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There has been a global increase in the number of vehicles in use, resulting in a 

higher occurrence of traffic accidents. Advancements in computer vision and deep 

learning enable vehicles to independently perceive and navigate their environment, 

making decisions that enhance road safety and reduce traffic accidents. Worldwide 

accidents can be prevented in both driver-operated and autonomous vehicles by 

detecting living and inanimate objects such as vehicles, pedestrians, animals, and 

traffic signs in the environment, as well as identifying lanes and obstacles. In our 

proposed system, road images are captured using a camera positioned behind the 

front windshield of the vehicle. Computer vision techniques are employed to detect 

straight or curved lanes in the captured images. The right and left lanes within the 

driving area of the vehicle are identified, and the drivable area of the vehicle is 

highlighted with a different color. To detect traffic signs, pedestrians, cars, and 

bicycles around the vehicle, we utilize the YOLOv5 model, which is based on 

Convolutional Neural Networks. We use a combination of study-specific images and 

the GRAZ dataset in our research. In the object detection study, which involves 10 

different objects, we evaluate the performance of five different versions of the 

YOLOv5 model. Our evaluation metrics include precision, recall, precision-recall 

curves, F1 score, and mean average precision. The experimental results clearly 

demonstrate the effectiveness of our proposed lane detection and object detection 

method. 

 
1. Introduction 

 

In recent years, although it varies from country to 

country, there has been a rapid increase in the 

number of vehicles worldwide, leading to a rise 

in accidents each year. Many people have been 

injured or killed in these accidents, where human 

mistakes play a major role [1]. According to a 

survey conducted by the World Health 

Organization in 2018, road traffic accidents 

affect approximately 1.25 million people each 

year [2]. To reduce the number of traffic 

accidents, it is crucial for drivers to prioritize 

their attention on the road, maintain focus while 

driving, and adhere to traffic rules. Human 

distraction while driving can occur for various 

reasons. In such cases, Advanced Driver 

Assistance Systems (ADAS) and smart 

transportation systems can play a vital role in 

ensuring the safety and comfort of drivers, 

passengers, and pedestrians. These systems can 

proactively develop strategies to prevent 

accidents before they occur. The rapid growth of 

China's automotive industry, combined with 

advancements in deep learning technology, has 

led to an increasing number of vehicles equipped 

with assisted driving and autonomous driving 

functions. By the year 2020, more than 50% of 
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vehicles in the market were equipped with these 

capabilities [3]. This trend underscores the 

growing attention and significance of ADAS in 

recent years. ADAS assists vehicles by helping 

them maintain their designated lanes, detecting 

objects in their surroundings, and continuously 

analyzing and interpreting the environment to 

ensure traffic safety. These systems encompass 

modules for detecting traffic signs, traffic lights, 

and other objects on the road, as well as lane 

detection, lane tracking, collision avoidance, and 

more. Companies such as Google, Tesla, Audi, 

Mercedes, General Motors, and Ford are utilizing 

deep learning infrastructure to develop self-

driving vehicles without drivers. These 

companies rely on these multifunctional modules 

for various aspects of autonomous driving. 

 

Computer vision and deep learning technologies 

enable vehicles to comprehend their 

surroundings by detecting lanes and objects. 

Detecting road lanes helps keep the vehicles 

within drivable areas, and accidents during lane-

changing processes can be prevented with the 

assistance of lane departure warning systems. 

Studies on lane detection have been conducted 

using various methods throughout the years, 

from the past to the present. Lane detection 

studies can generally be classified into four 

categories: (i) lane detection based on extracting 

road features through machine learning or 

computer vision, (ii) lane detection through the 

creation of road models that capture features on 

roads with specific templates, (iii) lane detection 

achieved by employing a multi-sensor fusion 

detection method using GPS, radar, high-

resolution cameras, and other fusion techniques, 

and (iv) lane detection enhanced by leveraging 

deep learning technologies [4]. 

 

Object detection is a task that involves predicting 

the locations of desired living or inanimate 

objects in an image or video and classifying them 

into different categories. In object detection 

studies, the features of the objects you want to 

detect are obtained through machine learning 

algorithms, which are then given to a neural 

network for classification. In deep learning 

methods, objects' features are acquired using 

convolutional kernels of various sizes in 

convolutional layers, and the classification 

process takes place in the final layer of the same 

model. Object detection models based on deep 

learning can be divided into two main categories: 

two-stage and one-stage object detection models. 

