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Abstract  

In this article, a comprehensive review of the integration of Unmanned Aerial Vehicles (UAVs) into shared 

airspace is presented. By applying a systematic review methodology, the study clarifies the main challenges, 

problems, and possible fixes related to safety, coordination, and regulatory frameworks. The results 

demonstrate the critical role that several elements play in supporting the safety of UAV integration. These 

elements include multi-layered airspace models, careful path planning, secure communication networks, 

Conflict Detection and Resolution (CDR) strategies, and strong regulations. The paper explores the potential 

of Human-in-the-loop Reinforcement Learning (HRL) and Reinforcement Learning (RL) algorithms to train 

UAVs for maneuvering through complex terrain and adapting to changing circumstances. The study's 

conclusions highlight the importance of ongoing research projects, stakeholder cooperation and continuous 

support for technology developments-all of which are necessary to ensure the safe and orderly integration of 

UAVs into airspace. 
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İnsansız Hava Araçlarının Hava Sahasına Entegrasyonu: Sistematik Bir 

İnceleme 

Öz 

Bu makalede, İnsansız Hava Araçlarının (İHA) ortak hava sahasına entegrasyonu kapsamlı bir şekilde 

incelenmektedir. Sistematik inceleme metodolojisi kullanılarak çalışmada yasal düzenlemeler, uçuş emniyeti 

ve koordinasyon ile ilgili temel zorlukları, sorunları ve olası çözümleri ortaya koymaktadır. Bulgular çok 

katmanlı hava sahası modelleri, dikkatli rota planlama, güvenli iletişim ağları, çatışma tespiti ve çözümü 

stratejileri ile yapısal olarak güçlendirilmiş düzenlemeler dahil olmak üzere çeşitli unsurların İHA 

entegrasyonunda kritik bir rol oynadığını göstermektedir. Ayrıca İHA'ların karmaşık hava sahalarında ve 

değişken koşullara uyum sağlamalarını desteklemek adına önerilen çözümleri inceleyerek Reinforcement 

Learning (RL) ve Human-in-the-loop Reinforcement Learning (HRL) algoritmalarının potansiyeli ortaya 

konmuştur. Çalışmanın sonuçları, İHA'ların hava sahasına emniyetli ve düzenli bir şekilde entegre edilmesi 

için araştırma projelerinin sürekli olarak yürütülmesinin, paydaş işbirliğinin ve teknoloji geliştirmelerine 

kararlı desteğin önemini vurgulamaktadır. 
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INTRODUCTION 

The rapid evolution of Unmanned Aerial Vehicles (UAVs) has been driven by technological 

advancements in control, miniaturization, and computerization, resulting in the emergence 

of secure, lightweight, robust, and cost-efficient UAVs (Mohsan et al., 2023). This progress 

has led to a substantial growth in the drone industry, with UAVs finding applications in 

various sectors (Sharma et al., 2022). UAVs are now used for purposes such as wireless 

coverage, military operations, agriculture, medical services, environmental monitoring, 

climate research, and delivery and transportation (Adoni et al., 2023; Al-Shareeda et al., 

2023). By 2035, the global market for UAVs was projected to range between $74 billion and 

$641 billion, driven by current applications and the potential growth of cargo and air taxi 

uses (Wiedemann et al., 2023).  

The integration of UAVs into traditional Air Traffic Management (ATM), primarily 

designed for manned aircraft, poses a significant challenge (Tuncal & Uslu, 2021). This 

integration necessitates the development of new procedures, technologies, and regulations 

to ensure safe and efficient UAV operations. Moreover, the establishment of a robust 

framework for managing UAV traffic in lower airspace, referred to as Unmanned Traffic 

Management (UTM), is imperative to regulate the escalating number of UAVs effectively 

(Davies et al., 2021; Volkert et al., 2019). 

The projected increase in delivery drones and the expected growth of the commercial small 

non-model UAVs worldwide have critical implications, challenges, and opportunities for 

both ATM and UTM. The rising use of drones and air-taxis will lead to more congested 

airspace, necessitating the implementation of UTM initiatives to ensure safe and efficient 

operations (Chin et al., 2021). Challenges related to integrating UAVs into the UTM concept 

within the dynamic and congested airspace alongside manned aircraft include the absence of 

an air navigation or air traffic control system, the risk of collisions between UAVs, the 

possibility of unmanaged UAVs without centralized control, and potential threats to aircraft 

and aviation infrastructure (Bolz & Nowacki, 2023; Rithic & Arulmozhi, 2023; Shan et al., 

2023). To address these challenges, the integration of UTM with existing ATM is necessary. 

This integration allows for seamless coordination and communication between manned 

aircraft and UAVs, ensuring their safe coexistence in shared airspace (Geister & Korn, 2013; 

Kainrath et al., 2022; Raju et al., 2018). Integrating UTM with ATM is crucial for the safe 

and efficient management of both manned and unmanned aircraft in shared airspace, 

requiring the development of new procedures, technologies, and regulations to ensure safe 

and efficient UAV operations while accommodating the growing number of UAVs (Barnhart 

et al., 2021; Patrikar et al., 2022). 

This paper aims to address a significant gap in the field of integrating UAVs into shared 

airspace. While existing research delves into specific aspects of this intricate challenge, a 

comprehensive framework that covers essential components and potential solutions is still 

missing. This study addresses a crucial gap by offering a systematic review of essential 

aspects concerning the integration of UAVs into airspace, training UAVs for dynamic 

environments, handling UAV emergencies and crashes, and ensuring the security of UAV 

communication and data transmission. By reviewing existing literature, pointing out 
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limitations, and suggesting practical solutions, this work intends to help policymakers, 

researchers, and entrepreneurs navigate the complexities of UAV integration. However, the 

limitations of our focus, primarily on technological aspects, are acknowledged, and further 

exploration of the broader socio-economic and legal implications is encouraged. It is 

strongly believed that the transformative potential of UAVs will be unlocked and their 

smooth integration into our skies ensured through collaborative efforts involving various 

stakeholders, along with ongoing research and technological innovation. 

