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Abstract. In this study, we introduce the concepts of fuzzy closure Hopf space and fuzzy closure Hopf group
within the framework of fuzzy closure spaces, using homotopy theory. We investigate the relationships between
the fuzzy closure Hopf group and its homotopy equivalence. Furthermore, we demonstrate the existence of a
contravariant functor from the category of fuzzy closure Hopf spaces and the continuous functions, to the category
of groups and homomorphisms. This is demonstrated by illustrating that the set of homotopy function classes
among fuzzy closure Hopf groups constitutes a group.
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1. Introduction

A Hopf space is a topological space X with an identity element e and a multiplication m : X × X → X such that
m ◦ (1X , c) and m(c, 1X) are homotop to the identity map 1X where c : X → X, c(x) = e [1] . If m(m × 1X) homotop
to m(1X × m), the m is called homotopy associative. If there exists a map n : X → X such that m(n, 1X) and m(1X , n)
homotop to c then n is called homotopy inverse. A Hopf group, a group structure in the homotopy category, is a Hopf
space with homotopy associative multiplication and homotopy inverse. A well-known example of the Hopf group
is the topological group. Hopf groups have facilitated the solution of complex topological problems by effectively
transforming them into algebraic contexts. To comprehensively understand Hopf spaces, please refer to [18, 23, 27].

Hopf space and Hopf group structures have attracted interest and have been the subject of research in various fields
of mathematics. In [8, 10, 15–17], the digital counterparts of these concepts have been defined. The study of Hopf
group structures extends to fuzzy topological spaces in [5, 6]. The concept of co-Hopf space, which serves as the dual
notion of Hopf space, has been examined in the context of digital images in [9,17], fuzzy topological spaces in [7], and
closure spaces in [4]. In this study, the Hopf group structure is constructed on fuzzy closure spaces, a generalization of
fuzzy topological space.

Closure space is defined in [3] by a closure operator C satisfies

c1) C(∅) = ∅
c2) A ⊂ C(A)
c3) C(A ∪ B) = C (A) ∪ C (B).
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A closure space is a topological space when C is Kuratowski closure operator, i.e. satisfies c4) C(C(A)) = C(A).
See [2, 3, 11] for detailed knowledge about closure spaces.

Topological concepts, such as separation axioms, continuity, and compactness, are generalized to closure spaces
[20]. The notation of homotopy is defined in [25] in closure spaces.

2. Preliminaries

This section presents some basic concepts of fuzzy sets and fuzzy closure space.
[22] A fuzzy set on a nonempty set X is a function A from X to I = [0, 1]. The set of all fuzzy sets on X is denoted

by IX [13].
Let A and B be fuzzy sets on X. Then, ∀x ∈ X

Subset: A ≺ B⇔ A(x) < B(x)
Equility: A = B⇔ A ≺ B and B ≺ A.
Union: (A ∨ B)(x) = sup{A(x), B(x)}
Intersection: (A ∧ B)(x) = in f {A(x), B(x)}
Complement: Ac(x) = (1 − A)(x) = 1 − A(x)
Empty fuzzy set: 0(x) = 0
Universal fuzzy set: 1(x) = 1.

Let A ∈ IX and B ∈ IY . The cartesian product of A× B is a fuzzy set on X ×Y defined as (A× B)(x, y) = in f {A(x), B(y)}
[21].

A fuzzy point pr
x in X is a fuzzy set defined as pr

x = {(x, r)} ∪ {(y, 0) | y , x, y ∈ X} [24]. Then, x is called the
support, and r is called the degree of membership of pr

x. Let A ∈ IX and pr
α is a fuzzy point in X. Then, pr

α ∈ A⇐⇒ r ≤
A(x),∀x ∈ X. It is clear that any fuzzy set A can be written as the union of fuzzy points in A, i.e. A =

∨
pr

x∈A
pr

x. Cartesian

product of two fuzzy points pr
x ∈ X and pt

y ∈ Y is a fuzzy point in X × Y defined as pmin{r,t}
(x,y) [19]. Let πi be projections

from ΠXi to Xi. Then, πi(pr
x) is a fuzzy point in Xi with the support πi(x) and with the degree of membership of πi(x).

Support of a fuzzy set A ∈ IX is a crisp set in X defined as suppA = {x ∈ X | A(x) > 0}.
Let f be a map from X to Y and A ∈ IX , B ∈ IY . f (A) is a fuzzy set in Y defined as

f (A)(y) =

 sup
x∈ f −1({y})

A(x) , f −1({y}) , ∅

0 , otherwise

and f −1(B) is a fuzzy set in X defined as f −1(B)(x) = B( f (x)) [26].

