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Introduction 

With the advancement of artificial intelligence, deep 

learning have successfully used in various fields, including 

healthcare [1], hyperspectral imaging [2], and remote 

sensing [3], [4]. One of the main challenges in deep learning 

is collecting data and scaling the data for training purposes. 

GANs [5], which consist of two competing players: a 

Generator model that produces image or audio data from 

random noise input and a Discriminator model that 

classifies real and generated data, can help address this 

problem by generating synthetic data for data augmentation. 

Generative models focus on capturing the generalization 

ability of the model and allow sampling from the learned 

distribution from training, and the statistical distribution, 

respectively. The Generator maps from a latent space Z (a 

hidden space data) to X (real image data), while the 

Discriminator identifies whether the generated output is real 

or fake. GANs are very interesting due to their ability to 

explore the structure of the hidden space and to generate 

realistic data in the problem area and can help develop an 

intuition for what the generator model has learned. In the 

proposed approach, they provided a better solution than the 

known StyleMapping network while maintaining state-of-

the-art image quality. In this study, the DCGAN [6] model, 

a variant of GANs known to produce realistic and high 

quality images, is taken as a reference. An empirical 

comparison of commonly used quantitative and qualitative 

evaluation techniques is made, considering various latent 

dimensions and learned data distributions. The relationship 

between the semantic features exhibited in images 

generated by GANs and the latent codes of different 

generator models has been studied in many works. Hwang 

[7] analyzed the impact of the selected latent space 

dimension of an automatic encoder on the final 

performance.  Ayvaz and Baytaş [8] proposed a deep 

learning model to analyze variables that are determinants 

of the transformation from Mild Cognitive Impairment 

(MCI) to Alzheimer's disease. Using a generative decoder 

and Alzheimer's dementia-inducing dimensions, they 

created synthetic dementia patient images from MCI 

patients were generated. They obtained promising 

quantitative and qualitative results with their data sets. In 

their study, Shimizu et al. [9] investigated the connection 

between latent vectors and human perception or cognition 

through psycho-visual analysis affecting the latent vectors 

of human faces. In the perception study, they examined 

whether subjects could perceive visuals in facial images 

before and after changes in the latent space. In the cognition 

study, they analyzed whether participants could recognize a 
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Researchers are showing great interest in Generative Adversarial Networks (GANs), which use deep 

learning techniques to mimic the content of datasets and are particularly adept at data generation. Despite 
their impressive performance, there is uncertainty about how GANs precisely map latent space vectors to 

realistic images and how the chosen dimensionality of the latent space affects the quality of the generated 

images. In this paper, we explored the potential of generative models in generating animal face images. 
For this purpose, we used the Deep Convolutional Generative Adversarial Network (DCGAN) model as a 

reference. To analyze the impact of selected latent space vectors, we synthesized animal face images by 

training data representations in the DCGAN model with the well-known AFHQ dataset from the literature. 
We compared the quantitative evaluation of the produced images using Fréchet Inception Distance (FID) 

and Inception Score (IS). As a result, we demonstrated that generative models can produce images with 

latent sizes significantly smaller and larger than the standard size of 100. 
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face as similar even after latent field changes. In their 

experiments, they showed that the distance between facial 

images in latent space is related to human perception and 

cognition of visual changes. Zhang and Schomaker [10] 

focused on the problems of how to ensure that the samples 

produced are realistic, how to take advantage of the latent 

space of the generator to adjust a synthesized image, and 

how to explain the text to image conversion layers. They 

used Good/Bad human face and bird images as data sets. 

They presented an algorithm that identifies semantically 

identifiable sides in the latent space of a conditional text-to-

image GAN architecture by performing unbiased 

component analysis using the generator's pre-trained weight 

values. They achieved better than 98% accuracy in 

predicting good/bad classes for synthetic samples. Ntavelis 

et al. [11] proposed a separate latent space propagation for 

Generative Adversarial Networks (GANs). Instead of 

drawing latent vectors, they sampled from a finite set of 

elements. They developed this approach inspired by the 

coding of data in biological organisms.  