1. METHODS AND MATERIALS 

The methodology used in this study is a systematic review approach aimed at addressing the 

research questions related to UAV technology and its impact. This approach follows a 

systematic review process, which includes the formulation of research questions, the 

selection of appropriate databases, a clearly defined search strategy, explicit inclusion and 

exclusion criteria, rigorous quality assessment, and a comprehensive screening process 

(Ahn, & Kang, 2018; Newman, & Gough,2020). This systematic approach ensures the 

reliability and relevance of the literature selected for the review, facilitating a thorough 

examination of the challenges and solutions in UTM. Ultimately, it contributes to the safe 

and efficient coexistence of unmanned and manned aviation in shared airspace. The 

systematic review process was structured as follows. 

1.1. Research Questions and Selection Criteria 

To guide the literature review process, a set of research questions (Q1-Q4) was formulated, 

as presented in Table 1. These questions were carefully designed to investigate various 

aspects of UAV technology and its integration into shared airspace.  

Table 1. Key Themes and Research Questions 

Key Themes  Research Questions 

Integration of UAVs into Airspace How can the integration of UAVs into shared airspace be 

optimized? 

Training UAVs for Dynamic 
Environments 

How can UAVs be trained for safe navigation in complex 
environments? 

Handling UAV Emergencies and 

Crashes 

How can UAV operators and technology be better equipped to 

handle in-flight emergencies and crashes? 

Security of UAV Communication and 

Data Transmission 

How can UAV communication systems be optimized for 

maximum security and data transmission efficiency? 

The selection of research questions in the study is logically based on the pivotal role they 

play in addressing key challenges related to UAV integration into shared airspace, focusing 

particularly on UTM and ATM aspects. 

"Q1. How can the integration of UAVs into shared airspace be optimized?" is a fundamental 

question as it delves into the heart of UTM and ATM. Optimizing the integration of UAVs 

is crucial for ensuring the safety, efficiency, and seamless coexistence of UAVs with manned 

aircraft in shared airspace. It involves the development of conflict detection and resolution 

methods, airspace models, regulations, and communication networks, all of which are central 

to the effective management of air traffic in a mixed environment. 

"Q2. How can UAVs be trained for safe navigation in complex environments?" is essential 

for the safe integration of UAVs into shared airspace. Training UAVs for complex 
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environments involves the development of navigation and obstacle avoidance systems, 

which are integral to UTM and ATM. It is imperative for UAVs to adaptively respond to 

obstacles and changes in mission objectives to prevent accidents or incidents, ensuring the 

safety of both manned and unmanned aircraft. 

"Q3. How can UAV operators and technology be better equipped to handle in-flight 

emergencies and crashes?" addresses the need for preparedness in handling emergencies, 

which is a vital aspect of UTM. UAV operators and technology must be well-equipped to 

respond to in-flight emergencies to ensure safe operations. Handling such situations plays a 

key role in enhancing the overall safety and risk management within shared airspace. 

"Q4. How can UAV communication systems be optimized for maximum security and data 

transmission efficiency?" is paramount in the context of UTM and ATM. Communication 

systems are the backbone of air traffic management, and ensuring their security and 

efficiency is central to managing UAV operations in shared airspace. Optimization of 

communication systems contributes to data exchange, tracking, and coordination of both 

UAVs and manned aircraft. 

In summary, these four questions have been selected for the study because they collectively 

address core issues related to UTM and ATM, playing a pivotal role in the integration of 

UAVs into shared airspace. The logical progression from optimizing integration, training 

UAVs, equipping operators, and optimizing communication systems ensures a 

comprehensive examination of the challenges and solutions in UTM, ultimately contributing 

to the safe and efficient coexistence of unmanned and manned aviation. 

1.2. Database and Search Strategy 

Database Selection: Established academic databases, including IEEE, Science Direct, 

EBSCO, and Web of Science, which are renowned sources for scholarly research, were 

systematically explored to identify relevant research. 

Systematic Keyword-Based Search Method: A systematic keyword-based search approach 

was employed to identify pertinent publications. Specific keywords, as outlined in Table 2, 

were employed, focusing on UAVs. These keywords were carefully chosen to facilitate a 

comprehensive examination of all facets of UAV technology and its impact on shared 

airspace. 
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Table 2. Research Keywords 

UAV 

UAV Collision Avoidance 

UAV Collision Detection 

UAV Communication 

UAV Conflict Detection 

UAV Conflict Management 

UAV Control 

UAV Data Security 

UAV Deployment 

UAV Emergency Landing System 

UAV Environment 

UAV Flight 

UAV Incidents 

UAV Integration 

UAV Networks 

UAV Obstacle Avoidance 

UAV Path Planning 

UAV Regulations 

UAV Restrictions 

UAV Safety 

UAV Security 

UAV Navigation 

UAV Technology 

UAV Traffic 

UAV Traffic Management 

UAV Trajectory 

UAV Trajectory Planning 

Unmanned Aerial Vehicles 

Unmanned Traffic Management 

UTM 

1.3. Inclusion and Exclusion Criteria 

Inclusion Criteria: While formulating the inclusion criteria, our objective was to classify 

research papers closely relevant to UAV technology and its various dimensions. 

Additionally, papers that provided insightful analyses of related fields, such as autonomous 

systems, aviation, and communication, were considered for inclusion if they were deemed 

pertinent to the core study issues. 

Duplicates and Quality Assessment: To ensure the quality and originality of the selected 

literature, a meticulous process was undertaken to identify and eliminate duplicate papers 

found in multiple databases. Subsequently, the selected publications underwent a rigorous 

assessment for both quality and significance. The final dataset was refined to exclude papers 

that did not conform to established scientific standards or lacked a peer-review process, thus 

ensuring the precision and consistency of the data gathered for this literature review. 