Definition 2.1 ( [12, 21]). A fuzzy closure map on a nonempty set X is a function C : IX −→ IX which satisfies the
following axioms:

(i) C
(
0
)
= 0,

(ii) A ≤ C (A) for all A ∈ IX ,
(iii) C(A ∨ B) = C (A) ∨ C (B) for all A, B ∈ IX .

The pair (X,C) is called a fuzzy closure space. (X, pr
α,C) is called a pointed fuzzy closure space with the base point

pr
α ∈ IX .

If C(A) = A for A ∈ IX , then A is called a fuzzy closed set and called a fuzzy open set if its complement is fuzzy
closed, i.e. C(Ac) = Ac.

3. Fuzzy Closure Space

In this section, fundamental concepts related to fuzzy closure spaces have been introduced. Furthermore, certain
operations among fuzzy closure maps have been defined, deriving new fuzzy closure maps.

Example 3.1. Let X , ∅ and 1X : IX −→ IX be the identity map. Then, 1X is the finest fuzzy closure operator on X.
Let C : IX −→ IX be a map defined as C(0) = 0 and C(A) = 1 if A , 0. Then, C is the coarsest fuzzy closure operator
on X.
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Example 3.2. Let X be a nonempty set and C : IX −→ IX be defined as C(A)(x) = sup{A(y) | y ∈ X}, for all x ∈ X.
Then, C is a fuzzy closure operator on X.

Example 3.3. Let X = {1, 2, 3, 4}. The map C : IX −→ IX defined as

C(A) =



0 if A = 0
∧{B | suppB = {1, 2}} if suppA = {1}, {2} or {1, 2}
∧{B | suppB = {2, 3}} if suppA = {3} or {2, 3}
∧{B | suppB = {2, 4}} if suppA = {4} or {2, 4}
∧{B | suppB = {1, 3, 4}} if suppA = {1, 3}, {1, 4} or {1, 3, 4}
∧{B | suppB = {2, 3, 4}} if suppA = {3, 4} or {2, 3, 4}

1 if suppA = {1, 2, 3}, {1, 2, 4} or X

for all A ∈ IX is a fuzzy closure operator on X.

The following theorem shows that we can define new fuzzy closure operators with the help of existing fuzzy closure
operators.

Theorem 3.4. Let C and C′ be fuzzy closure operators on a set X. Let define union and composition of C and C′ such
that (C ∪ C′)(U) = C(U) ∨ C′(U) and (C ◦ C′)(U) = C(C′(U)). Then, C ∪ C′ and C ◦ C′ are fuzzy closure operators on
X.

Proof. (C ∪ C′)(0) = C(0) ∨ C′(0) = 0 and (C ◦ C′)(0) = 0.

(C ∪ C′)(U) = C(U) ∨ C′(U) ≻ U ∨ U = U

and
(C ◦ C′)(U) = C(C′)(U)) ≻ C′(U) ≻ U

for all U ∈ IX . Let U,W ∈ IX . Then,

(C ∪ C′)(U ∨W) = C(U ∨W) ∨ C′(U ∨W)

= C(U) ∨ C(W) ∨ C′(U) ∨ C′(W)

= (C ∪ C′)(U) ∨ (C ∪ C′)(W),

(C ◦ C′)(U ∨W) = C(C′(U ∨W)) = C(C′(U) ∨ C′(W))

= C(C′(U)) ∨ C(C′(W))

= (C ◦ C′)(U) ∨ (C ◦ C′)(W).

□

Let (X,C) and (X,C′) be fuzzy closure spaces. Define an operation ∩ on fuzzy closure operations such that
(C ∩ C′) (A) = C(A) ∧ C′(B). The following theorem shows that C ∩ C′ is not a fuzzy closure operator on X.

Example 3.5. Let (X,C) be the fuzzy closure space defined in Example 3.3. Define a fuzzy closure operator C′ on X
as follows:

C′(A) =



0 if A = 0
∧{B | suppB = {1, 2}} if suppA = {1}, {2} or {1, 2}
∧{B | suppB = {3, 4}} if suppA = {3} or {4}
∧{B | suppB = {1, 3, 4}} if suppA = {1, 3} or {1, 3, 4}
∧{B | suppB = {1, 2, 4}} if suppA = {1, 4}, {2, 4} or {1, 2, 4}
∧{B | suppB = {1, 2, 3}} if suppA = {1, 2, 3}

1 if suppA = {2, 3}, {3, 4}, {2, 3, 4} or X.
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Let E = p0.2
3 and F = p0.5

4 . Then,

(C ∩ C′)(E ∨ F) = C(E ∨ F) ∧ C′(E ∨ F)

= (∧{B | suppB = {2, 3, 4}}) ∧ 1
= (∧{B | suppB = {2, 3, 4}}) ,

(C ∩ C′)(E) ∨ (C ∩ C′)(F) =
(
C(E) ∧ C′(E)

)
∨
(
C(F) ∧ C′(F)

)
= (∧{B | suppB = {3}}) ∨ (∧{B | suppB = {4}})

= (∧{B | suppB = {3, 4}}) .

