blqri matrices are extended control weight and system input matrices.  

All obtained matrices Kx and Kin are replaced in Figure 3, and the control system is executed (Ogata, 2010; 

Nise, 2011). 

= +x Ax Bu
-

-

u x
y

1

s
-

+
Kin C

r

y
Kx

xi

 

Figure 3. LQR with integral action 

2.3. Optimal PID Controller 

The algorithms given under the subheadings so far use state variables. This case necessitates observable state 

variables. The state observers are employed for this purpose. Lüenberger observer, reduced order observer, or 
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Kalman estimator can be employed to estimate any observed state variables of any system (Davis, 2002; 

Simon, 2006). 

However, the PID controller may not need any observer since it is an output-based controller, as seen in Figure 

4. The feedback is implemented from output to input. The PID controller requires a smaller number of 

measurable outputs (y) of the system. The input signal u is a three-term controller as follows (Paraskevopoulos, 

2002; Franklin et al., 2009; Ogata, 2010): 

= +x Ax Bu

+

+

u x
y

1

s

-

+

Ki

C
r

y

Kp

Kds

+

 

Figure 4. PID control system 
 

𝐮 = −𝐊𝑝(𝐫 − 𝐲) − 𝐊𝑖 ∫ (𝐫 − 𝐲)𝑑𝑡
𝑡

0

− 𝐊𝑑(�̇� − �̇�) (28) 

where Kp
mr, Ki

mr and Kd
mr are proportional, integral, and derivative feedback gain matrices. 

Considering the help of Eq. (1)-(2) and Eq. (28), Eq. (29) is obtained (Mukhopadhyay, 1978; Pratama, et al., 

2022) 

 
𝐮 = (𝐊𝑝𝐫 + 𝐊𝑖∫𝐫𝑑𝑡 + 𝐊𝑑 �̇� +) − 𝐊𝑝𝐂𝐱 − 𝐊𝑖∫𝐲𝑑𝑡 − 𝐊𝑑𝐂(𝐀𝐱 + 𝐁𝐮)

= 𝐮𝑟 − �̅�𝑝𝐱 − �̅�𝑖∫ 𝐲𝑑𝑡
𝒕

𝟎

 
(29) 

Here the gains �̅�𝑝, �̅�𝑖 and the input residue ur are all defined as 

 
�̅�𝑝 = (𝐈𝑚 + 𝐊𝑑𝐂𝐁)

−1(𝐊𝑝𝐂 + 𝐊𝑑𝐂𝐀) (30) 

 

 
�̅�𝑖 = (𝐈𝑚 + 𝐊𝑑𝐂𝐁)

−1𝐊𝑖  (31) 

 

 
𝐮𝑟 = (𝐊𝑝𝐫 + 𝐊𝑖∫𝐫𝑑𝑡 + 𝐊𝑑 �̇� +) (32) 

Eq. (29) demonstrates that the output feedback with the PID controller resembles any state feedback controller. 

However, the integral term ydt appears as a new state variable in Eq. (29). The new state variable is then 

defined as follows. 

 
𝐱𝑛𝑒𝑤 = ∫ 𝐲𝑑𝑡

𝑡

0

 (33) 

The variable then 

 
�̇�𝑛𝑒𝑤 = 𝐲 = 𝐂𝐱 (34) 

The augmented state vector of the system is defined as 

 
�̅� = [

𝐱
𝐱𝑛𝑒𝑤

] (35) 
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The augmented system may now be described as 

 
�̇̅� = �̅��̅� + �̅�𝐮 (36) 

The augmented system matrix �̅� and �̅� are described by 

 
�̅� = [

𝐀 0𝑛×𝑚
𝐂 0𝑚×𝑚

] , �̅� = [
𝐁

0𝑚×𝑟
] (37) 

The substituting Eq. (35) into the control input Eq. (29) is then, 

 
𝐮 = 𝐮𝑟 − 𝐊𝑝𝑖𝑑�̅� (38) 

where 𝐊𝑝𝑖𝑑 = [�̅�𝑝 �̅�𝑖]. Substituting the Eq. (42) into (36) gives 

 
�̇̅� = (�̅� − �̅�𝐊𝑝𝑖𝑑)�̅� + �̅�𝐮𝑟 (39) 