Our main contribution in this research is as follows:  

• Firstly, we conduct comparative analyses on animal face 

image datasets using the DCGAN model, which is a popular 

variant of GANs for synthetic image generation.  

• Secondly, we provide a detailed explanation of the 

DCGAN model in the field of image synthesis and critically 

evaluate its performance.  

• Thirdly, we qualitatively compare the impact of different 

dimensions of the latent space on the image quality 

produced by DCGAN by analyzing datasets with different 

latent space dimensions.  

• Finally, we evaluate the potential use of optimized FID 

and IS metrics for assessing the quality of natural animal 

face images. 
This paper is structured as follows: Section 2 presents the 
characteristics of the datasets, the GAN model used, the 
experimental setups and the analysis of the experimental 
results. Then, section 3 presents the evaluation metrics we 
use throughout the paper. Finally, in section 4, we discuss 
the results of the proposed model. 

Methodology 

Dataset 

We used the publicly available AFHQ (Animal Faces High 

Quality) [12] dataset from Kaggle to evaluate the DCGAN 

model. This dataset includes a wide range of high-quality 

animal face photographs with diversity in breeds, ages, and 

genders to provide variation in online animal faces. It 

consists of over 15,000 images in total, with each of the 

three different animal species (cat, dog, and wildlife) 

contributing 5,000 images. All the images are aligned 

vertically and horizontally, with the eyes centered. 

GAN and variant DCGAN 

1. Generative Adversarial Network (GAN) 

Goodfellow at al. [5] proposed GANs as a class of 

generative models. GANs are deep learning models that 

utilize two different artificial neural networks to learn by 

competing with each other and mimic the content of data 

sets. During the training phase, they engage in a mutual 

competition and collaboration. The generator produces 

detailed synthetic (fake) data that completely fools the 

discriminator, while the discriminator generates penalty 

scores to distinguish between fake and original data. Both 

the generator and the discriminator strive to maximize their 

own success while minimizing the success of their 

opponent. This means that both networks are optimized to 

achieve their own objectives: the G-Generator must create 

realistic examples, while the D-Discriminator must be 

experienced in rejecting generator samples and accepting 

real examples. The generator aims to maximize the 

likelihood of its outputs (i.e., the fake data) being 

recognized as ”real,” while the discriminator aims to 

minimize the same value [5].  

The training process of a GAN model is divided into two 

stages: Generator stage: The generator takes z latent noise 

data as input and generates some fake example data, which 

is then passed to the discriminator. At the beginning, the 

generator does not know how to generate the actual data 

because it has never seen it before. However, the 

discriminator updates its parameters and computes the cost, 

which then backpropagates the gradients to update the 

generator’s parameters. Discriminator stage: The 

discriminator is structurally a binary classifier. It receives 

input data (real and fake) without prior knowledge about the 

quality of correct or incorrect data. As output, it calculates 

the probability of the data generated by the generator being 

true or false [13]. The GAN architecture is shown in Fig. 1. 

 

Figure 1. Architecture of the GAN. 

 

The generator aims to map the latent space data Z to the real 

image data X, while the discriminator tries to determine 

whether the generated output is real or fake. These two 

neural networks, with the objective function V(D, G) given 

in equation 1, compete with each other during training to 

optimize their opposing loss functions. The objective 

function helps balance the competition between these two 

networks and assists the GAN in producing desired results. 

 

 𝐺
𝑚𝑖𝑛 𝑉(𝐷, 𝐺)𝐷

𝑚𝑎𝑥 = 

𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)
[𝑙𝑜𝑔𝐷(𝑥)] +  

𝐸𝑧~𝑃𝑑𝑎𝑡𝑎(𝑧)
[log (1 − 𝐷(𝐺(𝑧)))] 

(1) 
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As in the simultaneous training and learning process where 

two adversarial networks compete in a minmax game, the 

model can become noisy and unstable due to vanishing 

gradients, convergence error and mode collapse. For these 

reasons, GAN variants have been developed to overcome 

these problems.  

