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Abstract 

This paper reviews current knowledge on the role of smart tools and biosensors based on artificial 
intelligence in reducing seafood loss and wastage. This study shows that a variety of biosensors, categorised 
according to how they function, can be used to measure the quality of seafood. These include optical 
biosensors, enzyme-based biosensors, immunosensors, microbial biosensors, DNA-based biosensors, 
electrochemical biosensors, optical biosensors, tissue-based biosensors, and piezoelectric biosensors. 
Among these biosensors, optical biosensors, electrochemical biosensors, and mechanical biosensors are 
the most significant. Again, this study report that, for seafood traceability and management, a variety of 
smart solutions including blockchain technology, quick response (QR) codes, data analytics, digital twins, 
and radio frequency identification (RFID) tags can be utilised. Catch data, vessel tracking data, and data from 
the processing plant are some of the different data sources that can be utilised to trace seafood products. 
Artificial intelligence tools like neural networks, deep learning, machine learning, and others can be used to 
forecast and improve seafood quality. It is crucial to study the development of biosensors that can properly 
identify the earliest signs of seafood contamination or rotting. 
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1. INTRODUCTION 

Seafood is a colloquial and highly diverse food category which comprises of algae, cephalopods, cynobacteria, 

marine and freshwater finfish species, decapods and bivalves (Cooney et al., 2023). Seafoods are valuable 

protein source, especially in the case where other animal protein sources are expensive and scarce. 

Polyunsaturated fatty acids (PUFAs), which are known to influence prostaglandin synthesis and therefore 

promote wound healing, are among the necessary fatty acids found in seafoods (Kryzhanovskii and Vititnova, 

2009; Zhang et al., 2010; Kindong et al., 2017). The demand for marine products (seafoods) is expanding 

substantially (Power at al., 2023). The increase in demand for seafoods could be attributed to consumers 

paying special attention towards consumption of foods that are healthy (Ghidini et al., 2019). The nutritional 

properties of seafoods could also be the cause of this increase in demand (Alamprese and Casiraghi, 2015). 

Despite the importance and significant increase in demand of seafoods, the resources available for wild catch 

are becoming scarce (Power at al., 2023). 

Seafood losses is considered a serious challenge along the seafood value chain. The phenomenon of nutrient 

and economic losses along the seafood value chain results in serious wastage and has the tendency of posing 

health threats to consumers. Millions of people's diets are impacted by the loss of highly nutritious food or 

comprised, notably in areas where undernutrition and micronutrient deficiencies are widespread (Kruijssen 

et al., 2020). 

As a result of the negative impact of seafood waste on the environment, rising demand for seafoods, coupled 

with its implication for marine conservation and policy, seafood wastage has gained global attention 

(Erasmus et al., 2021). 

Wastage of seafoods have been attributed to some characteristics they possess. These characteristics that 

make seafoods prone to wastage includes fishing methods that result in by-catch, presence of digestive 

enzymes, oxidation as well as microbial spoilage (Ghaly et al., 2010; Love et al., 2015). Seafood loss can be 

enhanced by processing and storage conditions which can trigger microbial spoilage as well as sanitation 

(Tesfay and Teferi, 2017; Gyan et al., 2020).  

In order to meet the current and future demands of seafoods at the global level, it is important to ensure 

loss and wastage are cut to minimum barest level. This can be achieved by applying technological innovations 

that can increase access to food that are cheap all year round without significant loss and wastage. Similarly, 

the amount of per capita food at the global level should be halved by 2030 at both the consumer and retail 

levels (Kruijssen et al., 2020). Also, along the production and supply chain levels, of which post-harvest is not 

an exemption, losses should be halved (United Nations, 2014). 

Several smart tools and biosensors based on artificial intelligence have been applied in the seafood industry 

to cut down losses and wastage. These includes quick response (QR) codes, block chain technology, digital 

twin, data analytics, radio frequency identification (RFID) tags and FishNChip biosensor. 