Region-based object detection models, such as 

Region-Based Convolutional Neural Network 

(R-CNN), Fast R-CNN, and Faster R-CNN, 

initially identify regions that have the potential to 

contain the object and then perform the 

classification process within these regions. Due 

to their two-stage detection process, this results 

in an increase in computation for the model and 

a decrease in frames per second (FPS). The You 

Only Look Once (YOLO), Single Shot MultiBox 

Detector (SSD), and Retina-Net models process 

the input image through CNN all at once to 

obtain the classes and coordinates of all objects 

in the image. In this paper, we present a study 

aimed at assisting drivers and self-driving 

vehicles in avoiding traffic mistakes. Our 

research focuses on lane detection and the 

identification of pedestrians, vehicles, and traffic 

signs on the road using five different versions of 

the YOLOv5 model, each trained with varying 

batch and input sizes. Our goal is to prevent 

accidents on the road and enhance overall road 

safety. 

 

The remaining sections of the paper are 

organized as follows: Section 2 provides an 

overview of the literature related to lane 

detection and object detection. Section 3 explains 

the methodology used for detecting both straight 

and curved lanes, as well as objects on the road. 

Section 4 presents the experimental results of our 

proposed method. Finally, Section 5 concludes 

our study and offers suggestions for future 

research. 

 

2. Related Work 

 

Numerous studies have been conducted to 

enhance driving within a lane and ensure road 

safety by detecting objects on the road. These 

studies encompass lane detection, traffic sign 

detection, vehicle detection, and pedestrian 

detection. They hold significant importance in 

both computer vision and deep learning 

technologies. These studies have been conducted 

independently for traffic sign detection, 

pedestrian detection, vehicle detection, and lane 

detection. Additionally, research has been 

undertaken to combine multiple detection 
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techniques, such as detecting both vehicles and 

pedestrians or detecting lanes and vehicles. In 

this section, we present a review of the existing 

literature on lane detection and detection of 

object on the road.  

 

Lane markings, usually yellow or white in color, 

can take the form of straight or curved lines. In 

lane detection studies, common techniques 

include Gaussian filtering, Kalman filtering [5], 

Canny edge detection [6], and the Hough 

transform [7]. Recent years have witnessed a 

growing trend in lane detection studies utilizing 

deep learning approaches [8]. Furthermore, 

various camera-based lane detection studies have 

been conducted by researchers [9-11].  

 

Kumar and his colleagues employed Hough 

transform optimization to enhance the accuracy 

of detecting both straight and curved lanes on the 

highway. They also utilized a Kalman filter to 

track the detected lanes. They compared the 

detection performance of straight and curved 

lanes based on specific metrics [12]. Dubey and 

Bhurchandi utilized the Hough transform and 

Gaussian filter for lane detection in their work 

[13]. Huang et al. employed inverse perspective 

transformation and the Kalman filter for lane 

detection and lane line tracking [14].  

 

Muthalagu and his team developed a lane 

detection algorithm for autonomous cars, 

creating a Convolutional Neural Network 

(CNN)-based model that learns to drive from the 

driver's driving data [1]. This model acquires its 

learning by capturing data from the car's onboard 

cameras. The developed system underwent 

performance evaluation for an autonomous 

vehicle application capable of detecting stop 

signs and other vehicles. Ji and Zheng utilized the 

improved YOLOv3 algorithm for lane line 

detection, achieving better results in terms of 

detection accuracy and FPS compared to the 

original YOLOv3 algorithm [4].  

 

Traffic signs can vary from country to country, 

consisting of various colors such as red, blue, 

white, yellow, black, and green, as well as simple 

shapes like triangles, rectangles, circles, 

polygons, and more. Shustanov and Yakimov 

conducted an analysis on a dataset of German 

traffic signs using several CNN architectures, 

comparing their performance in detecting and 

identifying traffic signs [15]. Kilic and Aydin 

carried out detection and recognition 

experiments on Turkey's 41 traffic signs using an 

Nvidia GTX 1080 Ti graphics card in their 

studies [16].   