So, (C ∩ C′)(E ∨ F) , (C ∩ C′)(E) ∨ (C ∩ C′)(F).

The following theorem defines a fuzzy closure operator, named a quotient fuzzy closure operator, on a set Y with
the help of a fuzzy closure space (X,C) and a surjective function between X and Y .

Theorem 3.6. Let (X,C) be a fuzzy closure space and f : X → Y be a surjective map. Let define a map C f : IY → IY

such that, for all y ∈ Y

C f (A)(y) =

 sup
x∈ f −1({y})

C( f −1(A))(x) , f −1({y}) , ∅

0 , otherwise.

Then, C f is a fuzzy closure operator on Y.

Proof. C f (0) = 0 by the definition of C f . Let A ∈ IY . Since C is a fuzzy closure operator on X, f −1(A) ≺ C( f −1(A)).
Therefore,

A = f f −1(A) ≺ fC( f −1(A)) = C f (A).

Let A, B ∈ IY . C f (A ∨ B)(y) = 0 if f −1(y) = ∅. Then, C f (A ∨ B)(y) = C f (A) ∨ C f (B). Let f −1(y) , ∅. Then,

C f (A ∨ B)(y) = sup
x∈ f −1({y})

C( f −1(A ∨ B))(x)

= sup
x∈ f −1({y})

C(A ∨ B)( f (x))

= sup
x∈ f −1({y})

(C(A) ∨ C(B)) ( f (x))

= sup

 sup
x∈ f −1({y})

C (A( f (x))) , sup
x∈ f −1({y})

C (B( f (x)))


= sup

 sup
x∈ f −1({y})

C
(

f −1(A(x))
)
, sup

x∈ f −1({y})
C
(

f −1(B(x))
)

= sup
{
C f (A)(y),C f (B)(y)

}
=
(
C f (A) ∨ C f (B)

)
(y).

□

The fuzzy closure space (Y,Cα) defined as Theorem 3.6 is named as fuzzy quotient closure space.
In [21], product fuzzy closure space is defined as below:

Definition 3.7. Let {(Xi,Ci) | i ∈ J} be a family of fuzzy closure spaces and
∏
i∈J

Xi = X. Let CΠ : IX −→ IX be defined
as:
pr

x ∈ CΠ(A) if πi(pr
x) ∈ Ci(πi(A j)) for ∃ j = 1, .., n,∀i ∈ J where A = A1 ∨ .. ∨ An. Then, (X,CΠ) is called a product

fuzzy closure space.
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4. Fuzzy Closure Hopf Spaces

This section first defines the homotopy concept of fuzzy closure spaces. Then, with the help of fuzzy homotopy, we
construct the Hopf space structure on fuzzy closure spaces.

Definition 4.1. Let (X,CX) and (Y,CY ) be fuzzy closure spaces. Continuous functions f , g : (X,CX) → (Y,CY ) are
called fuzzy homotopic if there exists a continuous map

F : (X × I,CΠ)→ (Y,CY )

such that F(x, 0) = f and F(x, 1) = g. Then, F is called fuzzy homotopy between f and g, denoted by f F
∼ g.

If f F
∼ g then h ◦ f H

∼ h ◦ g with the fuzzy homotopy H = h ◦ F for any continuous function h : (Y,CY ) → (Z,CZ). Let
(X,CX) and (Y,CY ) be fuzzy closure spaces. If there exist functions f : X → Y and g : Y → X such that f ◦ g ∼ 1Y

and g ◦ f ∼ 1X , then (X,CX) and (Y,CY ) are said to have the same homotopy type. Then, f and g are called homotopy
equivalences. The homotopy relation ” ∼ ” is an equivalence relation. The set of homotopy class of f is denoted by
[ f ], and the set of all homotopy classes of the functions from (X,CX) to (Y,CY ) is denoted by [(X,CX), (Y,CY )].

Example 4.2. Let (R,CR) be fuzzy closure space with CR(A)(x) = sup{A(y) | y ∈ R}. Let f , g : (R,CR) → (R,CR) be
fuzzy continuous functions and F : R × I → R be defined as F(x, t) = tg(x) + (1 − t) f (x). Then F(x, 0) = f (x) and
F(x, 1) = g(x). Therefore, f and g are fuzzy homotopic.