The eigenvalues of �̅� − �̅�𝐊𝑝𝑖𝑑 are placed in the left half of the complex s-plane for asymptotically stable. The 

performance index of the form given by Eq. (36) 

 
𝐽𝑝𝑖𝑑 = ∫ (�̅�𝑇�̅��̅� + 𝐮𝑻𝐑𝐮)𝑑𝑡

𝑡1

𝑡0

 (40) 

the desired optimal control 

 
𝐮∗ = −𝐑−1�̅�𝑇�̅��̅� (41) 

where the matrix �̅� is defined as 

 
�̅��̅� + �̅�𝑇�̅� − �̅��̅�𝐑−1�̅�𝑇�̅� + �̅� = 0 (42) 

where �̅�(n+m)(n+m) extended state weight matrix. Comparing the Eq. (29) and Eq. (41) concluded 

 
[�̅�𝑝 �̅�𝑖] = 𝐑

−1�̅�𝑇�̅� (43) 

where �̅�𝑝
rn and �̅�𝑖

rm. Once Eq. (43) is obtained, the controller coefficients are all calculated as 

following expressions 

 
[𝐊𝑝 𝐊𝑑] = �̅�𝑝�̅�

𝑇(�̅��̅�𝑇)−1 (44) 

where �̅� = [𝐂𝑻 (𝐂𝐀 − 𝐂𝐁�̅�𝑝)
𝑇
]
𝑇

 and 

 
𝐊𝑖 = (𝐈𝑚 + 𝐊𝑑𝐂𝐁)�̅�𝑖  (45) 

The last two equations conclude optimal PID controller parameters. 
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2.4. Controller with Optimal Sliding Mode 

In this section, it will be demonstrated only how to provide optimality to the sliding mode controller. Variable 

structure system control theory is a relatively comprehensive subject. The most pioneer works on this subject 

belong to Utkin (1977, 1992, 1993) and Utkin and Parnakh (1978). 

SMC involves bringing the instantaneous states of the system onto the sliding or switching surface created 

from state variables and keeping them there. The integrated error dynamics should be considered by appending 

them to the error variable vector. ISMC's subject is concerned with the robustness of the SMC. Readers are 

referred to Utkin et al. (2009) for details. The augmented error dynamic vector is as follows. 

 
�̃�𝑖𝑠𝑚𝑐 = [

�̃�

∫ �̃�𝑑𝑡] (46) 

The error dynamics equation then becomes as follows by combining integrated error, ∫ �̃�𝑑𝑡, and Eq. (11). 

 𝑑

𝑑𝑡
[
�̃�

∫ �̃�𝑑𝑡]
⏟      

�̇̃�𝑖𝑠𝑚𝑐

= [
𝐀 0𝑛×𝑛
𝐈𝑛×𝑛 0𝑛×𝑛

]
⏟        

𝐀𝑖𝑠𝑚𝑐

[
�̃�

∫ �̃�𝑑𝑡]
⏟    
�̃�𝑖𝑠𝑚𝑐

+ [
𝐁
0𝑛×𝑟

]
⏟  
𝐁𝑖𝑠𝑚𝑐

�̃� 
(47) 

The regular form is the most canonic form used for SMC for linear systems. Consider the nominal linear model 

error dynamic and their integrated variables are given by Eq. (47). (Aismc, Bismc) is a controllable pair and 

rank(Bismc)=. The sliding surface function 

 
𝑠(𝑡) = 𝛔�̃�𝑖𝑠𝑚𝑐(𝑡) (48) 

where σ2n is the sliding surface coefficient vector and s(t) is a scalar function. 

The dynamic equation of the linear system, defined by Eq. (1)-(2), may be separated into subsystems; only one 

includes a control signal. A non-singular transformation is used with an orthogonal matrix T, to transform the 

system into the regular form, 

 
𝐳(𝑡) = 𝐓�̃�𝑖𝑠𝑚𝑐(𝑡) (49) 

Taking derivatives of Eq. (49) and substituting into (47), the following regular form obtained 

 
�̇�1(𝑡) = 𝐀11𝐳1(𝑡) + 𝐀12𝐳2(𝑡) (50) 

 

 
�̇�2(𝑡) = 𝐀21𝐳1(𝑡) + 𝐀22𝐳2(𝑡) + 𝐁2𝐮(𝑡) (51) 

where A11(2n-)(2n-), A12(2n-)2 and A21(2n-), A22 are all sub-block matrices of transformed 