This article is aimed at providing an overview of smart tools and biosensors based on artificial intelligence 

that can be used to prevent losses and wastage of seafoods. This study is significant as it will serve as the 

basis and an established framework for further research work in the use of biosensors and smart tools based 

on artificial intelligence to reduce seafood loss and waste. In addition, creation of database on these possible 

biosensors and smart tools in reduction of seafood losses and wastage has the tendency to cause a notable 

improvement in the quality and quantity of seafoods produced. 
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2. METHODOLOGY 

2.1 Literature search 

For the purpose of achieving the objectives of this study, studies that had previously reported on application 

of various smart tools and biosensors based on artificial intelligence in monitoring seafood quality and food 

in general were searched and used. Papers published in only English were included in this study. No specific 

duration or date of publication was considered. Data bases such as IEEE, CAB abstracts, Ajol and Scopus were 

considered. Also, articles published in Elsevier, Taylor and Francis, and Wiley were considered. 

2.2 Search strings 

In order to identify papers relevant to this study several words and their combinations were used to search 

the above-mentioned databases. These words include ‘’internet of things’’, wastage, seafood, losses, artificial 

intelligence, biosensor, deep, machine, learning, quick response scan, radio, frequency, identification, block, 

chain, technology, quality, supply, chain, electronic, monitoring, systems, neural, network, digital, twin. 

3. BIOSENSORS FOR SEAFOOD QUALITY MONITORING 

A biosensor is a quantitative analytical instrumentation approach that combines a physico-chemical 

transducer with a biologically derived sensing element (Surya et al., 2019). They are analytical tools that 

transform a biological response into an electrical signal (Mehrotra, 2016). Biosensors can measure chemical 

or biological reactions and turn the result into an electrical output (Bhalla et al., 2016; Franceschelli et al., 

2021). By detecting minute changes and converting them into electric signals using signal conversion 

components like electrodes and optical devices, biosensors can measure specific target compounds quickly 

and easily (Grieshaber et al., 2008; Endo and Wu, 2019). Output signal, analyte, application, power source 

and sensor material are the different categories of sensors (Naresh & Lee, 2021; Saeed et al., 2022). 

Controlling the production environment and creating intelligent food packaging could both benefit from the 

use of biosensors (Wang et al., 2022). 

Different types of biosensors are used in the monitoring of seafood quality. They are classified based on their 

working principles. These include optical biosensors, enzyme-based biosensors, immunosensors, microbial 

biosensors and DNA-based biosensors. Others include electrochemical biosensors, optical biosensors, tissue-

based biosensors and piezoelectric biosensors. Biosensors with optical characteristics, mechanical 

biosensors, and electrochemical biosensors are the most significant types of biosensors (Ali et al., 2020).  It 

is said that electrochemical biosensors are highly sensitive, simple to use, and fast to detect (Qiao et al., 

2020).  Electrochemical biosensors are however known for their precision, direct change detection based on 

the interaction of the sensor with the sample, low cost, and downsizing potential (Ali et al., 2020). Mechanical 

biosensors typically benefit from properties that scale well as physical size is decreased (Arlett et al., 2011). 

According to the chemical interactions between the sensor and the analyte, mechanical biosensors are often 

divided into four major categories: affinity-based assays, fingerprint assays, separation-based assays, and 

spectrometric assays (Arlett et al., 2011). When a biorecognition element interacts with an analyte, optical 

biosensors monitor for changes in phase, polarization, or frequency in the light field (Borisov and Wolfbeis, 

2008; Purohit et al., 2020). This type of biosensors can be categorized into fluorescence, absorption and 

luminescence-based biosensors depending on the transduction mechanism used (Wang et al., 2018). 

In addition to this, labelled versus label-free biosensors can be distinguished based on the purposes for which 

labels are used (Sadik et al., 2009). According to Purohit et al. (2020), labelled biosensors use a reporter or 

label to detect analytes such as enzymes (e.g., catalase, alkaline phosphatase, and horseradish peroxidase), 

electro-active substances, or fluorescent molecules.  However, label-free approaches rely on BREs 

recognizing the target, and their straightforward design encourages the creation of portable devices (Purohit 
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et al., 2020).  

Some studies have been conducted with respect to the application of biosensors in seafood quality 

monitoring. Table 1 is a summary of studies reporting on the use of biosensors in seafood quality monitoring. 

Table 1. Summary of studies on application of biosensors in monitoring of seafood quality. 