1.4. Screening of Papers 

Title Screening: In the initial phase of screening, papers were assessed based solely on their 

titles to determine their alignment with the predefined criteria. The primary objective of this 

phase was to identify papers that did not directly address the research questions. 

Abstract Review: In an additional screening step, abstracts of papers for which the relevance 

could not be ascertained from the title alone were carefully reviewed. This step ensured that 

the selected papers were specifically focused on addressing the research issues. 

1.5. Data Analysis 

After completing the screening process, an extensive review and synthesis were conducted 

on the chosen papers. To offer comprehensive analyses of the research questions, it was 

necessary to gather and integrate data from the selected publications. The conclusions 

presented in this study are drawn from the literature review, which is founded upon the 

previously analyzed data. 

2. RESULTS 

Several critical aspects are covered in the findings of the systematic review. These 

encompass the examination of procedural and regulatory necessities for seamless UAV 
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integration into shared airspace, with an emphasis on airspace management and compliance 

frameworks. Additionally, methods to train UAVs for adaptive navigation within dynamic 

environments are explored, along with protocols for managing emergencies and unexpected 

failures during UAV operations. Security measures for safeguarding UAV communication 

channels and data transmission against potential vulnerabilities or threats are also 

investigated. 

2.1. Integration of UAVs into Airspace 

UAVs have emerged as a transformative technology with vast potential in various industries, 

but their integration into shared airspace alongside manned aircraft poses complex 

challenges. As these autonomous systems proliferate, addressing concerns related to safety, 

coordination, and regulations becomes pivotal. Here are some of the key strategies and 

technologies that can facilitate the integration of UAVs into the airspace: 

CDR methods: 

An efficient and effective CDR system for UAVs can be designed using various methods 

proposed in the literature. One approach involves utilizing a non-rigid hierarchical discrete 

grid structure and coding method for spatial three-dimensional grids, which optimizes the 

identification ability of grid vertices, edges, and faces. This optimization results in improved 

conflict detection and path planning methods (Xue et al., 2023). Another method 

encompasses the use of a Multi-Agent Deep Deterministic Policy Gradient Algorithm 

(MADDPG) to train UAVs for path planning tasks under conditions of incomplete 

information. This approach achieves fast and accurate dynamic path planning for multiple 

UAVs (X. Wu et al., 2022). Furthermore, a conflict detection algorithm that considers the 

immediate trajectory as a straight line can be applied with nonlinear mobilities, providing 

acceptable performance in terms of false and missed alarms (Isufaj et al., 2022). In addition, 

a Multi-Agent Reinforcement Learning (MARL) approach based on graph neural networks 

can be used to model multi-UAV conflict resolution, allowing cooperative agents to 

communicate and generate resolution maneuvers (Yang et al., 2021). CDR methods are 

essential for solving conflicts, such as possible collisions, between UAVs of different service 

providers in shared airspace. State-of-the-art algorithms, such as ORCA, have been adapted 

for UAV operations to address practical considerations, including navigation inaccuracies, 

communication overhead, and flight phases (Ho et al., 2018a; 2018b). 

Rule-based conflict management (RBCM): 

RBCM plays a crucial role in resolving conflicts and ensuring safe UAV operations within 

shared airspace. This approach involves applying deconfliction methods sequentially based 

on predefined rules. The first stage of RBCM occurs during the generation of flight plans, 

where potential conflicts are identified and avoided as part of a strategic deconfliction 

process (Alharbi et al., 2020). The second stage, known as pre-tactical deconfliction, 

addresses conflicts by introducing ground delays to the UAV, effectively resolving issues 

(Acevedo et al., 2020). In the third stage, tactical deconfliction is employed, and UAVs 

temporarily hover or loiter in the last waypoint before the conflict area until the conflict time 

window elapses (Radanovic et al., 2019). This rule-based strategy, which differs from 
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existing approaches, emphasizes the sequential application of deconfliction methods (Ho et 

al., 2018a). The design of this approach incorporates realistic airspace constraints and 

considers potential airspace modernization concepts (Isufaj et al., 2022). 

Multilayer low-altitude airspace models: 

Theoretical models of airspace, depicted as intricate multilayer networks comprising nodes 

and airways, offer valuable insights for grappling with the intricate challenge of UTM (Labib 

et al., 2019a). In the pursuit of designing a multilayer model tailored to low-altitude airspace 

for UAVs, the literature presents various approaches. One method entail dividing the 

airspace into distinct air corridors that safely circumvent buildings and obstacles. This is 

accomplished by mapping structures using USGS Lidar data and simulating the coordination 

of UAV systems as perfect fluid flow, complete with streamlines produced by solving the 

method known as the Laplace partial differential equation (El Asslouj et al., 2023). An 

alternative approach involves representing airspace as a weighted multilayer network, 

incorporating nodes and airways. This framework facilitates the abstract representation of 

UAV traffic and proves to be invaluable for conducting experimental simulations and 

validation (Labib et al., 2019b; Shrestha et al., 2022). Through the integration of these 

distinct methodologies, the development of a comprehensive multilayer low-altitude 

airspace model tailored to UAVs becomes feasible. Such a model holds the potential to 

significantly contribute to the secure and efficient administration of UAV traffic. 

Path planning schemes: 

Efficient pre-flight mission planning techniques and collision-avoidance algorithms are 

instrumental in establishing conflict-free flight paths for UAVs prior to their missions. 

Automating the path planning process, specifically tailored for collision avoidance, 

contributes significantly to ensuring both efficiency and safety in flight paths (Lamba et al., 

2021). Path planning strategies for UAVs encompass a range of techniques and algorithms. 

One approach involves the utilization of advanced artificial intelligence techniques, notably 

RL, to enable UAV navigation in unstructured environments (Z. Liu et al., 2023). An 

alternative approach combines clothoid curves and graph theory to optimize trajectory 

planning for fixed-wing UAV formations in order to prevent collisions (Chronis et al., 2023). 