Definition 4.3. Let (X, pr
α,CX) be a pointed fuzzy closure space, µ : X × X → X be continuous and c : X → X be a

constant function such that c(x) = α for all x ∈ X. If the following diagram is homotopy commutative:

X X × X X × X X × X X

X

∆

1X

c×1X

µ

1X×c ∆

1X

i.e.

µ ◦ (c × 1X) ◦ ∆ ∼ 1X ∼ µ ◦ (1X × c) ◦ ∆.

Then, (X, pr
α,CX) is called as a fuzzy closure Hopf space. We will refer to it briefly as an FCH-space. ∆(x) = (x, x) is

the diagonal map. Also c is called homotopy identity of (X, pr
α,CX).

We use the notations µX and cX for the continuous multiplication and homotopy identity of the FCH space (X, pr
α,CX)

to confusion, in the case of more than one FCH space.

Theorem 4.4. Let (X, pr
α,CX) be a FCH space and (Y, pr

β,CY ) has the same homotopy type with X. Then, (Y, pr
β,CY ) is

a FCH space.

Proof. Let f : X → Y and g : Y → X be homotopy equivalences and cX be the homotopy identity of (X, pr
α,CX). Let

µY : Y × Y X × X X Y
g×g µX f

and cY (y) = β for all y ∈ Y . Then,

µY ◦ (1Y × cY ) ◦ ∆ = ( f ◦ µX ◦ (g × g)) ◦ (1Y × cY ) ◦ ∆
= f ◦ (µX ◦ (1X × cX)) ◦ ∆ ◦ g

∼ f ◦ 1X ◦ g

= f ◦ g

∼ 1Y .
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Y Y × Y Y × Y

X × X

X

Y

1Y

∆ c×1Y

µY

g×g

µX

f

By a similar way, µY ◦ (cY × 1Y ) ◦ ∆ ∼ 1Y . Therefore, (Y, pr
β,CY ) is a FCH space with the multiplication µY and

homotopy identity cY . □

Definition 4.5. Let (X, pr
α,CX) and (Y, pt

β,CY ) be FCH spaces. A function

h : (X, pr
α,CX)→ (Y, pt

β,CY )

is called fuzzy Hopf homomorphism if h ◦ µX ∼ µY ◦ (h × h), which means the following diagram is homotopy
commutative:

X × X X Y

Y × Y

µX

h×h

h

µY

Theorem 4.6. Let g : (X, pr
α,CX) → (Y, pt

β,CY ) and h : (Y, pt
β,CY ) → (Z, ps

δ,CZ) be continuous fuzzy Hopf homomor-
phisms. Then, h ◦ g is a fuzzy Hopf homomorphism.

Proof. Since g and h are fuzzy Hopf homomorphisms, there exist fuzzy homotopies F : X × X × I −→ Y and
G : Y × Y × I −→ Z such that

g ◦ µX
F
∼ µY ◦ (g × g) and h ◦ µY

G
∼ µZ ◦ (h × h).

Define F′ : X × X × I −→ Z such that F′ = h ◦ F. Then,

F′((x, y), 0) = (h ◦ F)((x, y), 0)
= h(F((x, y), 0))
= h(g ◦ µX)(x, y)
= (h ◦ g ◦ µX)(x, y),

and

F′((x, y), 1) = (h ◦ F)((x, y), 1)
= h(F((x, y), 1)))
= h(µY ◦ (g × g))(x, y)
= (h ◦ µY ◦ (g × g))(x, y).

Also, define G′ : X × X × I −→ Z such that G′ = G ◦ (g × g × 1[0,1]). Then,

G′((x, y), 0) = G ◦ (g × g × 1[0,1])((x, y), 0)
= G((g × g)(x, y), 0)
= (h ◦ µY ◦ (g × g))(x, y)
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and

G′((x, y), 1) = G ◦ (g × g × 1[0,1])((x, y), 1)
= G((g × g)(x, y), 1)
= G((g(x), g(y)), 1)
= (µZ ◦ (h × h))(g(x), g(y))
= (µZ ◦ (h × h) ◦ (g × g))(x, y)
= (µZ ◦ ((h ◦ g) × (h ◦ g)))(x, y).

Now, let define H : X × X × I −→ Z such that

H((x, y), t) =


F′((x, y), 2t) , 0 ≤ t ≤

1
2

G′((x, y), 2t − 1) ,
1
2
≤ t ≤ 1.

