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ABSTRACT

As a generalization of screen slant lightlike submersions, we introduce the notion of screen
pseudo-slant lightlike submersions from indefinite Sasakian manifolds onto lightlike manifolds.
We give examples and prove a characterization theorem for the existence of such lightlike
submersions. We also obtain integrability conditions of distributions involved in the definition
of this class of lightlike submersions. Further, we find necessary and sufficient conditions for
foliations determined by these distributions to be totally geodesic.
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1. Introduction

In [10], O’Neill initiated the study of Riemannian submersions and Gray [4] further continued it. Let
f : (M1, g1) → (M2, g2) be a smooth map, where (M1, g1) and (M2, g2) are Riemannian manifolds. Then f is
called a Riemannian submersion if f∗ preserves the lengths of horizontal vectors and f has maximal rank. It is
well-known that the fibers of Riemannian submersions are Riemannian submanifolds. However, the fibers
of submersions between semi-Riemannian manifolds may not be semi-Riemannian submanifolds because
the induced metric on fibers may also be degenerate. Therefore, O’Neill [11] introduced semi-Riemannian
submersions between semi-Riemannian manifolds. Recently the geometry of some new pseudo-Riemannian
submersions have been studied that can be found in [5, 6, 8, 9]. Moreover, the notion of screen lightlike
submersions from lightlike manifolds onto semi-Riemannian manifolds was defined and studied by Şahin [14].
After this, Şahin and Gündüzalp [15] introduced lightlike submersions between semi-Riemannian manifolds
and lightlike manifolds. They also defined O’Neill tensors for such submersions and obtained interesting
results. Following this work, several geometer studied these submersions (see [7, 12, 13, 17, 18, 19, 20] and
references there in). In [16], Shukla and Yadav introduced screen pseudo-slant lightlike submanifolds of
indefinite Sasakian manifold. The above theories motivated us to study a new class of lightlike submersions. In
the present paper, we define the notion of screen pseudo-slant lightlike submersions from indefinite Sasakian
manifolds onto lightlike manifolds.

The paper is organized as follows. In Section 2, we collect basic formulae and definitions as needed for this
paper. In Section 3, we study screen pseudo-slant lightlike submersions from indefinite Sasakian manifolds
onto lightlike manifolds, giving two examples. In section 4, we research foliations determined by distributions
on a fiber of screen pseudo-slant lightlike submersions.
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2. Preliminaries

In this section, we recall several definitions and formulae which will be required throughout the paper.
A smooth manifold M of dimension 2m+1 is said to have an almost contact structure (ϕ, ξ, η) if it carries a (1,

1) tensor field ϕ, a vector field ξ called characteristic vector field and a 1-form η on M , satisfying

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0, (2.1)

where I denotes the identity tensor. Further, if there exists a semi-Riemannian metric g on M satisfying

g(ϕX, ϕY ) = g(X,Y )− ϵη(X)η(Y ), ∀X,Y ∈ Γ(TM), (2.2)

then (ϕ, ξ, η, g) is called an (ϵ)-almost contact metric structure on M [21, 2], where ϵ= 1 or -1 according as ξ is
spacelike or timelike. From (2.2) it follows that

g(ξ, ξ) = ϵ, η(X) = ϵg(X, ξ), g(X,ϕY ) + g(ϕX, Y ) = 0. (2.3)

An (ϵ)-almost contact metric structure (ϕ, ξ, η, g) on M is an indefinite Sasakian structure if and only if

(∇Xϕ)Y = g(X,Y )ξ − ϵη(Y )X, (2.4)

for all X,Y ∈ Γ(TM), where ∇ denotes the Riemannian connection of g [[2], Theorem 7.1.6].
If a semi-Riemannian manifold M admits an indefinite Sasakian structure (ϕ, ξ, η, g), then (M,ϕ, ξ, η, g) is

called an indefinite Sasakian manifold. Setting Y = ξ in (2.4), we get

∇Xξ = −ϵϕX, ∀X ∈ Γ(TM). (2.5)

In this paper, we assume ϵ = 1, i.e., the characteristic vector field ξ is spacelike.

Example 2.1. [3] Let R2m+1
2q denote the manifold equipped with a semi-Riemannian metric g and its usual

contact form η = 1
2

(
dz −

∑m
i=1 yidxi

)
.

The characteristics vector field ξ is given by 2 ∂
∂z and its semi-Riemannian metric g and tensor field ϕ are

given by

g = η ⊗ η +
1

4

(
−

q∑
i=1

dxi ⊗ dxi + dyi ⊗ dyi +

m∑
i=q+1

dxi ⊗ dxi + dyi ⊗ dyi

)
,

ϕ

(
m∑
i=1

(
Xi

∂

∂xi
+ Yi

∂

∂yi

)
+ Z

∂

∂z

)
=

m∑
i=1

(
Yi

∂

∂xi
−Xi

∂

∂yi

)
+

m∑
i=1

Yiyi
∂

∂z
,

where (xi, yi, z) (i = 1, 2, ...,m) are the Cartesian coordinates on R2m+1
2q . This gives a contact metric structure on

R2m+1. The vector fields Ei=2 ∂
∂yi

, Em+i = 2
(

∂
∂xi

+ yi
∂
∂z

)
and ξ form a ϕ-basis for the contact metric structure.