Furthermore, the application of genetic algorithms serves to compute the most efficient path 

distribution schemes, enhancing material distribution efficiency in critical scenarios (Blasi 

et al., 2023). Real-time conflict detection and intelligent resolution methods, including the 

multi-agent deep deterministic policy gradient algorithm, offer dynamic path planning 

solutions for multiple UAVs (Xue et al., 2023). Moreover, an integrated air-ground 

collaborative unmanned system path planning framework is a viable solution, wherein 

UAVs play a pivotal role in path planning for ground-based Unmanned Ground Vehicles 

(UGVs), particularly in search and rescue missions (Y. Sun et al., 2022). 

Secure and reliable communication networks: 

Establishing a secure and reliable communication network is paramount to effectively utilize 

hundreds or even thousands of UAVs simultaneously. Traditional satellite-based UAV 

communication systems exhibit limitations, including slow data transmission links, even 
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when dealing with only a small drone fleet. Overcoming these constraints can be achieved 

through the strategy of local data storage on each individual drone during its mission, 

subsequently consolidating the collected intelligence upon its return (Bian et al., 2013). 

Various approaches have been proposed in the literature to design a secure and reliable 

communication network for UAVs. One approach center on the deployment of UAV relay 

networks, employing Q-learning algorithms to minimize the number of nodes and ensure 

communication reliability (W. Wang et al., 2023). Another approach addresses collision 

avoidance during UAV flight by breaking down reliable UAV services into sub-problems 

and leveraging interpretable artificial intelligence frameworks for transparent and 

trustworthy decision-making (Quan et al., 2023). Additionally, the design of secure 

Integrated Sensing and Communication (ISAC) systems for UAVs entails tasks such as 

tracking and predicting the location of legitimate users, formulating trajectory design 

problems, and developing efficient iterative algorithms for optimal solutions (J. Wu et al., 

2023). 

Regulations and guidelines: 

Regulations and guidelines governing UAV operations, including flight restrictions in 

sensitive areas and safety requirements, should be seamlessly integrated into existing 

aviation regulations. This integration is crucial to ensure uniformity and safety within shared 

airspace (Çınar&Tuncal, 2023; Ho, 2018a; 2018b). Designing UAV regulations and 

guidelines necessitates a tailored approach, accounting for specific applications, 

measurement objectives, and an assessment of measurement uncertainty (Balestrieri et al., 

2021). It is imperative to confront critical challenges, including privacy, safety, security, 

public inconvenience, and trespassing. Comparing these regulations against predefined 

criteria is essential to identify any potential shortcomings (McTegg et al., 2022). 

Additionally, the formulation of guidance laws, based on robust feedback linearization 

principles, can ensure the autonomous navigation of UAVs towards predetermined 

waypoints, even in the presence of external disturbances like wind gusts (Y.Y. Chen et al., 

2014). The development of comprehensive national legislation becomes paramount, 

particularly in distinguishing between the recreational and commercial utilization of UAVs 

and attributing responsibility to the pilot for any accidents or incidents (Cracknell, 2017). 

Aligning UAV regulations with a country's specific needs and applications is fundamental 

in facilitating the effective use of UAVs and promoting overall progress (Shrestha et al., 

2019). 

Trajectory coordination: 

Equipping UAVs with decision capabilities to update their trajectories (4D contracts) when 

facing unpredictable events or when priority trajectories are added to the airspace can help 

improve coordination and deconfliction into shared airspace (Picard, 2022). Trajectory 

coordination for UAVs can be designed by employing multiple UAVs coordinated by a base 

station to help ground users offload their sensing data (Gong et al.,2023). The trajectory 

planning aims to collect all ground users' data, while the network formation optimizes the 

multi-hop UAV network topology to minimize energy consumption and transmission delay 

(J. Xu et al., 2022; Shi et al., 2022).  
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In conclusion, the successful integration of UAVs into shared airspace requires a 

multifaceted approach that encompasses conflict detection and resolution methods, rule-

based conflict management, the development of multilayer low-altitude airspace models, 

advanced path planning schemes, secure communication networks, and robust regulations 

and guidelines. Furthermore, trajectory coordination mechanisms are crucial in enhancing 

coordination and deconfliction among UAVs. By leveraging these strategies and 

technologies, we can ensure that UAV operations not only coexist safely with manned 

aircraft but also contribute to the growth of industries and applications that benefit from the 

use of UAVs. As the UAV market continues to evolve, these integrated approaches are 

essential for optimizing their integration into shared airspace. 

2.2. Training UAVs for Dynamic Environments 

Training UAVs to navigate complex, dynamic environments and dynamically adjust their 

flight trajectories when confronted with unforeseen obstacles or alterations in mission 

objectives can be accomplished through a range of methodologies. These strategies empower 

UAVs to effectively respond to unexpected challenges or shifts in their mission goals, 

thereby enhancing their overall performance and safety within intricate and ever-changing 

environments. Here are some of the approaches that have been explored: 

RL algorithms: 

RL algorithms, including Deep Q Learning, Actor-Critic (AC), and Advantaged Actor-Critic 

(A2C), have found applications in training UAVs for automatic obstacle avoidance and the 

optimization of avoidance decision-making models in complex scenarios (Han et al., 2019; 

Zhang et al., 2023b). These RL algorithms employ modular learning, where intricate tasks 

are decomposed into simpler components, allowing individual learning before 

interconnecting them and safe navigation and avoidance of dynamic obstacles (Z. Xu et al., 

2022). UAVs can be trained using Deep Reinforcement Learning (DRL) algorithms to 

autonomously adapt their flight trajectories in complex environments and in response to 

changes in mission objectives (Ye et al., 2023). This approach accelerates learning and 

facilitates the transfer of information between modules (Choi et al., 2023). 