 

Wang et al. conducted research on object 

detection in the field of autonomous driving 

technology. In their object detection studies, they 

modified the structure of the YOLOv4 model to 

achieve high speed and accuracy in detecting 

both large and small objects. It was found that 

these modifications led to improvements in both 

models' performance [17]. While lane detection, 

pedestrian detection, traffic sign detection, and 

vehicle detection studies are often conducted 

separately, there are also studies that combine 

multiple detection tasks. Yang et al., using the 

KITTI dataset, performed pedestrian and vehicle 

detection with Faster R-CNN, YOLO v2, and 

their proposed YOLOv2-based model, providing 

a comparison of the accuracy and FPS of these 

detection models [18].  

 

Ćorović et al. employed the YOLOv3 model for 

real-time detection of cars, trucks, pedestrians, 

traffic signs, and traffic lights. Their training, 

conducted up to 120 epochs, considered 

precision, recall, mean average precision (mAP), 

and average IoU (Intersection over Union) 

metrics [19]. Ozturk et al. conducted vehicle, 

pedestrian, and traffic sign detection using four 

different CNN models, comparing the mAP 

metrics of these models in detecting objects of 

various sizes [20]. Kemsaram and colleagues 

proposed a pipeline on the Nvidia Drive PX 2 

platform, enabling real-time object detection, 

lane detection, and free space detection 

simultaneously [21].  

 

3. Method and Experiment 

 

In this study, with the aim of ensuring proper lane 

keeping, we conducted a computer vision-based 

detection process to identify straight or curved 

lanes within the vehicle's surroundings. We 

utilized the YOLOv5 model, renowned for its 

performance and speed in object detection 

studies, to analyze the surroundings by detecting 

traffic signs, pedestrians, and vehicles on the 

road.  
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3.1. Computer vision-based lane detection 

 

The flow diagram of the lane detection 

algorithm, which displays the drivable areas in 

front of vehicles and helps prevent lane 

violations, ultimately aiming to reduce potential 

accidents, is depicted in Figure 1.   

 

 
Figure 1. Flow diagram of the lane detection 

 

Due to the camera lenses, objects in the raw 

image captured by the camera may appear closer 

or farther than they actually are. These 

distortions can lead to incorrect measurements in 

computer vision applications, affecting the size 

and shape of objects. To address this issue, 

camera calibration was performed using a 

chessboard pattern image.  

 

When attempting color filtering on the raw image 

in the RGB color space to extract both yellow and 

white lanes, finding a suitable threshold value 

proved challenging. To reduce noise in both 

colors and enhance their visibility, thereby 

improving the detection of lane markings, we 

transformed the undistorted image from the RGB 

color space to the HLS color space. In the H 

(hue), L (lightness), and S (saturation) channels 

of the HLS color space, we determined lower and 

upper threshold values for both yellow and white 

colors.  

 

After color filtering, the 3-channel, 24-bit color 

image was converted to a single-channel, 8-bit 

grayscale image. In the grayscale image, pixels 

take on values ranging from 0 to 255, 

representing different shades of gray from black 

(0) to white (255).  

 

To detect edges in the grayscale image, we 

perform gradient detection to identify areas with 

high contrast. Figure 2 illustrates the changes in 

the x and y directions and shows low and high 

gradients. To detect high gradients, the Sobel 

filter was applied.  

 

 
Figure 2. Gradient change in pixels 

 

Using the Sobel filter, the gradient (𝐺x) on the 

horizontal axis and the gradient (𝐺𝑦) on the 

vertical axis are obtained. Thus, for each pixel in 

the image, the edge gradient magnitude (G) and 

its direction (θ) are calculated as shown in 

Equations 1 and 2.  

 

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2                                               (1) 

 

𝜃 = 𝑡𝑎𝑛−1 (
𝐺𝑦

𝐺𝑥
)                                                 (2) 

 

The 3x3 filters used in Sobel edge detection for 

detecting edges in the horizontal and vertical 

directions are shown in Figure 3. 

 

 
Figure 3. Filter used in detecting horizontal and 

vertical edges 

 

Detecting curved lanes in the camera field of 

view can be challenging. To resolve this 

difficulty, a bird’s-eye view of the road obtained 

with the use of perspective transformation. For 

this purpose, coordinates are determined to 

obtain a bird's eye view of the lanes as shown in 

Figure 4.  
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Figure 4. Obtaining bird’s eye view from the image 

 

To identify the starting points of the left and right 

lane markings in the bird's-eye view, we begin by 

calculating a histogram along the x-axis at the 

bottom of the image to find the two highest pixel 

values. We then create a window of defined 

width and height centered on these points. 