Sensor Application Findings Reference 
Enzyme-based TMA 
(trimethylamine) 
biosensor  

Analysing freshness of fish 
with extractions of horse-
mackerel 

◆ Due to the breakdown and decomposition of fish samples 
at 25 °C, sensor output increased with time. 

Mitsubayashi et al. 
(2004)  
 

Disposable biogenic 
amine biosensors 

Determination of 
histamine in fish samples 

◆  For histamine, diamine oxidase biosensors produced a 
linear concentration range of 9.9 × 10−6 to 1.1 × 10−3 M, 
while a monoamine oxidase-based sensor produced a 
linear concentration range of 5.6 × 10−5 to 1.1 × 10−3 M. 

◆ Histamine levels and their recoveries determined in fish 
ranged from 100.0% to 104.6%. 

Koçoğlu et al. 
(2020) 

Amperometric 
biosensor  

Determination of 
histamine in fish samples 

◆ Excellent reproductibility and high ability was exhibited by 
the developed sensor 

◆ Low limit of detection as well as high sensitivity was 
exhibited by the developed biosensor. 

◆ Results obtained from the use of the biosensor to 
determine content of histamine was similar to that of 
ELISA (the reference method) for greater weever, 
mackerel and sardines. 

Pérez et al. (2013) 

Amperometric 
Enzyme Sensor 

Redox-Mediated 
Determination of 
Histamine 

◆ This selective sensor was effectively used to analyze 
spiked tuna and mackerel extracts, with recovery values 
of 99–100%. 

◆ It had a low limit of detection (0.97 mg L-1) and accurate 
and exact results.  

◆ The sensor demonstrates good stability, retaining 87.7% 
of its initial signal after 35 days. 

Torre et al. 2019 

Amperometric 
Biosensor 

Histamine Detection ◆ The biosensor exhibits great sensitivity (0.0631 A/M), a 
small detection limit (2.54 10'8 M), and a wide linear 
domain (0.1 to 300 M).  

◆ The quantification of histamine in freshwater fish has 
been used to test the applicability of this enzyme sensor 
in natural complex samples and the analytical parameters.  

◆ All freshwater fish samples tested showed excellent 
correlation between the results obtained with the new 
biosensor and those obtained with the traditional 
approach. 

Apetrei and 
Apetrei (2016) 

A Screen-Printed 
Disposable 
Biosensor 

Selective Determination 
of Putrescine 

◆ The determination of Put in anchovies and zucchini was 
successfully done using the biosensor. 

Henao-Escobar et 
al. 2013 

Electrochemical 
Biosensor with 
Nano-Interface for 
Xanthine Sensing-A 
Novel Approach 

Estimation of Fish 
Freshness  

◆ The biosensor displayed a peak response in less than 2 
seconds and was impervious to ascorbic acid, urea, and 
sucrose interferences.  

◆ It was discovered that the Michaelis-Menten constant 
(Km) is 1.3 nM. 

◆ The limit of quantification is determined to be 8.3 pM and 
the limit of detection to be 2.5 pM.  

Thandavan et al. 
2013 

Amperometric 
Biosensor  

Detection of Fish 
Freshness  

◆ After seven days, the fish showed very rapid degradation, 
and it was shown that the level of hypoxanthine increased 
with storage time. 

Dolmacı et al. 
2012 

Amperometric 
Xanthine Biosensor 

Detect xanthine in fish 
meat 

◆ The biosensor showed optimal performance in 5 s at pH 
7.0, 35 °C, and linearity for xanthine from 0.8 M to 40 M 
with a 0.8 M detection limit (S/E = 3).  

◆ For xanthine oxidase, the Michaelis Menten constant (Km) 
was 13.51 M and the Imax value was 0.071 A.  

◆ When kept at 4 °C, the biosensor, which detected 
xanthine in fish meat, lost 40% of its initial activity after 
200 uses over a period of 100 days. 

Devi et al. 2011 
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Sensor Application Findings Reference 
Xanthine Biosensor 
using Polymeric 
Mediator/MWCNT 
Nanocomposite 
Layer  

Fish Freshness Detection ◆ The addition of MWCNT to the polymeric mediator film, 
which was crucial to the biosensor's efficacy, caused the 
biosensor to respond well to xanthine.  

◆ The biosensor demonstrated strong storage stability and 
a decent level of anti-interference. 