Combining RL with Multi-Objective Evolutionary Algorithms (MOEAs): 

The RL and MOEAs has emerged as a promising strategy for enhancing autonomous UAV 

navigation in large-scale complex environments (An et al., 2023). This integration seeks to 

generate a diverse set of non-dominating parameters for the reward function, ultimately 

leading to versatile decision-making preferences, improved convergence, and enhanced 

performance. RL algorithms have been tailored to combine with multi-objective 

evolutionary algorithms for UAV applications. One approach involves the utilization of a 

decentralized partially observable Markov decision process (Dec-POMDP) model and 

multi-agent RL, specifically employing a parametrized deep Q-network (P-DQN) for the 

action space. The QMIX framework aggregates local critics of each UAV, contributing to 

an effective combination (Yin, & Yu, 2021). Another avenue of exploration is the 

amalgamation of evolutionary strategies with the off-policy DRL algorithm TD3. This 

innovative approach incorporates a multi-buffer system to enable unhindered exploration in 
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the policy search space, contributing to the effective convergence of algorithms (Altin, 2020; 

Callaghan, 2023). Furthermore, a genetic algorithm-based K-means (GAK-means) 

algorithm is proposed for cell partitioning, complemented by Q-learning-based deployment 

and movement algorithms to facilitate 3-D positioning and dynamic movement of UAVs (X. 

Liu et al., 2019). These approaches represent a concerted effort to harness the synergies 

between RL and evolutionary algorithms for UAV applications, paving the way for 

improved performance and navigation in complex environments. 

HRL algorithms: 

HRL offers a dynamic approach to adapting UAV reward functions for obstacle avoidance, 

reducing training convergence time, and enhancing efficiency and precision in large-scale 

3D complex environments (G. Li et al., 2023). To implement HRL for UAVs, DRL 

techniques are combined with human expertise. In HRL, humans play a pivotal role in 

defining reward functions and decision-making related to problem-solving and deploying 

learned solutions (Taylor, 2023). In tasks involving continuous action spaces, a Q value-

dependent policy (QDP)-based HRL algorithm can be utilized. Here, human experts 

selectively provide guidance to the agent during the early stages of learning, significantly 

improving learning speed and performance in continuous action space tasks (B. Luo et al., 

2023). Furthermore, trajectory design mechanisms are employed to optimize the energy 

efficiency of UAV- aerial base stations in 3D space, where RL algorithms like multi-armed 

bandit with upper confidence bound contribute to this optimization (Arani et al., 2021). 

Heuristic dynamic reward functions: 

Designing heuristic dynamic reward functions is instrumental in guiding UAV navigation 

and enhancing obstacle avoidance capabilities, particularly in scenarios like ultra-low 

altitude flight in complex environments for missions (Zhang et al., 2023a; 2023b). The 

design of heuristic dynamic reward functions for UAVs can encompass various approaches. 

For instance, incorporating situational information such as angle and speed can address the 

challenge of sparse rewards, thereby aiding convergence (Xie et al., 2022). Another strategy 

involves constructing and estimating simplified trajectories to the target using third-order 

Bezier curves, applicable in both two-dimensional and three-dimensional virtual 

environments (Tovarnov & Bykov, 2022). Furthermore, the redesign of reward functions 

based on the state space and the acquisition of status information through vehicle cameras 

can enhance agent learning efficiency and convergence in image-based end-to-end vehicle 

following methods (Xiao et al., 2022). The concept of heuristic reward function design 

involves providing additional rewards beyond those supplied by the underlying Markov 

Decision Process, expediting the learning system's progress (Wei et al., 2004). 

Combining neural networks with Interfered Fluid Dynamical System (IFDS): 

The integration of neural networks and IFDS has been proposed for real-time obstacle 

avoidance within three-dimensional dynamic complex environments, wherein the neural 

network is utilized to adapt the coefficients of the IFDS in response to the environmental 

conditions (Y. Wang et al., 2020). To enhance UAV performance, neural networks can be 

combined with IFDS. One approach involves the utilization of neural networks to 
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dynamically modify the IFDS coefficients based on the surrounding environment (Celestini 

et al., 2022). This enables UAVs to flexibly adjust their flight trajectories to circumvent 

obstacles in intricate three-dimensional settings (Y. Wang et al., 2020). Another approach 

entails the use of neural networks to mitigate inversion errors in the control system arising 

from uncertainties in UAV and actuator dynamics (Wijnker et al., 2019). By employing 

neural networks to compensate for parameter uncertainties and disturbances, this approach 

enhances the robustness and accuracy of attitude and trajectory control (Xiang et al., 2016). 

These amalgamations of neural networks and IFDS hold promise for optimizing UAV 

trajectories and ensuring safety in dynamic environments (J. Sun et al., 2021). 

In conclusion, the training of UAVs for safe navigation in complex environments is 

achievable through a spectrum of strategies, including RL algorithms, the integration of RL 

with MOEAs, HRL, heuristic dynamic reward functions, and the combination of neural 

networks with IFDS. These methodologies empower UAVs to dynamically adapt their flight 

trajectories in response to evolving scenarios, ensuring their ability to navigate safely in the 

presence of unforeseen obstacles. By harnessing the power of these training approaches, 

UAVs are better equipped to excel in intricate, ever-changing environments, enhancing their 

performance and safety in diverse applications. 

2.3. Handling UAV Emergencies and Crashes  

In the ever-evolving realm of UAV technology, the imperative of ensuring safety and 

efficiency has gained paramount importance. This section casts a spotlight on a spectrum of 

pivotal elements within UAV systems, spanning from crafting emergency landing 

procedures and real-time monitoring and communication solutions to the development of 

collision avoidance systems and robust mechanisms for investigation and reporting. Each of 

these facets addresses distinct challenges and advances, collectively contributing to the 

enhancement of safety and performance in the realm of UAVs. 

Emergency landing procedures: 

In terms of flight safety, the landing is the most important aspect of a routine flight 

(Saraçyakupoğlu et al., 2020). UAVs should be equipped with robust emergency landing 

procedures to ensure their safe descent in the event of system failures or other emergencies. 