Subsequently, we employ a sliding window 

search method, using windows of the same size, 

to iteratively center on the highest pixel value 

from the bottom to the top of the image. The x 

and y coordinates of the highest value pixels 

detected using this method are used to generate a 

second-degree polynomial curve, as described in 

Equation 3. Figure 5 shows the sliding window 

search method and the polynomial curve.  

 

𝑓(𝑦) = 𝑎𝑦2 + 𝑏𝑦 + 𝑐 = 0                                (3) 

 

 
Figure 5. The sliding window search method and 

polynomial curve 

 

3.2. YOLOv5 object detection model 

 

YOLO treats object detection as a regression 

problem, reducing computational complexity 

while maintaining real-time detection with high 

accuracy. YOLO models with CNN structures 

process the input image just once to detect 

objects, determine bounding boxes, 

classifications, and confidence scores all in a 

single step. The first version of the YOLO 

family, YOLOv1, consisting of 24 convolution 

layers, was released by Joseph Redmon and his 

research team in May 2016. YOLOv1 takes raw 

input images sized at 448x448 pixels with three 

color channels.  

 

The model divides the input image into SxS 

grids, and the grid containing the center point of 

detected objects is responsible for estimating the 

object's class probability, bounding box values, 

and confidence score. In December 2016, 

Redmon and Farhadi introduced YOLOv2, 

which employs the Darknet-19 network with 19 

convolution layers for feature extraction. 

Subsequently, they released YOLOv3 in 2018, 

featuring the Darknet-53 base network with 53 

convolution layers. YOLOv4 introduced in 2020 

by Alexey Bochkovskiy and his team. Each new 

model modifies the structure of the previous 

versions to improve the performance of the 

model in object detection. Approximately two 

months after YOLOv4's release, Glenn Jocher 

introduced YOLOv5 [22]. Notably, YOLOv5 

utilized PyTorch instead of Darknet, which had 

been used in previous YOLO versions.  

 

YOLOv5 offers five different versions, each with 

varying network layer depths and processing 

density. These versions are denoted as YOLO 

v5n, YOLO v5s, YOLO v5m, YOLO v5l, and 

YOLO v5x. Figure 6 presents a comparison of 

the speed and AP values for these models. 

YOLOv5 versions have different depths, the 

computational load increases as the depth goes 

up. YOLO v5n stands out as the fastest version, 

thanks to its lower depth, although it exhibits the 

lowest AP value. Conversely, YOLO v5x boasts 

the highest depth and, as a result, performs more 

computationally intensive calculations.  
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Figure 6. Speed and AP comparison of YOLOv5 

versions [22] 

 

The YOLOv5 architecture is divided into three 

sections: the backbone, the neck, and the head. 

The backbone primarily extracts key features 

from the input image. Feature pyramids obtained 

in the neck allow for the definition of objects at 

different sizes and scales. In the head part of the 

model, class probabilities, objectness scores, and 

bounding boxes of objects are obtained. As 

shown in Figure 7, YOLOv5 mainly consists of 

CBL, SPP (Spatial Pyramid Pooling), Upsample, 

and Concat modules used in YOLOv3 and 

YOLOv4 models, along with Focus and CSP 

(Cross Stage Partial) modules. Leaky rectified 

linear unit (Leaky ReLU) and Sigmoid are used 

as activation functions, while Stochastic 

Gradient Descent (SGD) or Adam is used as 

optimization functions.  

 

 
Figure 7. Network architecture of the YOLOv5 

 

3.3. Dataset 

 

Object detection models are significantly 

affected by the the dataset. It is important that the 

data to be given to the model is obtained from 

different aspects of daily life and under different 

conditions. Proper labeling also affects the 

training and validation.  

 

The training and validation data were obtained 

from the GRAZ dataset and via a smartphone 

camera in different lighting and weather 

conditions and consist of a total of 497 images. 

Each image in the dataset may contain multiple 

objects. And after labelling, the dataset is 

obtained in txt format and it includes pedestrian, 

car, bicycle objects as well as stop, pedestrian 

crossing, give way, roundabout, uneven road, 20-

speed limit, and 30-speed limit traffic sign 

objects.  