Dervisevic et al. 
2015 

Enzyme-based 
amperometric 
biosensor  

Detect histamine and 
histamine-producing 
bacteria in tuna. 

◆ The recovery of histamine from cultures and tuna samples 
was extremely high (mean bias 12.69 to 1.63%, with root-
mean-square error 12%), and HPLC and biosensor 
techniques produced results that were comparable in the 
range from zero to 432 g/g (correlation coefficient, R2 = 
0.990).  

◆ These findings unequivocally demonstrate that fresh tuna 
is frequently tainted with potent HPB.  

◆ The operators of food businesses might use the histamine 
biosensor as a screening tool to find them and decide 
whether or not their process controls are sufficient. 

Trevisani et al. 
2019 

Enzyme-based 
histamine biosensor  

Changes in histamine and 
volatile amines of 
threadfin bream, 
mackerel, emperor 
bream, sardine, trevally 
and barracuda  

◆ Neither the sensory changes nor the presence of volatile 
amines was correlated with the histamine concentration. 

◆ It was discovered that the histamine production in trevally 
was quite high and comparable to that of mackerel. 

◆ Prior to becoming organoleptically unsatisfactory, 
mackerel, sardine, and trevally may induce histamine 
poisoning issues. 

Shakila et al. 
(2003)  

DNA based 
biosensor  

This study employed using   
existing seafood allergen 
detection method 
associated with DNA-
based biosensor in 
comparisons to protein 
based and aptamer-based 
sensors  

◆ Among them, the DNA-based detection approach is an 
indirect analysis that uses the allergen's gene as the object 
of detection and is distinguished by its high sensitivity and 
good stability. 

Li et al. (2022).  

 In order to identify Vibrio 
vulnificus in aquatic 
products, this study used 
DNA-based approaches. 

◆ The proposed biosensor exhibited an excellent capacity to 
detect marine products contaminated with V. vulnificus. 

Fan et al. (2021).  

Optical biosensors  Detection of paralytic 
shellfish poisoning  

◆ The decision limit (CCα) was 100 μg/kg, with the detection 
capability (CCβ) found to be ≤200 μg/kg. Repeatability and 
reproducibility were assessed at 200, 400, and 800 μg/kg 
and showed relative standard deviations of 8.3, 3.8, and 
5.4 % and 7.8, 8.3, and 3.7 % for both parameters at each 
level, respectively. 

Campbellet al. 
(2013).  

Piezoelectric 
Biosensor  

Detection of marine 
derived pathogenic 
bacteria  

◆ By continuously monitoring frequency shifts, the sensor 
system was able to identify V. vulnificus in a dose-
dependent way and within five minutes, bacterial cells 
were detected. 

Hong & Jeong. 
(2014)  

Immunusensor  Detecting tetrodotoxins in 
shellfish and European 
fish  

◆ The immunosensor enabled the determination of TTXs at 
levels as low as 0.07 mg TTX equiv. kg−1 tissue, thus, well 
below the Japanese value of 2 mg TTX equiv. kg−1 tissue 
used as a criterion to consider puffer fish safe for 
consumption. 

Reverté, et al. 
(2017) 

4. SMART TOOLS FOR SEAFOOD TRACEABILITY AND MANAGEMENT 

The safety of food is an important issue that affects health (Sahin et al., 2023). This is because approximately 

420,000 people die annually from consuming contaminated food, with additional 600 million becoming ill 

(World Health Organization, 2019). There is therefore the need to consume foods that are healthy. 

Investigating the safety and quality of food products can help with this. For food supply chain management 

(SCM) systems, particularly for seafoods and live items, traceability is a crucial safety measure.  

According to the Codex Alimentarius Commission (CAC, 2016), traceability is defined as the ability to follow 
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the movement of a food through specified stage(s) of production, processing and distribution.  

Traceability in the context of seafood is the tool that allow consumers, processors and seafood stakeholders 

to monitor the movement of seafoods along the value change; that is production, processing as well as 

distribution (Dopico et al., 2016). 

For the most part, traceability has been viewed as a technological prerequisite for companies to comply with 

laws governing food safety, food recalls, and country-of-origin labelling (Tamm et al., 2016). In order to 

ensure the quality of seafoods are high, sustainable and safe, smart tools can be used to track seafood 

products from along the value chain from harvesting to sales or consumption point. 