Various approaches can be employed to design these emergency landing procedures, each 

catering to specific challenges and safety considerations. One approach involves leveraging 

depth maps obtained from RGB-d cameras to identify suitable landing platforms, 

particularly in intricate ground environments (Bu et al., 2022). Another innovative method 

utilizes real-time semantic segmentation networks to classify terrain and determine optimal 

landing spots based on safety evaluations (T. Wang et al., 2023). DRL is another promising 

avenue to detect secure landing sites and autonomously guide UAVs to a safe landing, while 

considering various safety constraints (Bartolomei et al., 2022). Additionally, a waypoint 

path planning method based on terminal velocity prediction can be employed to chart a 

secure landing path for UAVs during emergencies (Kim et al., 2020). Furthermore, an offline 

semi-automated approach may be adopted to identify suitable emergency landing sites along 

UAV flight paths, with considerations for factors such as surface type and prevailing wind 

conditions (Ayhan et al., 2018). 
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Real-time monitoring and communication: 

UAV operators must be equipped with real-time monitoring and communication capabilities 

to effectively respond to emergency situations. Designing real-time monitoring and 

communication solutions for UAVs involves the integration of various technologies, each 

contributing to improved situational awareness and decision-making. One innovative 

approach is optimizing UAV trajectory design to serve as both downlink transmitters and 

radar receivers. This allows for real-time tracking and predictive location assessment based 

on delay measurements extracted from sensing echoes (J. Wu et al., 2023). Another avenue 

leverages the fusion of UAV technology with modern 4G/5G communication networks. Key 

technologies such as multi-base station relay, antenna optimization, and PTZ measurement 

and control are harnessed to meet real-time and remote interaction requirements effectively 

(Q. Li et al., 2022). Furthermore, the integration of Software-Defined Networks (SDN) with 

Digital Twin (DT) technology offers capabilities for real-time monitoring, network 

performance analysis, and virtualization. This revolutionary combination transforms the 

design, implementation, and maintenance of software-defined UAV networks, enhancing 

their agility and adaptability (Abir & Chowdhury, 2023). 

Collision avoidance systems: 

UAVs are required to be equipped with collision avoidance systems that enable them to 

detect and evade other aircraft or obstacles, especially when faced with potential collision 

scenarios (Lamba et al., 2021). Developing collision avoidance systems for UAVs involves 

diverse methodologies and technologies to enhance their safety measures. One such 

approach involves the use of Computational Fluid Dynamics (CFD) simulation software to 

analyze the impact of integrating anti-collision devices on UAVs. This analysis delves into 

their hovering capabilities, flow field characteristics, and aerodynamic configurations (X. Li 

et al., 2023). An alternative methodology is the combination of DRL with global planning to 

establish a hybrid collision-avoidance mechanism. This hybrid system is geared towards 

real-time navigation in intricate environments, ensuring efficient obstacle avoidance (C. 

Zhang et al., 2023). Furthermore, an intelligent game theory-based collision avoidance 

method is employed, characterized by the design of a suitable controller through a pay-off 

function. The purpose is to achieve a stable positioning of UAVs without collision incidents 

(Maurya et al., 2022). In addition to these approaches, the Force Field Protocol (FFP) is 

introduced, incorporating artificial potential fields and wireless communication. FFP serves 

to autonomously detect and maintain a safe separation distance between UAVs, enhancing 

collision avoidance (Wubben et al., 2023). Lastly, genetic algorithms play a vital role in the 

autonomous collision avoidance process. These algorithms are instrumental in optimizing 

collision avoidance paths, thus ensuring the safety of UAV flights (Y. Sun & Dang, 2022). 

Investigation and reporting: 

UAV operators should be required to investigate and report any emergencies or crashes to 

the appropriate authorities for further analysis and improvement of safety measures. 

Procedures and mechanisms that can enhance the investigation and reporting of UAV 

emergencies or crashes by operators include the use of data field analysis and natural 

language processing algorithms to automate the analysis of reported issues and extract 
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keywords from reports (Khan et al., 2022). The Human Factors Analysis and Classification 

System (HFACS) can be combined with an Analytical Hierarchical Process (AHP) decision-

making model to assess the risk of accidents and identify causes. Clear regulations and 

procedures for reporting and analyzing UAV incidents are necessary to improve the safe 

integration of unmanned and manned aviation (Alharasees et al., 2022). Additionally, raising 

awareness among UAV users about the need to report incidents and involving them in the 

investigative process can contribute to the assessment and development of strategies for 

integrating manned and unmanned aviation (Konert & Kasprzyk, 2021). 

In conclusion, the safe integration of UAVs into shared airspace demands a holistic approach 

that encompasses various critical elements. Robust emergency landing procedures, real-time 

monitoring and communication solutions, advanced collision avoidance systems, and 

effective mechanisms for investigation and reporting are vital components of this approach. 

By combining these strategies, UAV operators and technology can better prepare for and 

respond to in-flight emergencies and crashes, thereby contributing to the overall safety and 

efficiency of UAV operations within shared airspace. As the UAV industry continues to 

evolve, the continued development and implementation of these measures are essential for 

the seamless coexistence of unmanned and manned aviation. 

2.4. Security of UAV Communication and Data Transmission 

In an era marked by the increasing demand for secure and efficient communication within 

UAV networks, a multitude of challenges and innovative solutions have come to the 

forefront. This section delves into several critical aspects of UAV communication systems, 

addressing issues such as limited bandwidth, Line-of-Sight (LoS) vulnerabilities, covert 

communication, quantum security, and resilience to attacks. These challenges have 

prompted the development of diverse strategies and technologies aimed at enhancing the 

security and effectiveness of UAV communications. 