Now, it can be proved that (R2m+1
2q , ϕ, ξ, η, g) is an indefinite Sasakian manifold.

Let (M, g) be a real m-dimensional smooth semi-Riemannian manifold. Then the radical subspace Rad TpM
of TpM is defined by Rad TpM = {V ∈ TpM : g(V,X) = 0, X ∈ TpM}. Suppose dim(Rad TpM) = r, then the
mapping Rad TM : p ∈ M → Rad TpM is said to be the radical distribution of rank r on M . The manifold M is
said to be an r-lightlike manifold [1] if r > 0.

Let f : (M1, g1) → (M2, g2) be a smooth submersion between a semi-Riemannian manifold M1 and an r-
lightlike manifold M2 then f−1(x) is a submanifold (called fiber) of dimension dim M1 - dim M2. Further
the kernel of f∗ at p ∈ M1 and its orthogonal complement are given by Kerf∗p = {X ∈ TpM1 : f∗pX = 0}
and (Kerf∗p)

⊥ = {Y ∈ TpM1 : g1(Y,X) = 0, X ∈ Kerf∗p}, respectively. Since TpM1 is a semi-Riemannian vector
space, Kerf∗ may not be complementary to (Kerf∗)

⊥. Hence we assume ∆p = Kerf∗p ∩ (Kerf∗p)
⊥ ̸= {0}.

Then ∆ and Kerf∗ are radical and lightlike distributions on M1, respectively. In this case, there exists a
complementary distribution to ∆ in Kerf∗ which is non-degenerate and we denote it by S(Kerf∗). Thus we
have

Kerf∗ = ∆ ⊥ S(kerf∗). (2.6)
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Using the above argument again for (Kerf∗)
⊥, we get

(Kerf∗)
⊥ = ∆ ⊥ S(Kerf∗)

⊥.

As S(Kerf∗) is non-degenerate in TM1, we obtain

TM1 = S(Kerf∗) ⊥ (S(Kerf∗))
⊥,

where (S(Kerf∗))
⊥ is the complementary distribution to S(Kerf∗) in TM1. Note that S(Kerf∗)

⊥ is a non-
degenerate distribution in (S(Kerf∗))

⊥, we get

(S(Kerf∗))
⊥ = S(Kerf∗)

⊥ ⊥ (S(Kerf∗)
⊥)⊥.

Since for any local basis {Vi} of ∆, there exists a local null frame {Ni} of sections with values in the orthogonal
complement of S(Kerf∗)

⊥ in (S(Kerf∗))
⊥ such that g1(Vi, Nj) = δij and g1(Ni, Nj) = 0. The distribution

spanned by N1, N2, ....., Nr is called lightlike transversal distribution and we denote it by ltr(Kerf∗)([1], page
144). Consider following vector bundle

tr(Kerf∗) = ltr(Kerf∗) ⊥ S(Kerf∗)
⊥, (2.7)

which is complementary (but not orthogonal) vector bundle to Kerf∗ in TM1|f−1(x). Therefore, we have

TM1|f−1(x) = Kerf∗ ⊕ tr(Kerf∗). (2.8)

It should be noted that ltr(Kerf∗) and Kerf∗ are not orthogonal to each other. Using (2.6), (2.7) and (2.8) we
get

TM1|f−1(x) = S(Kerf∗) ⊥ [∆⊕ ltr(Kerf∗)] ⊥ S(Kerf∗)
⊥.

If we denote V = Kerf∗, the vertical space of TpM1 and H = tr(Kerf∗), the horizontal space then we have

TM1 = H⊕ V.

Moreover, we note that every Vp coincides with the tangent space of f−1(x) at p, f(p) = x, that is, Vp = Tpf
−1(x).

Definition 2.1. [15] Let (M1, g1) be a semi-Riemannian manifold and (M2, g2) be an r-lightlike manifold. A
submersion f : M1 → M2 is called an r-lightlike submersion if

(a) dim ∆ = dim{(Kerf∗) ∩ (Kerf∗)
⊥} = r, 0 < r < min{dim(Kerf∗), dim(Kerf∗)

⊥}.

(b) f∗ preserves lengths of horizontal vectors, i.e., g1(X,Y ) = g2(f∗X, f∗Y ) for X, Y ∈ Γ(H).

Now, we have following three particular cases:

(i) If dim ∆ = dim(Kerf∗) < dim(Kerf∗)
⊥ then V = ∆ and H = S(Kerf∗)

⊥ ⊥ ltr(Kerf∗) and f is called an
isotropic submersion.

(ii) If dim ∆ = dim(Kerf∗)
⊥ < dim(Kerf∗) then V = S(Kerf∗) ⊥ ∆ and H = ltr(Kerf∗) and f is called a co-

isotropic submersion.

(iii) If dim ∆ = dim(Kerf∗)
⊥ = dim(Kerf∗) then V = ∆ and H = ltr(Kerf∗) and f is called a totally lightlike

submersion.