2. Deep convolution GAN (DCGAN) 

Fully connected layers tend to degrade the quality of 

generated images in GAN models. To address this issue, 

Radford et al. [6] proposed the DCGAN model, which 

introduces certain constraints to the topology of 

convolutional networks to enable the generation of high-

quality images. They demonstrated that DCGAN 

contributes significantly to unsupervised learning and 

achieves state-of-the-art results on various image 

classification tasks. The DCGAN architecture replaces all 

pooling layers with strided convolutions in the 

discriminator model and transposed convolutions in the 

generator model. Additionally, it uses ReLU activation in 

all layers of the generator model, except for the last layer 

that uses TanH. However, it employs LeakyReLU 

activation function in all layers of the discriminator. The 

key components of the DCGAN model, which are simple 

and transposed convolutions used during the training phase, 

enable the GAN to learn excellent down sampling and up 

sampling operations. These upsampling operations help 

improve image synthesis [14]. Fig. 2, shows the important 

components in the generator and discriminator layers of the 

DCGAN model. 

 

Figure 2. DCGAN model diagram. 

 

Evaluation Techniques 

Assessing the quality of GANs is important in deep learning 

research since it can potentially help make informed 

decisions such as which model to use, when to terminate 

training, and how to improve the model. Therefore, 

quantitative and qualitative evaluations are carried out to 

identify unintended training problems and to analyze how 

successfully the generator and discriminator achieve their 

respective goals. Quantitative evaluation involves using 

metrics such as IS, FID to assess the quality, diversity, and 

similarity of generated samples compared to real data. 

These metrics provide numerical measures that can be used 

to compare different GAN models or track the progress of 

a single model during training. Qualitative evaluation 

includes visual inspection of produced samples and human 

judgment. The visual realism, clarity and consistency angle 

of the created images are examined carefully. Factors such 

as the presence of artifacts, mode collapse (where the 

generator produces only limited variations of the same 

sample) and overall image quality are also considered. 

The Inception Score [15] and Fr´echet Inception Distance 

[16] are widely preferred quantitative evaluation metrics 

that utilize the pre-trained InceptionV3 [17] network on the 

ImageNet dataset [18]. 

1. Inception Score (IS) 

Inception Score (IS) is a metric used in machine learning to 

evaluate the quality of images created by generative 

models. Observing a produced image and making a visual 

assessment of the image is subjective and can vary greatly 

depending on the preferences and biases of the human 

viewer. IS is used to objectively measure the consistent 

performance of generated images, to determine the quality 

and capability of the generative model. The IS algorithm 

focuses on two factors; the quality of the created image and 

the variety of images produced. The IS algorithm equation 

is given in (2).  

Here; p(y|x) denotes the conditional probability 

distribution, the y index identifies the labeling sets, the x 

index identifies the generator sampled image. The score 

calculated with the IS algorithm can range from zero (worst) 

to infinite (best) [19]. 

↑ IS (G) = exp (𝐸𝑥~𝑝𝑔 𝐷𝐾𝐿[p(y|x) || p(y)]) (2) 

2. Fr´echet Inception Distance (FID) 

Fr´echet Initial Distance (FID) is a metric used to evaluate 

the performance of generative models, as the IS algorithm. 

It measures the similarity of the generated images to the 

training images. The smaller the measurement index value, 

the better the structural consistency. The FID equation is 

provided in equation (3). 

↓ FID (x, y) = ||𝜇𝑥 − 𝜇𝑦||
2

+ 

𝑇𝑟(𝐶𝑥 + 𝐶𝑦 − 2(𝐶𝑥𝐶𝑦))
1
2 

(3) 

where (𝜇𝑥, 𝐶𝑥) and (𝜇𝑦, 𝐶𝑦) indices represent the mean and 

linear dependence measure values of the real and produced 

image. A low FID score is desirable [16]. 

While quantitative approaches in GAN evaluation provide 

less subjective measures, they may not always align with 

human perception of the quality of generated images. To 

complement quantitative evaluation results and assess 

overfitting, qualitative evaluation methods can be used to 

gain a better understanding of the learned data 

representations and generalization ability of the model.  