Then,

H((x, y), 0) = F′((x, y), 0) = (h ◦ g ◦ µX)(x, y),

H((x, y), 1) = G′((x, y), 1) = (µZ ◦ ((h ◦ g) × (h ◦ g)))(x, y).

Therefore, the homotopy

h ◦ g ◦ µX
H
∼ µZ ◦ ((h ◦ g × h ◦ g))

is provided, which means the following diagram is homotopy commutative:

Y

X × X X Z

Y × Y

Z × Z

h

µX

(h◦g)×(h◦g)

g×g

h◦g

g

h×h

µZ

□

Theorem 4.7. Let (X, pr
α,CX) be a FCH space and (Y, pt

β,CY ) has the same homotopy type as X. Then, homotopy
equivalences are fuzzy Hopf homomorphisms.

Proof. Let f : X → Y and g : Y → X be homotopy equivalences. Let µY = f ◦ µX ◦ (g × g). Then, (Y, pt
β,CY ) is a FCH

space by the Theorem 4.4. Let show f is a fuzzy Hopf homomorphism:

f ◦ µX = f ◦ µX ◦ 1X×X

∼ f ◦ µX ◦ ((g ◦ f ) × (g ◦ f ))
= f ◦ µX ◦ (g × g) ◦ ( f × f )
= µY ◦ ( f × f ).
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Therefore, f is a fuzzy Hopf homomorphism, shown in the following diagram:

Y × Y X × X

X × X X Y

Y × Y

g×g
µXf× f

µX

f× f

f

µY

Let show g is a fuzzy Hopf homomorphism:

g ◦ µY = g ◦ ( f ◦ µX ◦ (g × g)) ∼ 1X ◦ µX ◦ (g × g) = µX ◦ (g × g).

Therefore, g is a fuzzy Hopf homomorphism, shown in the following diagram:

X × X X

Y × Y Y X

X × X

µX
fg×g

µY

g×g

g

µX

□

The following theorem states that the product of two FCH spaces is also an FCH space.

Theorem 4.8. Let (X, pr
α,CX) and (Y, pr

β,CY ) be FCH spaces. Then, X × Y is an FCH space.

Proof. Let ∆X×Y = (1X × T × 1Y ) ◦ (∆X × ∆Y ), where T (u, v) = (v, y). Define

µX×Y = (µX × µY ) ◦ (1X × T × 1Y )
cX×Y = cX × cY .

Then,

µX×Y ◦ (cX×Y × 1X×Y ) ◦ ∆X×Y = (µX ◦ (cX × 1X) ◦ ∆X) × (µY ◦ (cY × 1Y ) ◦ ∆Y )
∼ 1X × 1Y

= 1X×Y .
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Therefore, (X × Y, (pr
α, p

r
β),CX×Y ) is a FCH space.

X × X × Y × Y

X × Y X × Y × X × Y X × Y × X × Y

X × X × Y × Y

X × Y

1X×T×1Y

∆X×∆Y

∆X×Y

1X×Y

cX×Y×1X×Y

cX×cY×1X×1Y

1X×T×1Y

µX×Y

µX×µY

□

Definition 4.9. A FCH space (X, pr
α,CX) is called an abelian FCH space if there exists a map

φ : X × X → X × X, φ(u, v) = (v, u)

makes the following diagram homotopy commutative:

X × X X × X

X
µX

φ

µX

which means µX ◦ φ ∼ µX .

Theorem 4.10. A pointed fuzzy closure space having the same homotopy type as an abelian FCH space is itself an
abelian FCH space.

Proof. Let a FCH space (X, pr
α,CX) be abelian, (Y, pt

β,CY ) be a pointed fuzzy closure space and f : X → Y , g : Y → X
be homotopy equivalences. Then, (Y, pt

β,CY ) is a FCH space with the multiplication µY = f ◦ µX ◦ (g×g), by Theorem
4.4 and µX ◦ φX ∼ µX for a map φX(u, v) = (v, u). Let φY : Y × Y → Y × Y, φY (w, z) = (z,w). Therefore

µY ◦ φY = f ◦ µX ◦ (g × g) ◦ φY

= f ◦ µX ◦ φX ◦ (g × g)
∼ f ◦ µX ◦ (g × g)
= µY .

Therefore (Y, pt
β,CY ) is an abelian FCH space. □

Theorem 4.11. Let (X, pr
α,CX) be a FCH space. The set [(Y, pr

β,CY ); (X, pr
α,CX)] is a monoid for every pointed fuzzy

closure space (Y, pr
β,CY ).