As we know, the geometry of Riemannian submersions is characterized by O’Neill’s tensors T and A. Therefore
Şahin and Gündüzalp [15] defined these tensors for a lightlike submersion as

TXY = h∇νXνY + ν∇νXhY, AXY = ν∇hXhY + h∇hXνY, (2.9)

where h : TM1 → H and ν : TM1 → V denote natural projections and ∇ be the Levi-Civita connection of g1. We
note that T and A are skew-symmetric in Riemannian submersions but not in lightlike submersions because
the horizontal and vertical subspaces are not orthogonal to each other. T and A are vertical and horizontal,
respectively and both reverses the horizontal and vertical subspaces. Moreover T has the symmetry property
for vertical vector fields U and V , that is, TUV = TV U .
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Let f be an r-lightlike submersion from an (m+n)-dimensional semi-Riemannian manifold (M1, g1) onto an n-
dimensional lightlike manifold (M2, g2), where m,n > 1. Then Kerf∗ is an m-dimensional lightlike distribution
on fiber f−1(x). We denote the induced metric on f−1(x) by ĝ. Now by using (2.9) for any U, V ∈ Γ(Kerf∗) and
X ∈ Γ(tr(Kerf∗)), we get

∇UV = ∇̂UV + TUV, (2.10)

∇UX = TUX +∇t
UX, (2.11)

where ∇̂UV = ν∇UV and ∇t
UX = h∇UX . Also {∇̂UV, TUX} and {TUV,∇t

UX} belongs to Γ(Kerf∗) and
Γ(tr(Kerf∗)), respectively. Let S(Kerf∗)

⊥ ̸= 0. Consider projections L and S of tr(Kerf∗) on ltr(Kerf∗) and
S(Kerf∗)

⊥, respectively. Then from (2.10) and (2.11), we obtain (for details see [18])

∇UV = ∇̂UV + T l
UV + T s

UV, (2.12)

∇UN = TUN +∇l
UN +Ds(U,N), (2.13)

∇UW = TUW +Dl(U,W ) +∇s
UW, (2.14)

for any U, V ∈ Γ(Kerf∗), N ∈ Γ(ltr(Kerf∗)) and W ∈ Γ(S(Kerf∗)
⊥). Here T l

UV = L(TUV ), T s
UV = S(TUV ) and

∇l, ∇s are linear connections on ltr(Kerf∗) and S(Kerf∗)
⊥, respectively. Also, Dl and Ds are Γ(ltr(Kerf∗)) and

Γ(S(Kerf∗)
⊥)-valued bilinear forms, respectively.

Let f be either r-lightlike or co-isotropic submersion and σ denotes the projection of Kerf∗ on S(Kerf∗) then
for any X,Y ∈ Γ(Kerf∗) and V ∈ Γ(∆), we obtain

∇̂XσY = ∇∗
XσY + T ∗

XσY, ∇̂XV = T ∗
XV +∇∗t

XV, (2.15)

where {∇∗
XσY, T ∗

XV } and {T ∗
XσY,∇∗t

XV } belongs to Γ(S(Kerf∗)) and Γ(∆), respectively. Here ∇∗ and ∇∗t are
linear connections on S(Kerf∗) and ∆, respectively.

3. Screen Pseudo-slant Lightlike Submersions

In this section, we introduce screen pseudo-slant lightlike submersions from indefinite Sasakian manifolds
onto lightlike manifolds such that the characteristic vector field ξ is tangent to fiber. At first, we state the
following lemma which will be useful to define the slant notion on the screen distribution.

Lemma 3.1. [17] Let f be a 2r-lightlike submersion from an indefinite Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike
manifold (M2, g2). Then the screen distribution S(Kerf∗) on f−1(x) is Riemannian, where 2r < dim(f−1(x)).

Definition 3.1. Let f be a 2r-lightlike submersion from an indefinite Sasakian manifold (M1, ϕ, ξ, η, g1) onto a
lightlike manifold (M2, g2) such that 2r < dim(Kerf∗) with the characteristic vector field ξ tangent to f−1(x),
i.e., ξ belongs to S(Kerf∗). Then we say that f is a screen pseudo-slant lightlike submersion if following four
conditions are satisfied:

(i) ∆ is invariant with respect to ϕ, i.e., ϕ(∆) = ∆,

(ii) there exist orthogonal distributions D1 and D2 on f−1(x) such that S(Kerf∗) = D1 ⊥ D2 ⊥ ⟨ξ⟩,

(iii) the distribution D1 is anti-invariant, i.e., ϕ(D1) ⊂ S(Kerf∗)
⊥,

(iv) for every p ∈ f−1(x) and every non-zero vector U ∈ (D2)p, the angle θ between ϕU and the vector
subspace (D2)p is a constant(̸= π/2), that is, it is independent of choice of p ∈ f−1(x) and U ∈ (D2)p.

A screen pseudo-slant lightlike submersion is said to be proper if D1 ̸= {0}, D2 ̸= {0} and θ ̸= 0. From
Definition 3.1, we get

Kerf∗ = ∆ ⊥ D1 ⊥ D2 ⊥ ⟨ξ⟩ .

Then, we have following particular cases:

(i) If D1 = 0, then f is called a screen slant lightlike submersion, as studied in [17].

(ii) If D2 = 0, then f is called a screen real lightlike submersion.
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(iii) If D1 = 0 and θ = 0, then f is called an invariant lightlike submersion.

(iv) If D1 ̸= 0 and θ = 0, then f is called a contact SCR-lightlike submersion.

Thus, the above new class of lightlike submersions includes screen slant, screen real, invariant and contact
screen Cauchy-Riemann lightlike submersions as its particular cases.

Now, we construct two examples of proper screen pseudo-slant lightlike submersions from an indefinite
Sasakian manifold onto a lightlike manifold.