Limited bandwidth:  

Traditional satellite-based UAV communication systems have notable limitations, including 

slow data transmission links, even in scenarios involving a limited number of drones (Bian 

et al., 2013). This restricted bandwidth poses challenges for the real-time transmission of 

collected information, necessitating alternative strategies. One approach involves storing 

data locally on each drone during its mission and consolidating this information upon the 

UAVs' return. The limited bandwidth available for UAVs can be addressed through the 

utilization of various techniques aimed at enhancing communication security and data 

transmission. Techniques such as wireless power transfer, physical layer security, and 

trajectory optimization play a crucial role in maximizing system utility, improving secrecy 

rates, and minimizing information eavesdropping. Moreover, deploying multiple UAVs can 

optimize coverage and offloading, considering various user tasks and preferences related to 

residual energy and processing delay (Lu et al., 2022). For further enhancement, a joint 

optimization approach can be applied, considering wireless charging duration, trajectory, 

and transmit power. This optimization accounts for factors such as limited battery capacity, 

maximum flying speed, and energy-harvesting causal constraints (Tang et al., 2021). 

Furthermore, the optimization of trajectory, flight duration, and user scheduling can 
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significantly improve energy efficiency while considering constraints related to 

eavesdropping rate and outage probability for secure data transmission (X. Chen et al., 

2023). 

LoS vulnerabilities: 

UAV-assisted communication frequently relies on LoS air-ground channels, which are 

susceptible to attacks by malicious users (Jiang et al., 2021). This heightened vulnerability 

of LoS channels necessitates the development of techniques to ensure secure communication 

in such scenarios. To address LoS vulnerabilities for UAVs and enhance secure 

communication and data transmissions, various approaches have been proposed in the 

literature. One strategy involves optimizing the UAV's trajectory and flight duration to 

maximize energy efficiency and ensure the freshness and security of transmissions (X. Chen 

et al., 2023). Another method focuses on robust trajectory planning, considering the presence 

of multiple jammers and imperfect power and location information. The objective here is to 

maximize the worst-case Signal-to-Interference-plus-Noise Ratio (SINR) (Lingyun et al., 

2022). Moreover, telemetry performance between UAVs and ground control stations can be 

analyzed to assess Received Signal Strength Indicator (RSSI) values and identify factors that 

may lead to degraded performance, such as voltage drops and interference from cellular base 

stations (Chasanah et al., 2022). Furthermore, a dual-UAV aided secure dynamic ground-to-

UAV communication system can be designed. This approach involves optimizing UAV 

trajectories and ground devices transmit power to maximize the sum secrecy rate (Kang et 

al., 2022). 

Covert communication: 

Covert communication, which aims to conceal the existence of transmissions, is a critical 

requirement for enhancing security (Jiang et al., 2021). In UAV-assisted networks, achieving 

covert communication is particularly challenging due to the open and broadcasting nature of 

wireless channels. The development of effective techniques for covert communication in 

UAV networks is an active area of research. One approach to achieving covert 

communication in UAV networks leverages the high flexibility of UAVs for long-distance 

covert transmission. This is accomplished by dividing the transmission into two phases and 

optimizing transmit power and block length to meet the covertness requirement. 

Furthermore, the UAV's location can be optimized to maximize effective throughput while 

considering constraints related to transmit power and block length. Simulation results have 

demonstrated the effectiveness of this UAV relaying scheme in ensuring covert transmission 

(H. Luo et al., 2023). Another method involves the use of blockchain and digital twin 

technology to enhance the security of UAV networks. By mapping physical UAVs into 

Cyberspace, a virtual UAV network known as CyberUAV is created. In CyberUAV, a 

blockchain consensus mechanism called Proof of Network Coding (PoNC) is employed to 

ensure security. Analysis and simulations have illustrated the advantages of this approach in 

terms of both efficiency and security for UAV networks (Lu et al., 2022). 
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Quantum security: 

As the demand for instantaneous and enhanced security continues to grow, researchers have 

been delving into the potential of quantum cryptography to secure UAV communications 

(Ralegankar et al., 2021). Implementing quantum security in practical UAV communication 

systems, however, comes with significant challenges, primarily the need for robust and 

efficient transmission protocols. Quantum security harnesses the principles of quantum 

communication and cryptography to ensure the security of communication and data 

transmissions for UAVs. Quantum communication, specifically Quantum Key Distribution 

(QKD), provides an exceptionally secure method for transmitting cryptographic keys. This 

approach safeguards the keys used for encrypting and decrypting UAV communications 

from eavesdropping or interception. Notably, quantum cryptography can offer unconditional 

security, protecting data and communications from potential threats posed by quantum 

computers (Kumar et al., 2023). In addition to this, quantum technologies can be applied to 

authenticate the identities of entities involved in UAV communication and establish secure 

communication channels (Conrad et al., 2023). Furthermore, quantum secure 

communication protocols, such as Quantum Secret Sharing (QSS), can be utilized to store 

highly sensitive and confidential information (Abulkasim et al., 2022). By integrating these 

quantum security measures, UAVs can attain robust protection for their communication and 

data transmissions. 

Resilience to attacks: 

UAV communication systems must exhibit resilience to a range of potential attacks, 

including jamming, eavesdropping, and data manipulation. One notable approach to 

bolstering this resilience is the development of a Resilience Oriented Security Inspection 

System (ROSIS), which is designed to enhance the security of data access and sharing among 

Urban Air Mobility (UAM) systems, including aircraft and Air Traffic Service Providers 

(ANSPs) (Wei et al., 2023). Another method involves the application of RL algorithms to 

optimize the secure offloading of tasks to UAVs within multi-UAV-assisted mobile edge 

computing systems. This optimization process considers factors like user task preferences 

related to residual energy and processing delays (Lu et al., 2022; Wei et al., 2023). 

Furthermore, defensive strategies can be employed to counteract jamming attacks and ensure 

secure data collection in Internet-of-Things (IoT) networks. These strategies may include 

the adoption of higher SINR thresholds and the utilization of intelligent UAV jammers (Lu 

et al., 2022). 

In summary, the multifaceted landscape of UAV communication systems presents various 

challenges, from limited bandwidth and LoS vulnerabilities to covert communication, 

quantum security, and resilience to attacks. Researchers and innovators continue to explore 

cutting-edge solutions to address these challenges and fortify the security and efficiency of 

UAV communications, paving the way for the continued integration of UAVs into our 

evolving technological landscape. 