One such method is the nearest neighbors approach, which 

involves classifying or predicting samples based on their 

similarities to known data points in the training set. This 

provides insights into how well the generated samples align 
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with the characteristics of the real data and can offer a more 

intuitive assessment of image quality. 

3. Nearest Neighbors  

One way to check for overfitting in synthetic generated 

images is to visualize the generated images along with their 

nearest neighbors, which are the training images that are 

most similar to them. Nearest neighbors can be computed at 

the pixel level using similarity metrics such as Euclidean 

distance. However, one disadvantage of Euclidean distance 

is its sensitivity to small perturbations, such as shifting an 

image by a few pixels. As a result, GANs that produce 

transformed training data can pass such overfitting tests 

[20]. 

Experimental Results 

Application Details  

For the model training, we set the hyperparameters as 

follows: batch size = 64, initial weight = 0.02, image size = 

64 × 64, latent space noise vector = 1, 2, 4, 8, 100, 512, 

1000, and epoch numbers = 100, 200, 350. We used the 

open CEZERİ Library (OCL) for image preprocessing [21]. 

Additionally, we used a learning rate of 0.0002 and the 

gradient-based Adam optimizer [22] with momentum β1 = 

0.5, β2 = 0.999, known to converge faster during training. 

All experiments were conducted using the PyTorch open-

source deep learning framework and implemented in the 

Python programming language. We performed the training 

and testing procedures in a server-based Google Colab 

environment equipped with 13,342 RAM and Tesla K80 

and NVIDIA T4 GPUs for accelerated processing.  

Quantitative Results 

Initially, we evaluated the DCGAN empirically for the 

widely used [23] 100-dimensional hidden field by training 

it on the AFHQ dataset. Fig. 3 shows the results obtained 

for two quantitative assessment metrics, IS and FID, 

respectively. In Fig. 3, it can be observed that the AFHQ 

Wild dataset performs better in terms of the FID metric, 

while the AFHQ Dog dataset achieves better results in the 

IS metric when using the DCGAN model in a 100-

dimensional latent space.  

 

Figure 3. DCGAN evaluation scores for dim(z) = 100. 

The FID metric compares the similarity of synthetic images 

to real images, indicating that the DCGAN model produces 

more realistic images with the AFHQ Wild dataset. On the 

other hand, the IS metric evaluates image quality and 

diversity, and it is observed that the DCGAN model 

performs well with the AFHQ Dog dataset. To analyze the 

effect of different latent space dimensions on the DCGAN 

model, the AFHQ Cat dataset was used as a reference, and 

the DCGAN model was trained with latent dimensions 

ranging from 1 to 1000. In Fig. 4, we can observe how the 

FID and IS values change during training for seven different 

latent dimensions: dim(z) ∈ 1, 2, 4, 8, 100, 512, 1000. The 

FID value corresponding to the smallest latent dimension, 

dim(z) = 1, is higher than the other six dimensions at all 

iterations, indicating poorer performance. Similarly, the IS 

value is lower than the other six dimensions at all iterations, 

also indicating poorer performance. The dimensionality of 

the latent space should typically be at a certain value that 

captures the complexity of the target data distribution [24]. 

 

Figure 4. Quantitative results of AFHQ Cats. 

 

In Fig. 4, it can also be observed that the AFHQ Cat dataset 

fails to capture the complexity at dim(z) values of 1, 2, and 

4. A similar situation is observed for the AFHQ Dog and 

AFHQ Wild Animals datasets as well. Despite the 

significant difference between dimensions 8 and 1000, the 

FID and IS values intertwined during training, performing 

well as the Nash equilibrium was achieved. Higher 

dimensional latent spaces (100, 512, 1000) have the 

potential to capture more complex variations and details in 

the generated data, but they can also make training more 

challenging and computationally expensive. On the 

contrary, lower-dimensional latent spaces (1, 2, 4) may 

limit the complexity and diversity of the generated samples 

[24]. In the DCGAN model with the smallest latent space 

dimension trained on three datasets, instability and mode 

collapse were observed during GAN training due to 

insufficient latent space provided to the generator to 

generate features and limited ability to capture image 

features. As a result of mode collapse, the quantitative 

metric graphs of the generated synthetic images are shown 

in Fig. 5. 
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Mode collapse disrupts the stability of the DCGAN model, 

preventing the generation of high-quality and diverse 

images, resulting in FID and IS values exhibiting unstable 

fluctuations within a certain range. 