 

The bounding box width and height values, and 

the coordinate values of the center points of the 

bounding boxes that cover each image's objects, 

are all contained in the txt file. The dataset is split 

into two parts: 80% for training and 20% for 

validation. Daily life videos were used for the 

testing process. Figure 8 displays some images 

from the dataset and Figure 9 illustrates the 

number of objects it contains. In this study, car 

class represents bus, automobile and minibus 

objects; and bicycle class represents motorcycle 

and bicycle objects.  

 

 
Figure 8. Images from the dataset 

 

 

 
Figure 9. Number of the object in the dataset 
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4. Result and Discussion 

 

On Google Collaboratory, the YOLOv5 model 

was trained for 1000 epochs using a Tesla T4 

GPU. Increasing the number of epochs can lead 

to a higher risk of overfitting. This issue can be 

mitigated by increasing the number of images 

and diversifying them. The testing phase for 

object and lane detection was conducted on an 

Intel Core i5-9400 CPU. The variations in the 

loss values and performance metrics for different 

versions of YOLOv5 during the training process 

are shown in Figure 10 and Figure 11, 

respectively.  

 

Each color in Figure 10 and Figure 11 denote the 

trained model. The names of the models in Table 

1 represents the YOLOv5 version that has been 

used, the batch size value used in that version, 

and the size of the input image, respectively.   

 
Table 1. The trained models 

Model 

Name 

Batch 

Size 
Image 

Size 

Epoch Best 

Epoch 
YOLO 

v5n_32_416 

32 416 1000 792 

YOLO 

v5n_32_640 

32 640 1000 882 

YOLO 

v5s_32_416 

32 416 1000 847 

YOLO 

v5s_32_640 

32 640 1000 842 

YOLO 

v5l_16_416 

16 416 1000 804 

YOLO 

v5l_32_416 

32 416 1000 812 

YOLO 

v5l_64_416 

64 416 1000 614 

YOLO 

v5x_16_416 

16 416 1000 875 

YOLO 

v5x_32_416 

32 416 1000 738 

 

Performance metric values for the trained models 

are presented in Table 2. From the table, it is 

evident that increasing the size of input images in 

the YOLO v5n and YOLO v5s models while 

keeping the batch size constant leads to 

improvements in performance metrics. However, 

there is no clear correlation between the results 

obtained when the input image size is held 

constant and the batch size is increased in the 

YOLO v5l and YOLO v5x models. In the input 

image size of 146x416, YOLO v5l exhibited 

better performance with a batch size of 64, while 

YOLO v5x performed better with a batch size of 

16. Notably, in the YOLO v5l and YOLO v5x 

models, attempting to train with a larger input 

image size, such as 640, posed challenges due to 

insufficient memory resources. Consequently, 

training studies could not be conducted at these 

input image sizes or larger.  

 

Table 2 shows that the YOLO v5x model, using 

a batch size of 16 and an input image size of 416, 

achieves the best results. The YOLO v5x model's 

deeper architecture and incorporation of a greater 

number of parameters enable it to capture more 

extensive and detailed features from various 

objects. As demonstrated in Figure 6, the unique 

attribute of YOLO v5x has enabled us to attain 

better outcomes when compared to alternative 

models. In this study, we will refer to this model 

as YOLO v5x in the subsequent process. Figure 

12 depicts the variation in the loss values and 

performance metrics of the YOLO v5x model.  

 

Figure 13 displays the confusion matrix obtained 

from the YOLO v5x model. The matrix indicates 

that the YOLO v5x model achieved a 100% 

detection rate for the stop traffic sign in the 

dataset. Generally, incorrect classifications were 

observed in relation to the background. Figure 14 

presents the precision, recall, and mAP_0.5 

performance values for each class in the YOLO 

v5x model. Precision measures how much of the 

objects that the model detects as positive are 

actually positive. It quantifies the rate at which 

the model detects the object as if it were present 

in the image, even when the object is not actually 

in the image. Recall measures the proportion of 

objects that should have been detected in the 

image but were not identified by the model. High 

precision and recall values indicate that the 

detection processes are performed very 

effectively. The F1 score, which aims to balance 

the performance of the model in both precision 

and recall in object detection, is calculated as the 

harmonic mean of these two metrics. The area 

under the PR curve, denoted as AP, represents 

how well the object detection model balances 

precision and recall. It visualizes how the model 

achieves a balance between precision and recall. 