Example 3.1. Consider an indefinite Sasakian manifold as given in Example 2.1 for m = 6 and q=1, i.e.,
(R13

2 , ϕ, ξ, η, g1). Let (R6, g2) be a lightlike manifold, where g2 = 1
8

{
(da2)

2 + (da3)
2 + (da5)

2 + 2(da6)
2
}

and
a1, ......, a6 are usual coordinates on R6. Define a map f : R13

2 → R6 by

f(x1, ...., x6, y1, ...., y6, z) = (x1 − x2, x3 − x4, x5 − x6, y1 − y2, y3 + y4, y6).

Then we have Kerf∗ = Span
{
V1 = E7 + E8, V2 = E9 + E10, V3 = E11 + E12, V4 = E1 + E2, V5 = E3 − E4, V6 =

E5, V7 = E13 = ξ
}

and (Kerf∗)
⊥ = Span

{
V1, V4,W1 = E9 − E10,W2 = E11 − E12,W3 = E3 + E4,W4 = E6

}
.

Further we get ∆ = Kerf∗ ∩ (Kerf∗)
⊥ = Span

{
V1, V4

}
. Then, we obtain ltr(Kerf∗) = Span

{
N1 =

− 1
2 (E7 − E8), N2 = − 1

2 (E1 − E2)
}

. Thus f is a 2-lightlike submersion. Furthermore we see that ϕ(V4) = V1,
which implies ∆ is invariant with respect to ϕ. Again we obtain three mutually orthogonal distributions D1,
D2 and ⟨ξ⟩ such that S(Kerf∗) = D1 ⊥ D2 ⊥ ⟨ξ⟩, where D1 = Span

{
V2, V5

}
and D2 = Span

{
V3, V6

}
. It is easy to

see that D1 is anti-invariant while D2 is slant distribution with slant angle θ = π
4 . Therefore f is a proper screen

pseudo-slant 2-lightlike submersion.

Example 3.2. Consider an indefinite Sasakian manifold as given in Example 2.1 for m = 7 and q = 1,
i.e., (R15

2 , ϕ, ξ, η, g1). Let (R8, g2) be a lightlike manifold, where g2 = 1
8

{
(da2)

2 + 2(da3)
2 + 2(da4)

2 + (da6)
2 +

2(da7)
2 + 2(da8)

2
}

and a1, ......, a8 are usual coordinates on R8. Define a map f : R15
2 → R8 by

f(x1, ...., x7, y1, ...., y7, z) = (x1 + x3, x2 + x5, x4 cosα+ x6 sinα, x7, y1 + y3, y2 − y5, y4, y7),

where α ∈ (0, π
2 ). Then we get Kerf∗ = Span

{
V1 = E8 − E10, V2 = E9 − E12, V3 = −E11 sinα+ E13 cosα, V4 =

E1 − E3, V5 = E2 + E5, V6 = E6, V7 = ξ = E15

}
and (Kerf∗)

⊥ = Span
{
V1, V4,W1 = E9 + E12,W2 = E11 cosα+

E13 sinα,W3 = E14,W4 = E2 − E5,W5 = E4,W6 = E7

}
. Further we get ∆ = Kerf∗ ∩ (Kerf∗)

⊥ = Span
{
V1, V4

}
.

Then, we obtain ltr(Kerf∗) = Span
{
N1 = − 1

2 (E8 + E10), N2 = − 1
2 (E1 + E3)

}
. Hence f is a 2-lightlike

submersion. Moreover we see that ϕ(V4) = V1, which gives ∆ is invariant with respect to ϕ. Again we
have three mutually orthogonal distributions D1,D2 and ⟨ξ⟩ such that S(KerF∗) = D1 ⊥ D2 ⊥ ⟨ξ⟩, where
D1 = Span

{
V2, V5

}
and D2 = Span

{
V3, V6

}
. By a simple calculation we see that D1 is anti-invariant distribution

while D2 is a slant distribution with slant angle θ = α. Therefore f is a proper screen pseudo-slant 2-lightlike
submersion.

Let f be a screen pseudo-slant lightlike submersion from an indefinite Sasakian manifold (M1, ϕ, ξ, η, g1) onto
a lightlike manifold (M2, g2). Then for U ∈ Γ(Kerf∗), we can write ϕ(U) = PU + FU , where PU and FU are
tangential and transversal components of ϕU , respectively. Suppose P1,P2 and P3 denote projections of Kerf∗
on ∆, D1 and D2, respectively. Also, we denote projections of tr(Kerf∗) on ltr(Kerf∗), ϕD1 and D′ by Q1, Q2

and Q3, respectively, where D′ is non-degenerate orthogonal complementary subbundle of ϕD1 in S(Kerf∗)
⊥.