A matrix. B2 is  dimensional matrix. z1(2n-)1 and z21 are sub-block vectors. This method is called 

the decoupling principle as well. The matrix sub-blocks in Eq. (50)-(51), 

 
𝐓𝐀𝑖𝑠𝑚𝑐𝐓

𝑇 = [
𝐀11 𝐀12
𝐀21 𝐀22

] , 𝐓𝐁𝑖𝑠𝑚𝑐 = [
0
𝐁2
] (52) 

Transformation matrix T is an orthogonal matrix and can be calculated by QR decomposition (Golub & Loan, 

2013). This is useful to get the decomposition of the input matrix. The sliding surface is written as 
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𝑠(𝑡) = 𝛔𝐓𝑇⏟

𝐒

𝐳 = 𝐒𝐳 = [𝐒1 𝐒2] [
𝐳1
𝐳2
] = 𝐒1𝐳1(𝑡) + 𝐒2𝐳2(𝑡) (53) 

where the S1(2n-) and S2 sub-vector of S.  

The switching function s(t) equals zero during the sliding motion. Eq. (53) is then equal to zero. 

 
𝐒1𝐳1(𝑡) + 𝐒2𝐳2(𝑡) = 0 (54) 

The variable z2 is left alone, 

 
𝐳2 = −𝐒2

−1𝐒1𝐳1 (55) 

 Eq. (55) is substituted into the Eq. (50) yields, 

 
�̇�1 = [𝐀11 − 𝐀12𝐒2

−1𝐒1]𝐳1 (56) 

To provide asymptotically stability of the system given by Eq. (56), the eigenvalues of [𝐀11 − 𝐀12𝐒2
−1𝐒1] 

partition must be at the left-half s-plane. The unknown partition 𝐒2
−1𝐒1 can be calculated by employing the 

pole placement or optimal control methods. S2 may be chosen as a non-singular matrix and calculated 

according to S1. The equation below will be employed for the calculation of σ vector 

 𝑠(𝑡) = 𝐒𝐳 = 𝐒𝐓⏟
𝝈

𝒙𝒊𝒔𝒎𝒄 = 𝛔𝒙𝒊𝒔𝒎𝒄 (57) 

When the state variables are not on the sliding surface, there is a need for a reaching rule to drive the state 

variables onto the sliding surface. In Gao and Hung (1993) proposed a reaching law called a constant plus 

proportional rate. 

 
�̇�(𝑡) = −𝜌 ∙ 𝑠𝑖𝑔𝑛(𝑠(𝑡)) − 𝑘 ∙ 𝑠 (58) 

where ρ>0 and k>0. The constant parameter k within the signum function balances the convergence rate during 

the reaching phase and the magnitude of oscillations experienced during the sliding phase. The introduction of 

the proportional component enhances convergence rates for larger sliding variable values, allowing for a 

reduction in the coefficient ρ without compromising the favorable aspects during the reaching mode. 

Conversely, as the sliding surface is approached, the impact of the proportional term diminishes, effectively 

mitigating the potential for increased oscillations during the sliding phase.  

Eq. (58) will equal zero, while the state variables are on the sliding surface. Eq. (47) is substituted into the 

derivative of Eq. (57). The resulting outcome is equated with Eq. (58). The control input uismc is then left alone 

by considering �̃� = 𝐮𝑖𝑠𝑚𝑐 − 𝐮𝑑, and the SMC input rule is obtained as follows. 

 
𝐮𝑖𝑠𝑚𝑐 = 𝐮𝑑 − (𝛔𝐁𝑖𝑠𝑚𝑐)

−1[𝛔(𝑘𝐈 + 𝐀𝑖𝑠𝑚𝑐)�̃�𝑖𝑠𝑚𝑐 + 𝜌 ∙ 𝑠𝑖𝑔𝑛(𝑠)] (59) 

where ud is defined by Eq. (8). 

This subsection discusses the calculation of the S vector according to the minimizing cost function criterion. 