Traceability is important because it has been used globally as a tool to prevent and manage risk involved in 

the supply of food that is unsafe along the supply chain. It also aids in the recall or withdrawal of unsafe 

seafoods by regulators and manufacturers (Rao et al., 2022). Also, along the supply chain of the food system, 

traceability is essential as it helps in identification of sources of contamination and their routes (McMillin et 

al., 2012).  

Different types of smart tools such as block chain technology, quick response (QR) codes, data analytics, 

digital twin and radio frequency identification (RFID) tags are used for traceability and management of 

seafoods. In this section, the characteristics of these useful smart tools and their application in seafood 

industry for traceability and management purposes are discussed. 

4.1 Radio Frequency Identification (RFID) tags 

Radio frequency identification (RFID) tags are small electronic devices that can be attached to seafood 

products to track their movement and location throughout the supply chain. RFID tags are also referred to as 

a transponder (Kumar et al., 2009). RFID is a catchall name for systems that identify objects using radio 

frequency signals. RFID offers extra space to store data and uses radio waves to automatically identify items 

in a flexible way. However, a variety of problems with regard to time and money demands as well as 

possibilities for fraud present challenges for RFID (Bilal and Martin, 2014; Mol 2014; Vo et al., 2020). With 

RFID, an object can be identified from a distance without a line of sight.  RFID tags can be read by scanners 

and can provide real-time information about the product's origin, processing, and distribution. A tag, a 

reader, which collects data; and database and information management software are the three major 

components of a typical RFID model (Aydin & Dalkilic, 2018; Sedghy, 2019). Its technology is based on wireless 

communication, specifically radio frequency waves, between an interrogator and a tag attached to an object 

(Bibi et al., 2017; Aydin, 2019). 

RFID sensors can be used to monitor the freshness of seafoods and to a larger extent its quality by observing 

the changes in the dielectric properties of each seafood (Potyrailo et al., 2012).  This technology has been 

applied in the seafood industry with success over the past years. Several studies have been conducted with 

respect to Systems for Traceability Based on RFID (Hsu et al., 2008; Abad et al., 2009; Yan et al., 2012; Treber 

et al., 2013; Kokkinos et al., 2018; Zhang et al., 2019; Coronado Mondragon et al., 2021). 

An RFID-enabled SCM tracking system for live fish had been suggested by Hsu et al. (2008). In this study, the 

data required for processing live fish was gathered, and ideas for the entire management system 

architecture, geared toward SME solutions, were developed. Each live fish was given an RFID tag in this 

manner to track its movement in the restaurants that sell live fish and logistic centers, as well as to give 

customers identity information. 

Abad et al. (2009) created a real-time RFID smart tag for applications including the tracking and monitoring 

of cold-chain food. This process involved the use of a reader/writer and a smart tag, which was applied to 

the merchandise. These tags included an antenna for RFID tag transmission, integrated lighting, temperature 
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and humidity sensors, a memory to store product data, and other components. The traceability information 

gathered by the sensors and stored in the memory chip. The investigation then used a wireless reader with 

a mobility option to read the food chain data that had been gathered from a distance of 10 cm. With the help 

of this technique, it was possible to automatically track records, read product data, and check the cold chain's 

temperature online. Furthermore, this approach eliminates the need to open the polystyrene containers 

holding the fish and smart tags, allowing the completely automated reader to read many tags at once. 

Additionally, the system makes sure that the temperature for frozen goods is kept below 0 ºC utilizing 

temperature sensors. Additionally, the system has humidity sensors, making it sensitive to changes in 

humidity around the storage environment. 

Two separate examples of farmed fish tracking systems appropriate for small- and medium-sized enterprises 

(SMEs) were presented by Treber et al. (2011). In the first, a small business implemented an electronic RFID-

enabled system in place of a manual data collection approach. This project produced an end-to-end SCM 

solution for farm fish that is beneficial to selling organizations and individual consumers. The second solution 

involved managing a portion of the automated fish packing process that was improved by RFID technology 

and branded with a barcode. In this instance, the goal was to transition from a manual data gathering 

approach to an RFID-enabled data collection method so that traceability could be extended to fish farms for 

breeding and on-growing. 