Thus for U ∈ Γ(Kerf∗), we have
U = P1U + P2U + P3U + η(U)ξ. (3.1)

On applying ϕ to (3.1), we get ϕU = ϕP1U + ϕP2U + ϕP3U which gives,

ϕU = ϕP1U + ϕP2U + τP3U + ωP3U, (3.2)

where τP3U and ωP3U denote tangential and transversal components of ϕP3U , respectively. Therefore from
(3.2) and Definition 3.1, we get ϕP1U ∈ Γ(∆), ϕP2U ∈ Γ(ϕD1) ⊂ Γ(S(Kerf∗)

⊥), τP3U ∈ Γ(D2) and ωP3U ∈
Γ(D)′. Moreover for W ∈ Γ(tr(Kerf∗)), we have

W = Q1W +Q2W +Q3W. (3.3)

Applying ϕ to (3.3), we get ϕW = ϕQ1W + ϕQ2W + ϕQ3W which gives,

ϕW = ϕQ1W + ϕQ2W + BQ3W + CQ3W, (3.4)
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where BQ3W and CQ3W denote tangential and transversal components of ϕQ3W , respectively. Thus we have
ϕQ1W ∈ Γ(ltr(Kerf∗)), ϕQ2W ∈ Γ(D1), BQ3W ∈ Γ(D2) and CQ3W ∈ Γ(D)′.

Now, from (2.4), (3.2), (2.12), (2.14), (3.4) and (2.15) and identifying the components on ∆, D1, D2, ltr(Kerf∗),
ϕ(D1), D′ and ⟨ξ⟩ respectively, we obtain

∇∗t
U ϕP1V + P1(∇̂UτP3V ) + P1(TUωP3V ) = −P1(TUϕP2V ) + ϕP1∇̂UV − η(V )P1(U), (3.5)

P2(T ∗
UϕP1V ) + P2(TUϕP2V ) + P2(TUωP3V ) = −P2(∇̂UτP3V ) + ϕQ2T s

UV − η(V )P2U,

P3(T ∗
UϕP1V ) + P3(TUϕP2V ) + P3(TUωP3V ) + P3(∇̂UτP3V ) = τP3∇̂UV + BQ3T s

UV − η(V )P3U, (3.6)
T l
UϕP1V +Dl(U, ϕP2V ) + T l

UτP3V +Dl(U, ωP3V ) = ϕ(T l
UV ),

Q2∇s
UϕP2V +Q2∇s

UωP3V = ϕP2∇̂UV −Q2T s
UϕP1V −Q2T s

U τP3V, (3.7)
Q3∇s

UϕP2V +Q3∇s
UωP3V − ωP3∇̂UV = CQ3T s

UV −Q3T s
U τP3V −Q3T s

UϕP1V, (3.8)
η(∇̂UτP3V ) + η(T ∗

UϕP1V ) + η(TUϕP2V ) + η(TUωP3V ) = g1(U, V )− η(U)η(V ).

Theorem 3.1. Let f be a 2r-lightlike submersion from an indefinite Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike
manifold (M2, g2). Then f is a screen pseudo-slant lightlike submersion if and only if following two conditions are
satisfied:

(i) ltr(Kerf∗) is invariant and D1 is anti-invariant with respect to ϕ,

(ii) there exists a constant λ ∈ (0, 1] such that (P3 ◦ τ)2U = −λU , for U ∈ Γ(D2). Here D1 and D2 are orthogonal
distributions on f−1(x) such that S(Kerf∗) = D1 ⊥ D2 ⊥ ⟨ξ⟩.

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a screen pseudo-slant lightlike submersion. Then D1 is anti-
invariant and ∆ is invariant with respect to ϕ. Now, from (2.3) and (3.2), we get g1(ϕN,U) = −g1(N,ϕU) =
−g1(N,ϕP2U + τP3U + ωP3U) = 0, for N ∈ Γ(ltr(Kerf∗)) and U ∈ Γ(S(Kerf∗)− ⟨ξ⟩). Hence ϕN does not
belong to Γ(S(Kerf∗)− ⟨ξ⟩). For N ∈ Γ(ltr(Kerf∗)) and W ∈ Γ(S(Kerf∗)

⊥), using (2.3) and (3.4), we obtain
g1(ϕN,W ) = −g1(N,ϕW ) = −g1(N,ϕQ2W + BQ3W + CQ3W ) = 0. From which it follows that ϕN does not
belong to Γ(S(Kerf∗)

⊥). Now if ϕN ∈ Γ(∆), then from (2.1), we get ϕ(ϕN) = ϕ2N = −N + η(N)ξ = −N ∈
Γ(ltr(Kerf∗)), which contradicts that ∆ is invariant with respect to ϕ. Therefore ltr(Kerf∗) is invariant with
respect to ϕ. To prove (ii) of Theorem 3.1, we have

cos θ =
g1(ϕU, τP3U)

|ϕU ||τP3U |
= −g1(U, (P3 ◦ τ)2U)

|ϕU ||τP3U |
, (3.9)

for U ∈ Γ(D2). We also have for U ∈ Γ(D2)

cos θ =
|τP3U |
|ϕU |

. (3.10)

Now, from (3.9) and (3.10) we get

g1(U, (P3 ◦ τ)2U) = cos2 θg1(U, ϕ
2U). (3.11)

As f is a screen pseudo-slant lightlike submersion. Thus slant angle of D2 is constant, so we put cos2 θ = λ ∈
(0, 1]. Then (3.11) gives g1(U, (P3 ◦ τ)2U − λϕ2U) = 0, which implies

(P3 ◦ τ)2U = λϕ2U = −λU. (3.12)

Conversely suppose that (i) and (ii) are satisfied. Then by using similar steps, it can be easily proved that ∆ is
invariant as ltr(Kerf∗) is invariant. Further, using (3.9), (3.10) and (3.12) we obtain

cos θ = −g1(U, λϕ
2U)

|ϕU ||τP3U |
= −λ

g1(U, ϕ
2U)

|ϕU ||τP3U |
=

λ|ϕU |
|τP3U |

=
λ

cos θ
,

which implies cos2 θ = λ(constant). Therefore f is a screen pseudo-slant lightlike submersion.