Utkin and Yang (1978) proposed this method as quadratic minimization. It is possible to reach the details 

(Utkin, 1992; Edwards & Spurgeon, 1998). 
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SMC action includes two modes: the first is to bring state variable values onto the switching surface. The 

second mode is to keep all state variables at the sliding surface. Once the second mode is satisfied, the sliding 

surface equation equals zero. Sliding mode motion does not depend on control input and is defined by the 

equation of sliding surface. Eq. (3) is not suited to the sliding motion optimality criterion. Control-independent 

the functional optimality criterion, 

 
𝐽𝑖𝑠𝑚𝑐 = ∫ (�̃�𝑖𝑠𝑚𝑐)

𝑇𝐐𝑖𝑠𝑚𝑐�̃�𝑖𝑠𝑚𝑐𝑑𝑡
𝑡1

𝑡0

 (60) 

It is presumed that the system's state at time t0, x(t0) is a known initial condition and is such that x(t)→0 as 

t→∞. It is needed to be determined that the optimal m-dimensional control system Eq. (50)-(51) with vector 

z2=(S2)-1S1z1 as control and criterion (60) is represented according to (49) transformation. 

 
𝐓𝐐𝑖𝑠𝑚𝑐𝐓

𝑇 = [
𝐐11 𝐐12
𝐐21 𝐐22

] ,   𝐐21 = 𝐐12
𝑇  (61) 

The optimality criterion (60) may then be expressed regarding the T transformation. 

 
𝐽𝑖𝑠𝑚𝑐 = ∫ (𝐳1

𝑇𝐐11𝐳1 + 2𝐳1
𝑇𝐐12𝐳2 + 𝐳2

𝑇𝐐22𝐳2)𝑑𝑡
𝑡1

𝑡0

 (62) 

It is required to reform Eq. (62) in the standard LQR problem as Eq. (3). Thus, it is necessary to eliminate the 

cross term 2(z1)TQ12z2. The last two in Eq. (62) may be regarded as yield. 

 
2𝐳1

𝑇𝐐12𝐳2 + 𝐳2
𝑇𝐐22𝐳2 = (𝐳2 + 𝐐22

−1𝐐21𝐳1)
𝑇𝐐22(𝐳2 + 𝐐22

−1𝐐21𝐳1) − 𝐳1
𝑇𝐐21

𝑇 𝐐22
−1𝐐21𝐳1 (63) 

It is forthright to authenticate that Eq. (62) can be reformed as 

 
𝐽𝑖𝑠𝑚𝑐 = ∫ (𝐳1

𝑇(𝐐11 − 𝐐12𝐐22
−1𝐐21)𝐳1 + (𝐳2 +𝐐22

−1𝐐21𝐳1)
𝑇𝐐22(𝐳2 + 𝐐22

−1𝐐21𝐳1))
∞

𝑡𝑠

𝑑𝑡 (64) 

Define 

 
�́� = 𝐐11 −𝐐12𝐐22

−1𝐐21 (65) 

 

 
𝐯 = 𝐳2 + 𝐐22

−1𝐐21𝐳1 (66) 

Eq. (64) can then be written as 

 
𝐽𝑖𝑠𝑚𝑐 = ∫ (𝐳1

𝑇�́�𝐳1 + 𝐯
𝑇𝐐22𝐯)

∞

𝑡𝑠

 (67) 

Recall the original transformed Eq. (50). Taking z2 alone in Eq. (66) and substituting it into Eq. (50), 

 
�̇�1 = (𝐀11 − 𝐀12𝐐22

−1𝐐21)𝐳1 + 𝐀12𝐯 (68) 

Hence, the problem turns into minimizing the Eq. (67) subject to the system (68). The problem also can be 

interpreted as a standard LQR problem. The positive definiteness of Qismc ensures that Q22>0 so that the pair 

(Aismc, Bismc) is controllable. Thus, matrix Pismc being the unique solution to the matrix Riccati equation, 

 𝐏𝑖𝑠𝑚𝑐(𝐀11 − 𝐀12𝐐22
−1𝐐12

𝑇 ) + (𝐀11 − 𝐀12𝐐22
−1𝐐12

𝑇 )𝑇𝐏𝑖𝑠𝑚𝑐 − 𝐏𝑖𝑠𝑚𝑐𝐀12𝐐22
−1𝐀12

𝑇 𝐏𝑖𝑠𝑚𝑐
+ (𝐐11 − 𝐐12𝐐22

−1𝐐12
𝑇 ) = 0 

(69) 
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The optimal v minimizing Eq. (67) is as follows, 