Proof. To prove [(Y, pr
β,CY ); (X, pr

α,CX)] is a monoid, let define a product ⊚ on [(Y, pr
β,CY ); (X, pr

α,CX)] such that
[ f ] ⊚ [g] = [µX ◦ ( f × g) ◦ ∆], for all [ f ], [g] ∈ [(Y, pr

β,CY ); (X, pr
α,CX)].
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First, prove that ⊚ is well defined. Let f G
∼ f ′ and g H

∼ g′. Let F : (Y×I,C(Y×I))→ (X,CX) be defined as F = µX◦(G,H).
Then,

F(y, 0) = µX ◦ (G,H)(y, 0)
= µX(G(y, 0),H(y, 0))
= µX( f (y), g(y))
= (µX ◦ ( f × g) ◦ ∆)(y),

F(y, 1) = µX ◦ (G,H)(y, 1)
= µX(G(y, 1),H(y, 1))

= µX( f ′(y), g′(y))

= (µX ◦ ( f ′ × g′) ◦ ∆)(y).

Then, µX ◦ ( f × g) ◦ ∆ ∼ µX ◦ ( f ′ × g′) ◦ ∆. Therefore,

[ f ] ⊚ [g] = [µX ◦ ( f × g) ◦ ∆] = [µX ◦ ( f ′ × g′) ◦ ∆] = [ f ′] ⊚ [g′].

Let ε : Y → X, ε(y) = α for all y ∈ Y . Then, for any [ f ] ∈ [(Y, pr
β,CY ); (X, pr

α,CX)],

[ f ] ⊚ [ε] = [µX ◦ ( f × ε) ◦ ∆] = [µX ◦ (1X × c) ◦ ∆ ◦ f ] = [1X ◦ f ] = [ f ],

[ε] ⊚ [ f ] = [µX ◦ (ε × f ) ◦ ∆] = [µX ◦ (c × 1X) ◦ ∆ ◦ f ] = [1X ◦ f ] = [ f ].

Then, [ε] is the unit element of [(Y, pr
β,CY ); (X, pr

α,CX)] for ⊚.
Let show ⊚ is associative:

[ f ] ⊚ ([g] ⊚ [h]) = ([ f ] ⊚ (µX ◦ (g × h) ◦ ∆)]
= [µX ◦ ( f × (µX ◦ (g × h) ◦ ∆)) ◦ ∆]
= [µX ◦ (1X × µX) ◦ ( f × g × h) ◦ (1X × ∆) ◦ ∆]
= [µX ◦ (µX × 1X) ◦ ( f × g × h) ◦ (1X × ∆) ◦ ∆]
= [µX ◦ ((µX ◦ ( f × g) ◦ ∆) × h) ◦ ∆]
= ([µX ◦ ( f × g) ◦ ∆] ⊚ [h])
= ([ f ] ⊚ [g]) ⊚ [h].

Consequently, ([(Y, pr
β,CY ); (X, pr

α,CX)],⊚) is a monoid. □

The following theorem states that we can construct a Hopf space structure on any set with a surjective function
between itself and an FCH space.

Theorem 4.12. Let (X, pr
α,C) be a FCH space and f be a surjective map from X to a nonempty set Y. Then, an FCH

space structure can be built on Y with the help of f and CX .

Proof. Let f (pr
α) = pr

f (α) = pr
β and C f be the quotient fuzzy closure operator on Y . Then, (Y, pr

α,C f ) is a pointed fuzzy
closure space. Define

µY = f ◦ µX ◦ ( f −1 × f −1)

and cY (y) = β for all y ∈ Y. Then,

µY ◦ (1Y × cY ) ◦ ∆ = ( f ◦ µX ◦ ( f −1 × f −1)) ◦ (1Y × cY ) ◦ ∆

= f ◦ (µX ◦ (1X × c)) ◦ ∆ ◦ f −1

∼ f ◦ 1X ◦ f −1

= f ◦ f −1

= 1Y .
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X X × X X × X

Y Y × Y Y × Y X

Y

∆ 1X×c
µX

∆

f −1

1Y

1Y×cY

µY

f

Similarly, µY ◦ (cY × 1Y ) ◦ ∆ = 1Y . Therefore, (Y, pr
β,C f ) is a FCH space. □

4.1. Fuzzy Closure Hopf Group. A Hopf group is a group-like structure obtained by Hopf [14] by homotopy. This
section constructs the Hopf group structure on pointed fuzzy closure spaces.