 

Figure 5. Evaluation scores for dim(z) = 1. 

Consequently, the generated images suffer from distortions 

or low diversity. In our experiments, we observed evident 

and pronounced errors in latent space dimensions of 1, 2, 

and 4. Taking into consideration the best FID and IS results 

obtained from Table 1, and Table 2 it can be said that the 

4-dimensional model performs better overall compared to 

the 1-dimensional and 2-dimensional models.  

Comparing different latent dimensions fairly and avoiding 

potential misleading conclusions that could arise from 

either mode collapse or convergence errors can help 

determine the final model that may be affected by one of 

these issues. Furthermore, for a more qualitative analysis 

of the latent space’s impact on the image quality, the FID 

value with the lowest reference point and the IS value with 

the highest reference point can be chosen as representatives 

for a specific dimension. 

 

 

Table 1. TOP-5 Documented FID Results Per Latent Dimension- AFHQ Cat. 

dim(z) 

FID 1 2 4 8 100 512 1024 

1. 0.148 0.083 0.033 0.025 0.021 0.024 0.043 

2. 0.154 0.085 0.038 0.034 0.024 0.037 0.051 

3. 

4. 

5. 

0.177 

0.198 

0.203 

0.087 

0.090 

0.096 

0.040 

0.041 

0.047 

0.043 

0.050 

0.063 

0.027 

0.029 

0.032 

0.045 

0.048 

0.053 

0.057 

0.062 

0.066 

 

Table 2. TOP-5 Documented IS Results Per Latent Dimension- AFHQ Cat. 

dim(z) 

IS 1 2 4 8 100 512 1024 

1. 1.551 2.091 2.287 2.475 2.586 2.537 2.324 

2. 1.530 2.083 2.269 2.460 2.550 2.516 2.305 

3. 

4. 

5. 

1.493 

1.475 

1.453 

2.045 

2.021 

2.004 

2.244 

2.217 

2.189 

2.451 

2.429 

2.391 

2.523 

2.498 

2.462 

2.498 

2.473 

2.460 

2.288 

2.265 

2.246 

 

Qualitative Results 

Fig. 6 shows the generated images and the corresponding 

loss graphs produced by the DCGAN model trained with 

a 100-dimensional latent space over 100 epochs using 

5000 images from each of the AFHQ Cat, AFHQ Dog, 

and AFHQ Wild Animals datasets. The process based on 

the generator and discriminator loss functions oscillates 

within a narrow range due to the effort to reach a Nash 

equilibrium, which is a situation where the discriminator 

cannot distinguish between real and fake images in a 

competitive system. However, achieving this balance is 

challenging due to the simultaneous training of the two 

adversarial networks. It can be observed in the loss 

graphs that the discriminator’s loss decreases faster 

towards zero compared to the generator’s loss. Upon 

examining the generated images (left) in Fig. 6, it can be 

observed that as the epochs increase, the Generator 

manages to capture somewhat realistic images and 

deceive the Discriminator to some extent. When 

examining the loss functions (right)for all three shapes, 

it is evident that the Generator achieves the Nash 

equilibrium with the Discriminator earlier in the Cat and 

Dog datasets compared to the Wild dataset, 

demonstrating a more stable progress.  

The delayed attainment of the Nash equilibrium in 

training the DCGAN with the Wild dataset suggests that 

the generator network struggles to capture the features of 

real data by utilizing the feature maps of the 

discriminative network based on images of four different 

animal species. Therefore, the loss function of the 

generator network oscillates in a wider range. In the 

training of DCGAN with the smallest latent space 

dimension, the generator lacks sufficient latent space to 
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generate meaningful features, leading to limited ability 

in capturing image features.  