 
𝐯 = −𝐐22

−1𝐀12
𝑇 𝐏𝑖𝑠𝑚𝑐𝐳1 (70) 

This expression is substituted into (66) 

 
𝐳2 = −𝐐22

−1(𝐀12
𝑇 𝐏𝑖𝑠𝑚𝑐 + 𝐐21)𝐳1 (71) 

Comparing Eq. (71) with (55) yields, 

 
𝐒2
−1𝐒1 = 𝐐22

−1(𝐀12
𝑇 𝐏𝑖𝑠𝑚𝑐 + 𝐐21)     ⟹    𝐒1 = 𝐒2𝐐22

−1(𝐀12
𝑇 𝐏𝑖𝑠𝑚𝑐 +𝐐21) (72) 

The non-singular S2 is chosen arbitrarily, and then S1 is calculated. Finally, matrix S= [S1 S2] is created, and 

the optimal sliding surface is obtained by substituting S into Eq. (57). 

In summary, all calculation step by step is as follows: First, the orthogonal transformation matrix T is 

determined. The regular form of the system equation (47) is determined by Eq. (49)-(51). The sub-matrices 

are determined by Eq. (52). The sub-matrices of the transformed matrix Qismc are determined by Eq. (61). The 

matrix Riccati Eq. (69) concerning Pismc is solved. By considering S2 as an identity matrix, Eq. (72) is solved, 

and S is obtained. The optimal surface vector σ is determined by Eq. (57). Finally, the positive constants k and 

ρ are chosen large enough, and all findings are substituted into Eq. (59). 

3. DC SERVO MACHINE MATHEMATICAL MODEL 

The linear quadratic algorithms discussed in this paper are all implemented in linear systems. DC servo motor 

is one of the prevalent devices used to control a system. The performance of the algorithms can be examined 

by implementing any DC servo motor. Under this heading, the mathematical model of the DC motor is 

discussed. 

DC servo motor consists of two separate partitions. The stator includes field windings. The other partition has 

armature windings. The right sight of Figure 5 presents the armature circuit partition of the DC motor. The 

other side presents the field circuit partition (Krishnan, 2001; Krause et al., 2002). 

Rf

Lf
ef(t)

if(t) Ra La

ea(t)

θ(t)

ꙍ(t)

ia(t)

Jm

eb Bm

τm

 

Figure 5. DC servo motor electromechanical diagram  

Air gap flux Φ is proportional to field current if, 

 
Φ = 𝐾𝑓𝑑𝑖𝑓 (73) 

where Kfd is the constant between field current, if, and gap flux Φ, namely field coil constant. The rotor shaft 

generates τm torque, proportional to the product of air gap flux and the armature current. 

 
𝜏𝑚(𝑡) = Φ𝐾𝑎𝑚𝑖𝑎(𝑡) (74) 
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where Kam is the armature coil constant. Substituting (73) into (74) yields 

 
𝜏𝑚(𝑡) = 𝐾𝑎𝑖𝑎(𝑡) (75) 

where the overall armature constant Ka is 

 
𝐾𝑎 = 𝐾𝑓𝑑𝐾𝑎𝑚𝑖𝑓 (76) 

The armature behaves like a generator which produces a back electromotive force eb(t) while the armature is 

rotating. It is also proportional to the shaft angular velocity ω(t). 

 
𝑒𝑏(𝑡) = 𝐾𝑏

𝑑𝜃(𝑡)

𝑑𝑡
= 𝐾𝑏𝜔(𝑡) (77) 

where Kb is back electromotive force constant. There is a potential difference between the armature windings 

leads. 

 
𝑒𝑎(𝑡) − 𝑒𝑏(𝑡) = 𝐿𝑎

𝑑𝑖𝑎
𝑑𝑡
+ 𝑅𝑎𝑖𝑎 (78) 

where ea(t) is the applied armature voltage, Ra is the electrical resistance of the armature circuit, ia the armature 

current, and La is the armature circuit's electrical inductance. Substituting Eq. (77) into (78) and taking the 

derivative of armature current alone yields 

 𝑑𝑖𝑎(𝑡)

𝑑𝑡
= −

𝐾𝑏
𝐿𝑎
𝜔(𝑡) −

𝑅𝑎
𝐿𝑎
𝑖𝑎(𝑡) +

1

𝐿𝑎
𝑒𝑎(𝑡) (79) 

The rotor partition produces the mechanical movement of the motor. The algebraic sum of all torques, τ, equals 

the product of inertia torque Jm and angular acceleration α. 