Definition 4.13. Let (X, pr
α,CX) be a FCH space with the multiplication µX . If µX ◦ (µX × 1X) ∼ µX ◦ (1X × µX), i.e. the

following diagram is homotopy commutative:

X × X × X X × X

X × X X

µX×1X

1X×µX µX

µX

then µX is called associative multiplication. A continuous function ν : X → X such that µX ◦ (ν, 1X) ∼ c ∼ µX ◦ (1X , ν),
is called homotopy inverse, making the following diagram homotopy commutative:

X X × X X X × X X

X

∆

1X

µX×ν

c

ν×µX ∆

1X

A fuzzy closure Hopf group (briefly FCH-group) is an FCH space with a homotopy associative multiplication and
homotopy inverse.

Theorem 4.14. Let (X, pr
α,CX) be a FCH group and (Y, pr

β,CY ) has the same homotopy type with (X, pr
α,CX). Then,

(Y, pr
β,CY ) is a FCH group.

Proof. Let g and h are homotopy equivalences and µY = g ◦ µX ◦ (h × h) be continuous multiplication of (Y, pr
β,CY ).

Then, (Y, pr
β,CY ) is a FCH space by Theorem 4.4.

Now, let show that µY is homotopy associative:

µY ◦ (µY × 1Y ) =
(
g ◦ µX ◦ (h × h)

)
◦
(
(g ◦ µX ◦ (h × h)) × 1Y

)
= (g ◦ µX) ◦ (h ◦ g) ◦

(
(µX ◦ (h × h) × h

)
∼ (g ◦ µX) ◦

(
(µX ◦ (h × h)) × h

)
= g ◦ (µX ◦ (µX × 1X)) ◦ (h × h × h)
∼ g ◦ (µX ◦ (1X × µX)) ◦ (h × h × h)

=
(
g ◦ µX ◦ (h × h)

)
◦
(
1Y × (g ◦ µX ◦ (h × h))

)
= µY ◦ (1Y × µY ).
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X × X X

Y × Y × Y Y × Y

X × X X × X

X X

Y × Y Y

X × X X

µX

g

µY×1Y

1Y×µY

h×h

h×h

µY

h×h

µX µX

g

µY

h×h

µX

g

Now, let show that (Y, pr
β,CY ) has a homotopy inverse:

Let ν be the homotopy inverse of (X, pr
α,CX) and ν′ = g ◦ ν ◦ h. Then,

µY ◦ (1Y × ν
′) ◦ ∆ = (g ◦ µX ◦ (h × h)) ◦ (1Y × (g ◦ ν ◦ h)) ◦ ∆

= (g ◦ µX) ◦ (h × (h ◦ g ◦ ν ◦ h)) ◦ ∆
∼ (g ◦ µX) ◦ (h × (ν ◦ h)) ◦ ∆
= g ◦ (µX ◦ (1X × ν)) ◦ (h × h) ◦ ∆
∼ g ◦ (µX ◦ (ν × 1X)) ◦ (h × h) ◦ ∆
= (g ◦ µX) ◦ (ν ◦ (h × h)) ◦ ∆
∼ (g ◦ µX) ◦ (h ◦ g ◦ ν ◦ (h × h)) ◦ ∆
= (g ◦ µX ◦ (h × h)) ◦ ((g ◦ ν ◦ h) × 1Y ) ◦ ∆

= µY ◦ (ν′ × 1Y ) ◦ ∆.

Therefore, (Y, pr
β,CY ) is a FCH-group. □

Theorem 4.15. Let (X, pr
α,CX) be a FCH group. Then, the set [(Y, pr

β,CY ); (X, pr
α,CX)] is a group, for every pointed

fuzzy closure space (Y, pr
β,CY ). If µX is abelian, then [(Y, pr

β,CY ); (X, pr
α,CX)] is also abelian.

Proof. [(Y, pr
β,CY ); (X, pr

α,CX)] is a monoid by the Theorem 4.11. Let ν be the homotopy inverse of (X, pr
α,CX).

For any [ f ] ∈ [(Y, pr
β,CY ); (X, pr

α,CX)],

[ f ] ⊚ [ν ◦ f ] = [µX ◦ ( f × (ν ◦ f )) ◦ ∆] = [µX ◦ (1X × ν) ◦ ∆ ◦ f ] = [c ◦ f ] = [e],

[ν ◦ f ] ⊚ [ f ] = [µX ◦ ((ν ◦ f ) × f ) ◦ ∆] = [µX ◦ (ν × 1X) ◦ ∆ ◦ f ] = [c ◦ f ] = [e].

So [ν ◦ f ] is the homotopy inverse of [ f ]. Therefore, [(Y, pr
β,CY ); (X, pr

α,CX)] is a group. Let µX be abelian. Then,
µX ◦ φ ∼ µX for a map φ : X × X → X × X. Then,

[ f ] ⊚ [g] = [µX ◦ ( f × g) ◦ ∆]
= [µX ◦ φ ◦ ( f × g) ◦ ∆]
= [µX ◦ (g × f ) ◦ ∆]
= [g] ⊚ [ f ].