Corollary 3.1. Let f be a lightlike submersion from an indefinite Sasakian manifold (M1, ϕ, ξ, η, g1) onto a lightlike
manifold (M2, g2). Then, f is a screen-pseudo slant lightlike submersion if and only if
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(i) ltr(Kerf∗) is invariant and D1 is anti-invariant with respect to ϕ,

(ii) there exists a constant α ∈ [0, 1) such that BωU = −αU , ∀U ∈ Γ(D2). Here D1 and D2 are orthogonal distributions
on f−1(x) such that S(Kerf∗) = D1 ⊥ D2 ⊥ ⟨ξ⟩.

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a screen pseudo-slant lightlike submersion. Then D1 is anti-invariant
and ltr(Kerf∗) is invariant with respect to ϕ. Further, for U ∈ Γ(D2), we have

ϕU = τP3U + ωP3U, (3.13)

where τP3U and ωP3U are tangential and transversal components of ϕU , respectively. On applying ϕ to (3.13)
and considering tangential components of ϕU , we get

−U = (P3 ◦ τ)2U + BωU. (3.14)

Since f is a screen pseudo-slant lightlike submersion, from Theorem 3.1(ii) for any U ∈ Γ(D2), we have
(P3 ◦ τ)2U = − cos2 θU , where cos2 θ = λ(constant)∈ [0, 1). Therefore from (3.14), we obtain

BωU = −αU, ∀U ∈ Γ(D2) (3.15)

where 1− λ = α(constant)∈ [0, 1).
Conversely, suppose that we have conditions (i) and (ii). Then by using similar steps as in the proof of

Theorem 3.1(i), we can derive ∆ is invariant with respect to ϕ. Using (3.14) and (3.15), we obtain

−U = (P3 ◦ τ)2U − αU,

which gives
(P3 ◦ τ)2U = −λU,

where 1− α = λ(constant)∈ (0, 1]. This completes the proof.

Corollary 3.2. Let f be a screen pseudo-slant lightlike submersion from an indefinite Sasakian manifold (M1, ϕ, ξ, η.g1)
onto a lightlike manifold (M2, g2) with slant angle θ, then for any U, V ∈ Γ(D2), we have

ĝ(τP3U, τP3V ) = cos2 θ{ĝ(U, V )− η(U)η(V )}, (3.16)

and
g1(ωP3U, ωP3V ) = sin2 θ{ĝ(U, V )− η(U)η(V )}. (3.17)

Proof. Using (3.2), (2.3) and Theorem 3.1, we obtain ĝ(τP3U, τP3V ) = −ĝ(U, (P3 ◦ τ)2V ), where U, V ∈ Γ(D2).
Now, from the last equation and (3.12), we get ĝ(τP3U, τP3V ) = −ĝ(U, λϕ2U) = λĝ(ϕU, ϕV ) which proves (3.16).
Using similar steps as above, we can obtain (3.17).

Lemma 3.2. Let f be a screen pseudo-slant lightlike submersion from an indefinite Sasakian manifold (M1, ϕ, ξ, η, g1)
onto a lightlike manifold (M2, g2). Then for U, V ∈ Γ(Kerf∗ − ⟨ξ⟩), we have

(i) ĝ(∇̂UV, ξ) = g1(V, ϕU),

(ii) ĝ([U, V ], ξ) = 2g1(V, ϕU).

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a screen pseudo-slant lightlike submersion. As ∇ is a metric
connection, using (2.5) and (2.12), we have

ĝ(∇̂UV, ξ) = g1(V, ϕU), (3.18)

where U, V ∈ Γ(Kerf∗ − ⟨ξ⟩). Since ∇̂ is a symmetric connection, from (3.18) and (2.3), we obtain ĝ([U, V ], ξ) =
2g1(V, ϕU).

Theorem 3.2. Let f be a screen pseudo-slant lightlike submersion from an indefinite Sasakian manifold (M1, ϕ, ξ, η, g1)
onto a lightlike manifold (M2, g2). Then ∆ is integrable if and only if

(i) Q2T s
V ϕP1U = Q2T s

UϕP1V ,

(ii) Q3T s
V ϕP1U = Q3T s

UϕP1V ,
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(iii) P3(T ∗
V ϕP1U) = P3(T ∗

UϕP1V ),

where U, V ∈ Γ(∆).

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a screen pseudo-slant lightlike submersion. Suppose that U, V ∈
Γ(∆). Then from (3.7), we obtain Q2T s

UϕP1V = ϕP2∇̂UV , which implies Q2T s
UϕP1V −Q2T s

V ϕP1U = ϕP2[U, V ].
Using (3.8), we have Q3T s

UϕP1V = CQ3T s
UV + ωP3∇̂UV , which gives Q3T s

UϕP1V −Q3T s
V ϕP1U = ωP3[U, V ].

Also from (3.6), we get P3(T ∗
UϕP1V ) = τP3∇̂UV + BQ3T s

UV . The last equation implies P3(T ∗
UϕP1V )−

P3(T ∗
V ϕP1U) = τP3[U, V ]. Thus the proof follows from above equations and Lemma 3.2(ii).