 
∑𝜏 = 𝐽𝑚 ∝ (80) 

The total torque consists of electrical torque, friction torque (proportional to angular velocity and opposite to 

electrical torque), and load torque (opposite in direction). Thus, Eq. (80) is expressed again as, 

 
𝜏𝑚 − 𝜏𝐿 − 𝐵𝑚𝜔(𝑡) = 𝐽𝑚 ∝  (81) 

where τL is load torque, Bm is motor viscous friction constant. Substituting Eq. (75) into Eq. (81) and isolating 

the angular acceleration alone concludes as follows, 

 
∝ (𝑡) = −

𝐵𝑚
𝐽𝑚
𝜔(𝑡) +

𝐾𝑎
𝐽𝑚
𝑖𝑎(𝑡) −

1

𝐽𝑚
𝜏𝐿 (82) 

There is a differential relationship between angular acceleration α, angular velocity ω, and angular position θ 

as follows, 

 
𝛼(𝑡) =

𝑑2

𝑑𝑡2
𝜃(𝑡), 𝜔(𝑡) =

𝑑

𝑑𝑡
𝜃(𝑡) (83) 

The following equation is obtained by substituting Eq. (83) into Eq. (82).  
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 𝑑2

𝑑𝑡2
𝜃(𝑡) =

𝑑

𝑑𝑡
𝜔(𝑡) = −

𝐵𝑚
𝐽𝑚
𝜔(𝑡) +

𝐾𝑎
𝐽𝑚
𝑖𝑎(𝑡) −

1

𝐽𝑚
𝜏𝐿 (84) 

The state space model can be created by combining Eq. (83), (84), and Eq. (79). 

 

𝑑

𝑑𝑡
[

𝜃(𝑡)

𝜔(𝑡)

𝑖𝑎(𝑡)
] =

[
 
 
 
 
0 1 0

0 −
𝐵𝑚
𝐽𝑚

𝐾𝑎
𝐽𝑚

0 −
𝐾𝑏
𝐿𝑎

−
𝑅𝑎
𝐿𝑎 ]
 
 
 
 

[

𝜃(𝑡)

𝜔(𝑡)

𝑖𝑎(𝑡)
] +

[
 
 
 
 
0 0

−
1

𝐽𝑚
0

0
1

𝐿𝑎]
 
 
 
 

[
𝜏𝐿
𝑒𝑎
] (85) 

The output equation of the system, 

 

𝐲 = [1 0 0] [

𝜃(𝑡)

𝜔(𝑡)

𝑖𝑎(𝑡)
] (86) 

The system matrices are as follows, 

 

𝐱 = [

𝜃(𝑡)

𝜔(𝑡)

𝑖𝑎(𝑡)
] , 𝐀 =

[
 
 
 
 
0 1 0

0 −
𝐵𝑚
𝐽𝑚

𝐾𝑎
𝐽𝑚

0 −
𝐾𝑏
𝐿𝑎

−
𝑅𝑎
𝐿𝑎 ]
 
 
 
 

, 𝐁 =

[
 
 
 
 
0 0

−
1

𝐽𝑚
0

0
1

𝐿𝑎]
 
 
 
 

, 𝐮 = [
𝜏𝐿
𝑒𝑎
] , 𝐂 = [1 0 0] (87) 

The load torque is not an ordinary input; it may be considered a disturbance. Thus, the matrix B and vector u 

change as follows. 

 

𝐁 = [

0
0
1

𝐿𝑎

] , 𝐮 = 𝑒𝑎 (88) 

4. COMPUTATIONAL FINDINGS 

This section presents numerical results by applying the control strategies discussed in the previous subsections 

to the DC motor's mathematical model. 