Then, ⊚ is abelian. □

Definition 4.16. The category whose objects are pointed fuzzy closure spaces and the set of morphisms is
[(X, pr

α,CX), (Y, pr
β,CY )] is called the homotopy category of the pointed fuzzy closure spaces, denoted by FCH . The

composition of the morphisms is the product defined by Theorem 4.11.
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Definition 4.17 ( [28]). A contravariant functor ℘ from the category F to the category G is a function, which maps
each object A of F to an object B of G and each morphism f ∈ hom(A, B) of F to a morphism ℘( f ) : ℘(B) → ℘(A),
such that ℘(1A) = 1℘(A) and ℘(g ◦ f ) = ℘( f ) ◦ ℘(g).

Theorem 4.18. Let (X, pr
α,CX) be a FCH group. Then, there exists a contravariant functor from FCH to the category

of groups and homomorphisms, denoted by G.

Proof. Define a map ℘Y from FCH to the category of sets and functions, denoted by S such that

℘Y (Y, pr
β,CY ) = [(Y, pr

β,CY ), (X, pr
α,CX)],

℘Y ([g]) = g∗ : [(Z, pr
η,CZ), (X, pr

α,CX)]→ [(Y, pr
β,CY ), (X, pr

α,CX)],
where g∗([ f ]) = [ f ◦ g], [g] ∈ [(Y, pr

β,CY ), (Z, pr
η,CZ)].

Let [ f ], [h] ∈ [(Z, pr
η,CZ), (Y, pr

β,CY )].

g∗([ f ] ⊚ [h]) = g∗([µY ◦ ( f × h) ◦ ∆])
= [(µY ◦ ( f × h) ◦ ∆) ◦ g]
= [µY ◦ ( f ◦ g × h ◦ g)]
= [ f ◦ g] ⊚ [h ◦ g]

= g∗([ f ]) ⊚ g∗([h]).

Then, g∗ is a homomorphism. Also, by the Theorem 4.11,

℘Y (X, pr
α,CX) = [(Y, pr

β,CY ), (X, pr
α,CX)]

is a group with the binary operation ⊚.
Now, let us show that ℘Y is a contravariant functor.
Let [1X] ∈ [(Y, pr

β,CY ), (Y, pr
β,CY )] be the unit morphism of FCH . Then,

℘Y ([1X] = 1∗X : [(Y, pr
β,CY ), (X, pr

α,CX)]→ [(Y, pr
β,CY ), (X, pr

α,CX)]

and for any morphism [ f ] ∈ [(Y, pr
β,CY ), (X, pr

α,CX)], 1∗X([ f ]) = [ f ◦ 1X] = [ f ]. So, ℘Y ([1X]) is the unit morphism.
Let [g] ∈ [(Y, pr

β,CY ), (X, pr
α,CX)]. For any morphism [h] ∈ [(X′, x′0,CX′ ), (Z, pr

η,CZ)],

℘Y ([g ◦ f ])([h]) = [h ◦ (g ◦ f )] = [(h ◦ g) ◦ f ]

= ℘Y ([ f ])([h ◦ g)

= ℘Y ([ f ])(℘Y ([g])([h]))

= (℘([ f ]) ◦ ℘Y ([g]))([h]).

Then, ℘Y ([g ◦ f ]) = ℘([ f ]) ◦ ℘Y ([g]). Therefore, ℘Y is a contravariant functor since it preserves the composition and
the identity. We conclude that there exists a contravariant functor ℘Y from FCH to the category of abelian groups and
homomorphisms for an abelian FCH group (Y, pr

β,CY ). □

5. Conclusion

In this study, we have introduced the concepts of fuzzy closure Hopf spaces and fuzzy closure Hopf groups within
the theoretical framework of fuzzy closure spaces, utilizing principles from homotopy theory. We have explored the
interconnections between the fuzzy closure Hopf group and its homotopy equivalence.

Furthermore, we have elucidated the existence of a contravariant functor from the category of fuzzy closure Hopf
spaces and continuous functions to the category of groups and homomorphisms. This demonstration highlights the
structural parallels between fuzzy closed Hopf spaces and conventional groups, providing a better understanding of
their algebraic properties. Our research also revealed that homotopy function classes between fuzzy closure Hopf
groups form a group. By establishing the foundations of fuzzy closure Hopf spaces and groups, we have laid the
groundwork for further exploration and applications in diverse areas of mathematics and beyond. These concepts offer
promising avenues for future research, with potential implications in fields ranging from topology to mathematical
modeling.
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