3. CONCLUSION AND DISCUSSION 
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The integration of UAVs into shared airspace is a multifaceted challenge, characterized by 

complexities related to safety, coordination, and regulatory frameworks. A comprehensive 

framework, as discussed earlier, encompasses various strategies, such as CDR methods, 

RBCM, multilayer airspace models, path planning, secure communication networks, and 

regulations. These elements, coupled with trajectory coordination, collectively enhance the 

safe integration of UAVs into shared airspace, enabling them to harmoniously coexist with 

manned aircraft across diverse industries. This integrated approach is pivotal for harnessing 

the transformative potential of UAV technology. 

The training of UAVs to navigate complex environments safely and adaptively respond to 

unforeseen obstacles or mission alterations relies on a diverse array of methodologies. 

Notably, the application of RL algorithms, both independently and in conjunction with 

MOEAs, has exhibited promise in elevating UAV navigation capabilities. Furthermore, the 

concept of HRL, which involves the integration of human expertise and guidance into the 

learning process, offers dynamic adaptability for UAV reward functions and obstacle 

avoidance. These methodologies collectively contribute to the enhancement of UAV 

performance and safety within intricate and dynamic environments, empowering UAVs to 

effectively address unexpected challenges and contribute to the field of autonomous UAV 

navigation. 

Ensuring the safe integration of UAVs into shared airspace demands a holistic strategy that 

encompasses several critical elements. Robust emergency landing procedures, real-time 

monitoring, communication solutions, advanced collision avoidance systems, and effective 

mechanisms for investigation and reporting are pivotal components of this approach. By 

amalgamating these strategies, UAV operators and technology can better prepare for and 

respond to in-flight emergencies and crashes, ultimately contributing to the overall safety 

and efficiency of UAV operations within shared airspace. As the UAV industry continually 

evolves, the ongoing development and implementation of these measures remain 

indispensable for the seamless coexistence of unmanned and manned aviation. 

The evolving landscape of UAV communication systems introduces a diverse array of 

challenges, including issues related to limited bandwidth, LoS vulnerabilities, covert 

communication, quantum security, and resilience to attacks. In response to these challenges, 

researchers and innovators are actively exploring cutting-edge solutions to bolster the 

security and efficiency of UAV communications. These advancements play a pivotal role in 

facilitating the seamless integration of UAVs into our ever-evolving technological 

environment. As the demand for secure and efficient communication within UAV networks 

continues to grow, these pioneering efforts are instrumental in shaping the future of UAV 

technology and its multifaceted applications. 

In conclusion, this paper explores the complexities of incorporating UAVs into shared 

airspace and reveals how complex this process is. The results are well-received by scholars, 

policymakers, and business professionals, opening the door to important developments. 

Firstly, our research emphasizes how crucial it is to have a thorough framework with 

coordination and safety as its cornerstones. A variety of methods, such as risk-based collision 

management, layered airspace models, and cooperative decision-making techniques, should 
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serve as the cornerstone upon which this framework is constructed. Robust regulations and 

secure communication networks also need to be deeply embedded in this framework. 

Secondly, the research highlights the exciting possibilities for UAV training that come with 

human-in-the-loop and reinforcement learning techniques. These advanced techniques 

enable UAVs to operate in shared airspace more safely and effectively by enabling them to 

maneuver through challenging environments with resilience and agility. 

Thirdly, to ensure the safety of UAV operations, the research highlights the critical 

importance of strong protocols, real-time monitoring, sophisticated collision avoidance 

systems, and exhaustive investigative mechanisms. Depending on the environment can be 

created and the smooth integration of UAVs into our skies can be aided by putting these 

precautions into place. 

Fourthly, the results show how UAV communication presents an intricate balance between 

opportunities and challenges. Researchers are working hard to improve security and 

efficiency because they know how important they are to the smooth coexistence of manned 

aircraft and UAVs. 

The study defines a useful framework for additional research in the field of UAV integration. 

Future research efforts are directed by its insights toward the creation of resilient traffic 

management systems, sophisticated AI-powered operations, and cutting-edge 

communication technologies targeted to the particular requirements of UAV applications. 

We hope that this work will act as a catalyst for the advancement of UAV integration into a 

future marked by efficiency, safety, and harmony for researchers, policymakers, and industry 

professionals. 

 

Nomenclature 

 

A2C: Advantaged Actor-Critic 

AC: Actor-Critic 

AHP: Analytical Hierarchical Process 

ANSP: Air Navigation Service Provider 

ATM: Air Traffic Management 

CDR: Conflict Detection and Resolution 

CFD: Computational Fluid Dynamics 

DRL: Deep Reinforcement Learning 

DT: Digital Twin 

FFP: Force Field Protocol 

HFCAS: Human Factors Analysis and 

Classification System 

HRL: Human-in-the-loop Reinforcement Learning 

IFDS: Interfered Fluid Dynamical System  

IoT: Internet-of-Things 

ISAC: Integrated Sensing and Communication 

LoS: Line-of-Sight 

 

 

MADDPG: Multi-agent Deep Deterministic Policy 

Gradient Algorithm  

MARL: Multi-Agent Reinforcement Learning 

MOEA: Multi-Objective Evolutionary Algorithm 

PoNC: Proof of Network Coding  

QDP: Q Value-Dependent Policy 

QKD: Quantum Key Distribution 

QSS: Quantum Secret Sharing 

RBCM: Rule-Based Conflict Management 

RL: Reinforcement Learning 

ROSIS: Resilience Oriented Security Inspection 

System 

RSSI: Received Signal Strength Indicator 

SDN: Software-Defined Networks   

SINR: Signal-to-Interference-plus-Noise Ratio 

UAM: Urban Air Mobility 

UAV: Unmanned Aerial Vehicle 

UGV: Unmanned Ground Vehicle 

UTM: Unmanned Traffic Management 
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