4.1. Motor Model and Parameter Rates 

The DC motor parameter rates, which are used to examine the performance of the LQR-based algorithms in 

the section above, are as follows: 

Voltage supply=240 V,   Rated current=10 A,  Bm=0.002953 N·m·s,  Jm=0.02215 kg·m2, 

Ka=1.011 N·m/A,  Kb=1.011 V/(rad/s),  La=0.028 H,   Ra=2.581 Ω 

According to the parameter rates above, the DC motor system matrices are as follows, 

 
𝐀 = [

0 1 0
0 −0.1333 45.6433
0 −36.1071 −92.1786

] , 𝐁 = [
0
0

35.7143
] , 𝐂 = [1 0 0] (89) 

4.2. LQR Controller Calculations 

To obtain optimal state feedback gain matrix, using the matrices and vector in Eq. (89), the Eq. (6) and Eq. 

(14) are calculated respectively. The state and input weight matrices are chosen as Q=diag([1 1 1]) and R=1. 

The solutions of Eq. (6) and Eq. (14) are as Eq. (90) and (91), respectively. 
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𝐏𝒍𝒒𝒓 = [

1.4723 0.0651 0.0280
0.0651 0.0375 0.0127
0.028 0.0127 0.0109

] (90) 

 

 
𝐊𝒍𝒒𝒓 = [1 0.4526 0.3886] (91) 

Eq. (91) is substituted into Figure 2, and the linear quadratic state feedback application works. However, the 

reference desired input vector xd must be calculated by considering the derivative of state variables in Eq. (85) 

equals zero. In addition, the load torque is deemed a disturbance, so it is considered zero, too. 

 
𝐱𝑑 = [

𝜃𝑑
0
0
] (92) 

θd is the desired angular position. 

4.3. LQR With Integral Control Calculations 

The optimal linear quadratic gain matrix is obtained by making extended matrices in Eq. (23) and solving Eq. 

(26)-(27), respectively. The state and input weight matrices are decided upon as Qlqri=diag([1 1 1 1]) and R=1. 

The extended matrices are as follows, 

 

𝐀𝑙𝑞𝑟𝑖 = [

0 1 0 0
0 −0.13 45.65 0
0 −36.1071 −92.1786 0
−1 0 0 0

] , 𝐁𝑙𝑞𝑟𝑖 = [

0
0

35.7143
0

] (93) 

The solutions of Eq. (26) and Eq. (27) are as follows. 

 

𝐏𝑙𝑞𝑟𝑖 = [

2.9797 0.1309 0.0562 −1.5164
0.1309 0.0404 0.0139 −0.0655
0.0562 0.0139 0.0114 −0.0280
−1.5164 −0.0655 −0.0280 2.0082

]  (94) 

 

 
𝐊𝑥 = [2.0082 0.4967 0.4075], 𝐊𝑖𝑛 = −1 (95) 

Kin and Kx are substituted into Figure 3, and LQR with integral action can be realized. 

4.4. Optimal PID Controller Calculations 

The designing PID controller consists of calculating the controller parameters so that the system behaves as 

desired. The desired behavior may require an optimized control input or settling time optimization. This 

subsection proposes designing an optimal PID controller equivalent to an optimal state feedback controller. 

The optimal PID controller algorithm works based on the sequential calculation of equations Eq. (42)-(45). 

The state and input weight matrices are selected to serve as Q̅=diag([1 1 1 1]) and R=1. The output of the 

algorithm allows the optimal PID controller to gain matrices. According to the system matrices (89), the 

algorithm's output gives the controller gains as Kp=2.0082, Ki=1, and Kd=0.4967. This output is substituted 

into the block diagram in Figure 4, and the optimal PID algorithm works.  

4.5 Optimal Sliding Mode 

The whole solution algorithm is discussed in the final paragraph in section 0. The state and input weight 

matrices are utilized due to their purpose as Qismc=diag([1 1 1 1 1 1]) and R=1. According to the suggested 

solution, all calculations give the following results: 
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𝐏𝑖𝑠𝑚𝑐 =

[
 
 
 
 
2 803 0 803 −112
803 −5277 0 −5170 −36650
0 0 0 0 0
803 −517 0 −5063 −36665
−112 −3.665 0 −3.6665 5106 ]

 
 
 
 

· 104 (96) 

 

 
𝐒 = [−1.0407 2.0217 −1 0 0 0] (97) 

 

 
𝛔 = [−2.0217 −1.0407 −1 −1 0 0] (98) 

Eq. (98) is substituted into Eq. (59), and the control signal is applied to the system. k and ρ constants should 

be selected large enough. They are selected as 50 and 5, respectively. 

5. SIMULATION RESULTS 

The illustrative results are related to the optimal control algorithms presented in previous sections. 