Theorem 3.3. Let f be a screen pseudo-slant lightlike submersion from an indefinite Sasakian manifold (M1, ϕ, ξ, η, g1)
onto a lightlike manifold (M2, g2). Then D1 is integrable if and only if

(i) P1(TV ϕP2U) = P1(TUϕP2V ),

(ii) P3(TV ϕP2U) = P3(TUϕP2V ),

(iii) Q3(∇s
V ϕP2U) = Q3(∇s

UϕP2V ),

where U, V ∈ Γ(D1).

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a screen pseudo-slant lightlike submersion. Suppose that U, V ∈
Γ(D1). Then from (3.5), we get P1(TUϕP2V ) = ϕP1∇̂UV , which gives P1(TUϕP2V )− P1(TV ϕP2U) = ϕP1[U, V ].
Using (3.6), we obtain P3(TUϕP2V )− BQ3T s

UV = τP3∇̂UV . The last equation implies P3(TUϕP2V )−
P3(TV ϕP2U) = τP3[U, V ]. Also, from (3.8), we get Q3(∇s

UϕP2V )− CQ3T s
UV = ωP3∇̂UV , which gives

Q3(∇s
UϕP2V )−Q3(∇s

V ϕP2U) = ωP3[U, V ]. Therefore we conclude the proof from Lemma 3.2(ii) and above
equations.

Theorem 3.4. Let f be a screen pseudo-slant lightlike submersion from an indefinite Sasakian manifold (M1, ϕ, ξ, η, g1)
onto a lightlike manifold (M2, g2). Then D2 ⊥ ⟨ξ⟩ is integrable if and only if

(i) P1(∇̂UτP3V − ∇̂V τP3U) = P1(TV ωP3U − TUωP3V ),

(ii) Q2(∇s
UωP3V −∇s

V ωP3U) = Q2(T s
V τP3U − T s

U τP3V ),

where U, V ∈ Γ(D2 ⊥ ⟨ξ⟩).

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a screen pseudo-slant lightlike submersion. Suppose that
U, V ∈ Γ(D2 ⊥ ⟨ξ⟩). Then using (3.5), we get P1(∇̂UτP3V ) = −P1TUωP3V + ϕP1∇̂UV , which implies
P1(∇̂UτP3V )− P1(∇̂V τP3U) = P1(TV ωP3U)− P1(TUωP3V ) + ϕP1[U, V ]. Also, from (3.7) we obtain
Q2∇s

UωP3V +Q2T s
U τP3V = ϕP2∇̂UV . The last equation gives Q2∇s

UωP3V −Q2∇s
V ωP3U = Q2T s

V τP3U −
Q2T s

U τP3V + ϕP2[U, V ]. Thus the proof follows from above equations.

Theorem 3.5. Let f be a screen pseudo-slant lightlike submersion from an indefinite Sasakian manifold (M1, ϕ, ξ, η, g1)

onto a lightlike manifold (M2, g2). Then, the induced connection ∇̂ on f−1(x) is a metric connection if and only if

(i) ϕQ2T s
UV = 0 and BQ3T s

UV = 0,

(ii) T ∗
U vanishes on Γ(Kerf∗),

where U ∈ Γ(Kerf∗) and V ∈ Γ(∆).

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a screen pseudo-slant lightlike submersion. From [3], the induced
connection ∇̂ on f−1(x) is a metric connection if and only if ∆ is a parallel distribution with respect to
∇̂. Using (2.4), (2.12), (2.15) and (3.4), for U ∈ Γ(Kerf∗) and V ∈ Γ(∆), we get ∇UϕV = ϕT ∗

UV + ϕ∇∗t
U V +

ϕQ2T s
UV + BQ3T s

UV + CQ3T s
UV . On equating tangential components of the last equation, we obtain ∇̂UϕV =

ϕT ∗
UV + ϕ∇∗t

U V + ϕQ2T s
UV + BQ3T s

UV . This completes the proof.
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4. Geometry of Foliations

In the present section, we obtain necessary and sufficient conditions for foliations determined by
distributions on a fiber of a screen pseudo-slant lightlike submersions to be totally geodesic.

Theorem 4.1. Let f be a screen pseudo-slant lightlike submersion from an indefinite Sasakian manifold (M1, ϕ, ξ, η, g1)
onto a lightlike manifold (M2, g2). Then, ∆ defines a totally geodesic foliation on f−1(x) if and only if g1(Dl(U, ϕP2W ) +
Dl(U, ωP3W ) + T l

UτP3W,ϕV ) = 0, for U, V ∈ Γ(∆) and W ∈ Γ(S(kerf∗)).

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a screen pseudo-slant lightlike submersion. Then, the distribution
∆ on f−1(x) defines a totally geodesic foliation if and only if ∇̂UV ∈ Γ(∆), for U, V ∈ Γ(∆). Since ∇ is a metric
connection, using (2.12) for U, V ∈ Γ(∆) and W ∈ Γ(S(Kerf∗)), we obtain g1(∇̂UV,W ) = −g1(V,∇UW ). Then
from (2.2) and (2.4), we get g1(∇̂UV,W ) = −g1(∇UϕW,ϕV ). Now using (3.2), (2.12) and (2.14), the last equation
gives g1(∇̂UV,W ) = −g1(D

l(U, ϕP2W ) +Dl(U, ωP3W ) + T l
UτP3W,ϕV ) which completes the proof.