The generated images from the DCGAN model trained 

on three different datasets are shown in Fig. 7. While it 

is evident that the model starts to capture some fine 

details, it remains weak in terms of image diversity as it 

continues to produce similar-looking images. 

 

Figure 6. Images and loss plots produced in the 

DCGAN model trained with AFHQ Cat, AFHQ Dog 

and AFHQ Wild Animals datasets. 

 

This occurs when the generative model becomes too 

specialized in capturing training data models but fails to 

generalize well to unseen data.  

 

Figure 7. Mode collapse observed with synthetic 

images generated the latent space dimension z=1 of 

DCGAN trained with three separate datasets. 

 

To determine whether some visually generating ”fake” 

images were simply memorized training data or suffered 

from overfitting, we compared them with the training 

images. Since manual comparison was not feasible, we 

used a distance metric, namely the Euclidean distance 

network, to measure the similarity between the feature 

representations of the generated images and the training 

images. As we extracted the clearest images with the cat 

dataset in our experiments, the cat dataset was utilized as 

a reference. We selected the closest neighbors (from the 

training data) for the generated images based on their 

feature representations. Fig. 8 illustrates the closest 

neighbors for three selected images per latent space 

dimension dim(z) ∈ 8, 100, 512, 1000. We can observe 

the similarities between the generated images and their 

closest neighbors. However, no model produced images 

that were identical to the training images, indicating that 

the generators were able to learn meaningful and 

generalizable data representations without significant 

overfitting. 

 

Figure 8. Nearest neighbor of three chosen generated 

images per each latent dimension dim(z) ∈ 8, 100, 512, 

1000. 

Conclusion  

The choice of noise vector size used in the latent space 

domain is usually made by empirical experiments to 

question the ultimate effect of the performance of the 

generative model on a given data set. This article 

explores the effect of the latent field dimension on 

DCGAN’s ability to synthesize plausible and diverse 

animal facial images and learn a semantically 

interpretable latent representation of the data. Visual 

inspection of the synthesized images showed that 

increasing or decreasing the commonly preferred 

common latent size (100) still enables the generative 

model to produce new compelling animal facial images. 

In our experiments, despite going as high as 512 and 

1000, the complex variations and details in the generated 

images could not be captured. However, a significant 

improvement in DCGAN performance has been seen in 

recent increments of the 4th latent dimension. Further 

increase in latent size (8 - 100- 512 -1000) after initial 

improvements resulted in less degradation of learned 

mapping on DCGAN performance in quantitative graphs 

and a milder positive impact on qualitative results. 

Considering both the quantitative and qualitative results, 

dimensions 8, 100, and 512 seem to be the most 

prominent in our settings. Considering the performance 

of the hidden area dimension 8, FID and IS values at the 

end of the training, sample diversity and image quality 

are similar to the common hidden dimension. 

Nevertheless, the overall performance of the model 

trained with a 100-dimensional hidden space field shows 

remarkable results. Possible mode crashes and instability 

in the DCGAN training procedure are related to many 

factors as well as to the chosen hidden dimension value. 

Ultimately, the latent space dimension is a factor that 

affects the performance of GANs. In future studies, 

research on automatic hidden area size selection for 

GANs can be investigated. These studies may attempt to 

automatically determine the optimal size by analyzing 

the characteristics of the dataset or by other methods. 

This can enable the user to use GANs more easily and 
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effectively without having to adjust the size by trial and 

error. As a result, this study can lead to advances in 

generative modeling and better understanding of the 

effects of hidden area size on GAN performance and 

designing better GAN models to optimize. Second, by 

combining quantitative and qualitative assessment 

methods, researchers can obtain a more comprehensive 

assessment of GAN models, taking into account both 

objective measures and subjective human perception. 

This helps assess the strengths and weaknesses of the 

model’s performance and make informed decisions 

about its further development. 

 

"There is no need to obtain permission from the ethics 
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