Figure 6 demonstrates the step response of the DC motor for which the parameters are presented in Section 0. 

The armature voltage is chosen as 240 V as the step function input. The field windings are supplied with 300 

V to provide magnetization. The field current is measured as 1.0665 A. Figure 6a shows the angular 

replacement of the DC motor shaft. It also seems it does not have a settling time of angular position. Figure 6b 

illustrates that the angular speed of the DC motor reaches the stable speed of 234.3 rad/s in 0.2 seconds. 

The system appears unstable when the DC motor is considered a system with armature voltage as the input 

and angular position as the output. It is also insensitive to disturbances and load torque. Elimination of the lack 

of robustness, the controllers are required to be used. 

Figure 7 demonstrates the simulation result of the whole DC motor control system. The reference angular 

speed is chosen as θd=π/2 radian and applied to the control system as a step function beginning at the end of 

the first second. Figure 7a shows that the optimal PID controller and ISMC respond with overshoot. However, 

the other controllers have responses without overshoot. All angular position responses settle in about five 

seconds. The load torque equals zero at the beginning. As seen in Figure 7e, the load torque is applied to the 

system as a disturbance input TL=0.5 Nm at the 15th second—all optimal control algorithms respond to the load 

torque disturbance input except the LQR. The optimal control algorithms' robustness is caused by the integral 

term used in LQRI, PID, and ISMC. LQR seems to have no robustness against load disturbance, resulting in a 

collapsing position control response after 15 seconds. However, the other controllers have robust responses, 

so their responses settle in about six seconds with no steady-state error. Figure 7b depicts the angular velocity 

derivative of the angular position. It reaches zero speed within six seconds. Figure 7c shows the armature 

current, which has a settling time of less than three seconds. Figure 7d illustrates the system signal's control 

signal. It seems the most reactive behavior belongs to the ISMC. It has the chattering phenomena by its nature. 

Once the load torque is applied to the system, all algorithms exhibit nearly identical behaviors except the LQR. 

The variations in the values of cost functions within the first 15 seconds are shown in Figure 8. The cost 

function associated with the PID controller exhibits a notably faster increase than the others. Over time, the 

cost function that increases at the slowest rate is attributed to the LQR controller. 
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(a) 

 
(b) 

 
(c) 

Figure 6. DC motor step response of the state variables when the ea=240 V and ef=300 V. a) angular 

position b) angular speed c) armature current 

6. CONCLUSIONS 

The study explicates some optimal control techniques and depicts their performances by implementing the DC 

motor for position control. LQR-based control does not perform as robustly as other controllers. When the load 

torque is applied as a disturbance, the ISMC behaves robustly for angular position control. A single LQR-

based controller does not seem as robust and sufficient as it can eliminate the disturbance-based error. 

However, LQR with an integral action controller eliminates the error. Besides, the other control algorithms 

seem to possess similar robustness. 

This study's comparative analysis is crucial in selecting the robust and optimal controller. The LQR control 

includes the least number of terms, but it does not have enough robustness. LQRI action contains an extra state 

variable term compared to the single LQR. The optimal PID controller needs to have an extra one-state 

variable. The ISMC contains a state variable two times more than the original system, but the robustness seems 

acceptable. 

The DC motor model, which has three state variables, is used for examining the algorithms. LQR and ISMC 

controllers need all system state variables to be measurable or observable. However, the optimal PID controller 

needs only output to be measurable. This situation necessitates obtaining all state variables through estimation 

when LQR and SMC-based algorithms are employed. This study considers all DC motor state variables 

measurable or observable. At the same time, LQR and SMC-based algorithms are employed. 

The optimal algorithms are designed for a linear system. Employing the optimal algorithms with observers for 

nonlinear systems and time-delayed systems can be a future work. Luenberger filter or Kalman filter are well-

known observers for obtaining the unmeasurable state variables of any system. Using optimal control 

algorithms with observers will provide more detailed information about their usability. 

In applications requiring time optimization, the power applied to the system input does not need to be limited. 

Optimal control will be helpful, especially in systems requiring energy saving and power and mechanical 

energy applications. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 7. The step response simulation results in DC motor control system a) angular position b) angular 

speed c) armature current d) control input signal e) load torque 
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Figure 8. The values of the cost functions according to time 
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