Theorem 4.2. Let f be a screen pseudo-slant lightlike submersion from an indefinite Sasakian manifold (M1, ϕ, ξ, η, g1)
onto a lightlike manifold (M2, g2). Then D1 defines a totally geodesic foliation on f−1(x) if and only if

(i) g1(T s
U τW, ϕV ) = −g1(∇s

UωW,ϕV ),

(ii) Ds(U, ϕN) has no component in ϕ(D1),

where U, V ∈ Γ(D1), W ∈ Γ(D2) and N ∈ Γ(ltr(Kerf∗)).

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a screen pseudo-slant lightlike submersion. Then D1 defines a
totally geodesic foliation if and only if ∇̂UV ∈ Γ(D1), for U, V ∈ Γ(D1). Since ∇ is a metric connection,
using (2.12) for U, V ∈ Γ(D1) and W ∈ Γ(D2), we get g1(∇̂UV,W ) = −g1(V,∇UW ). Now using (2.2), (2.4) and
(3.2), we obtain g1(∇̂UV,W ) = −g1(∇UτW + ωW,ϕV ). Further using (2.12) and (2.14), we get g1(∇̂UV,W ) =

−g1(T s
U τW +∇s

UωW,ϕV ). Similarly, for U, V ∈ Γ(D1) and N ∈ Γ(ltr(Kerf∗)), we can prove g1(∇̂UV,N) =
−g1(D

s(U, ϕN), ϕV ). Thus, the proof follows from last two equations and Lemma 3.2(i).

Theorem 4.3. Let f be a screen pseudo-slant lightlike submersion from an indefinite Sasakian manifold (M1, ϕ, ξ, η, g1)
onto a lightlike manifold (M2, g2). Then D2 ⊥ ⟨ξ⟩ defines a totally geodesic foliation on f−1(x) if and only if

(i) g1(τV, TUϕW ) = −g1(ωV,∇s
UϕW ),

(ii) g1(τV, TUϕN) = −g1(ωV,D
s(U, ϕN)),

where U, V ∈ Γ(D2 ⊥ ⟨ξ⟩), W ∈ Γ(D1) and N ∈ Γ(ltr(Kerf∗)).

Proof. Let f : (M1, ϕ, ξ, η, g1) → (M2, g2) be a screen pseudo-slant lightlike submersion. Then, the distribution
D2 ⊥ ⟨ξ⟩ defines a totally geodesic foliation if and only if ∇̂UV ∈ Γ(D2 ⊥ ⟨ξ⟩), for U, V ∈ Γ(D2 ⊥ ⟨ξ⟩). Since ∇ is
a metric connection, using (2.12), (2.2) and (2.4), for U, V ∈ Γ(D2) and W ∈ Γ(D1), we obtain g1(∇̂UV,W ) =

−g1(∇UϕW,ϕV ). Now using (2.14) and (3.2), the last equation gives g1(∇̂UV,W ) = −g1(TUϕW, τV )−
g1(∇s

UϕW,ωV ). Similarly, we have g1(∇̂UV,N) = −g1(TUϕN, τV )− g1(D
s(U, ϕN), ωV ), for any U, V ∈ Γ(D2)

and N ∈ Γ(ltr(Kerf∗)). Thus, we conclude the proof.
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[15] Şahin, B., Gündüzalp, Y.: Submersions from semi-Riemannian manifolds onto lightlike manifolds. Hacet. J. Math. Stat. 39(1), 41-53 (2010).
[16] Shukla, S. S., Yadav, A.: Screen pseudo-slant lightlike submanifolds of indefinite Sasakian manifolds. Mediterr. J. Math. 13, 789-802 (2016).
[17] Shukla, S. S., Singh, V.: Screen slant lightlike submersions from indefinite Sasakian manifolds onto lightlike manifolds. Lobachevskii J. Math. 43(3),

697-708 (2022).
[18] Shukla, S. S., Singh, V.: Transversal lightlike submersions from indefinite Sasakian manifolds onto lightlike manifolds. Commun. Korean Math.

Soc. 38(4), 1191-1213 (2023).
[19] Shukla, S. S., Singh, V.: Radical transversal screen slant lightlike submersions from indefinite Sasakian manifolds onto lightlike manifolds. Int. J.

Geom. Methods Mod. Phys. 21(1), 1-21 (2024).
[20] Shukla, S. S., Omar, S.: Screen pseudo-slant lightlike submersions. J. Indones. Math. 29(1), 64-74 (2023).
[21] Takahashi, T.: Sasakian manifold with pseudo-Riemannian metric. Tohoku Math. J. 21(2), 271-290 (1969).

Affiliations

S. S. SHUKLA
ADDRESS: Department of Mathematics, University of Allahabad, Prayagraj-211002, India.
E-MAIL: ssshukla_au@rediffmail.com
ORCID ID: 0000-0003-2759-6097

VIPUL SINGH
ADDRESS: Department of Mathematics, University of Allahabad, Prayagraj-211002, India.
E-MAIL: vipulsinghald@gmail.com
ORCID ID: 0000-0003-3842-0345

dergipark.org.tr/en/pub/iejg 446

https://dergipark.org.tr/en/pub/iejg

	1 Introduction
	2 Preliminaries
	3 Screen Pseudo-slant Lightlike Submersions
	4 Geometry of Foliations