The mean mAP is obtained by calculating the 

average of the AP values computed for each 

individual class. Considering Figure 14, it is 

generally observed that the precision value is 
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close to 1. This situation indicates that the 

model's tendency to falsely detect an object as if 

it were present in the image, when there is 

actually no object, is very low. A low recall value 

negatively affected the F1 and mAP values. The 

low recall value is a result of the model's inability 

to detect an object in the image, even when the 

object is present. The lowest recall value was 

obtained in the speed limit 20 object. The limited 

number of images associated with the speed limit 

20 object may be attributed to the model's 

inability to acquire sufficient features for 

detecting this object, hence resulting in a low 

recall value in detection. However, overall, the 

model achieved good results in detecting other 

classes. 

 

 
Figure 10. Graphs of losses of the models during the training processes 

 

 
Figure 11. The variation of performance metrics of YOLOv5 versions during the training processes 

 
Table 2. Comparison of the performance measures of the trained models 

Model 

Name 

P 

Curve 
R 

Curve 

PR Curve or 

mAP_0.5 
F1 

Curve 

mAP_0.5:0.9 

YOLO v5n_32_416 1.00 0.81 0.791 0.81 0.630 

YOLO v5n_32_640 1.00 0.84 0.823 0.84 0.650 

YOLO v5s_32_416 1.00 0.82 0.811 0.84 0.656 

YOLO v5s_32_640 1.00 0.84 0.830 0.84 0.681 

YOLO v5l_16_416 1.00 0.86 0.845 0.84 0.712 

YOLO v5l_32_416 1.00 0.85 0.845 0.84 0.711 

YOLO v5l_64_416 1.00 0.87 0.852 0.85 0.713 

YOLO v5x_16_416 1.00 0.88 0.869 0.86 0.726 

YOLO v5x_32_416 1.00 0.84 0.832 0.85 0.712 

Figure 15 depicts the results of object detection 

tests performed on videos shot in various driving 

environments. Lane detection is shown in Figure 

16. The image showing the object and lane 

detection together is given in Figure 17.   
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Figure 12. Observed changes in performance metrics during the training and the validation process 

 

 
Figure 13. The confusion matrix obtained in the validation process 

 

 
Figure 14. Comparison of classes based on precision, recall, and mAP 
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Figure 15. Detection of objects in various environments 

 

 
Figure 16. Detection of the lane 
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Figure 17. Detection of the lane and the objects 

 

5. Conclusion 

 

This research aimed to study lane and 

surrounding object detection for cars, with the 

goal of preventing accidents in advanced driver 

support systems and autonomous driving 

vehicles. The proposed lane detection approach 

effectively identified both straight and curved 

lanes. However, lane detection may occasionally 

fail due to various road conditions, weather 

changes, and traffic congestion caused by other 

vehicles and objects.  

 

Future studies could explore deep learning-based 

lane detection methods or other approaches to 

improve detection accuracy and address the 

challenges faced in lane detection. Additionally, 

a control system can be established for detected 

lanes. Furthermore, in situations where the 

vehicle approaches the boundary of any lane or 

deviates by a certain proportion from the center 

of the driving area, the control system can 

intervene. 

The success of object detection models is 

determined by their accuracy in detecting objects 

and their detection time. In some cases, it may be 

necessary to use a memory-efficient model. The 

YOLOv5 model offers an advantage in this 

regard as it has a smaller file size compared to its 

previous versions, making it applicable in a 

wider range of scenarios. In this study, we trained 

9 object detection models using five different 

versions of YOLOv5 on a Tesla T4 GPU. We 

compared the performance metrics of these 

models and identified the one that yielded the 

best results.  

 

We utilized a set of 10 objects, encompassing 

traffic signs, pedestrians, and vehicles, 

commonly encountered in traffic. Thus, the study 

has been expanded by incorporating a greater 

variety of objects compared to literature studies 

that simultaneously perform lane and object 

detection. The images of these objects were 

obtained in rainy, sunny, and snowy weather 

conditions during both daytime and late 

afternoon hours. In future studies, the goal is to 

conduct detection using a broader range of 

objects encountered in traffic and to achieve 

detection in dark weather. Additionally, in future 
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research, the aim is to develop systems that offer 

superior performance in terms of detection time, 

accuracy, and especially in the detection of small 

objects. 
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