Using IoT, RFID, and WSN, Kokkinos et al. (2018) created an aquatic product traceability solution. The system 

included an internet platform that could be accessed from mobile, intelligent devices like an RFID reader. To 

monitor and verify the security of aquatic products from their catch to the consumer's table, a system was 

developed. Through the use of the RFID system and the Arduino platform, several wireless sensors were 

integrated. For sustainable fisheries, the circumstances of the fisheries, the variety of capturing sites, and the 

quality of the fish products were all maintained. Also, routines relevant to the Greek sea were offered utilizing 

both traditional and contemporary Artificial Intelligence (AI) techniques, depending on the circumstances 

and quality assessment. 

A smart traceability platform built on the Hazard Analysis and Critical Control Points (HACCP) standards was 

proposed by Zhang et al. in 2019. With this technique, quality control modelling and wireless facility 

monitoring were combined to improve fish quality as well as the security and openness of waterless fish 

transport. Therefore, to provide customers with traceability functions for any tracking-related inquiry, a QR 

code and the electronic product code (EPC) of the RFID tag were integrated. In this method, buyers were 

instantly given answers to questions about safe transportation, from aquaculture to markets. Sturgeon 

delivery trials in particular were evaluated and investigated. 

For the fishery sector, Mondragon (2020) suggested a two-layer architectural approach. The surrounding 

energy consumption of a sensor network was modelled in this study using a sensor layer based on WSN 

theory. Data were gathered in the first phase from sensors used to monitor the water. Time series/scatter 

diagrams were used to examine the acquired data. Thus, the patterns and trends of snow crab catch settings 

were discovered. Finally, this study provided a set of resources for upcoming fisheries researchers to put 

together this strategy as a monitoring tool for SCM in fisheries leveraging on IoT solutions and RFID 

technology. 
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Figure 1. RFID process. Adapted from Rahman et al. (2021). 

4.2 Quick Response (QR) codes 

Quick Response (QR) codes are two-dimensional barcodes that can be printed on seafood packaging or labels. 

QR codes can be scanned by smart-phones or other devices to provide information about the product's origin, 

processing, and distribution. In reality, a QR code uses matrix bar-code technology. The QR Code can include 

text, video, ads, personal information, and more, allowing it to store significantly more data than a one-

dimensional code (Kim and Woo, 2016). It is possible to read information from it, much like with matrix bar-

codes (Demir et al., 2015). In order to assure the quality and safety of the products, the traceability connected 

with the use of the QR code may give information and transparency of the productive chains (Pieniak et al., 

2011). The advantages of a QRC include great dependability (Chen et al., 2019; Waziry et al., 2023). The key 

advantage of this technology is its simplicity, since it simply requires the use of a Smartphone to scan the 

code in order to access the digitally accessible data (Machado et al., 2019). 

Also, the benefit of QR codes is that they can hold a significant quantity of data. Any type of digital 

information that can be imagined can be embedded, including text, video, business card information, 

personal information, advertisements, etc. (Demir et al., 2015).  Information systems can be accessed using 

QR-Code technology to add products produced by sellers (Liantoni et al., 2018). In order to assure the quality 

and safety of the products, the traceability connected with the use of the QR code may give information and 

transparency of the productive chains (Pieniak et al., 2011). 
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Figure 2. QR code process in seafoods. Adapted from Kochanska. (2020). 

4.3 Blockchain technology 

Block chain technology is defined as an open, distributed ledger that may effectively and permanently record 

transactions between two parties (Iansiti and Lakhani, 2017; Aydin and Yukcu, 2020; Friedman and Ormiston, 

2022). The block chain technology also known as distributed ledger technology (DLT) was introduced in 2008 

after the global financial crisis (Khan et al., 2022). Block chain technology is gaining traction as a cutting-edge 

invention that can promote sustainability in international supply chains (Saberi et al., 2019; Marsal-Llacuna, 

2018; 2020). Block chain is an emerging technology in the agri-foods sector that has the potential to alter 

many facets of the agricultural industry (including fisheries and aquaculture) while also enhancing the safety 

and quality of agri-foods (Xu et al., 2020). By recording accountable information about food sustainability at 

all stages of the supply chain and enabling supply chain actors to query and verify specific food products, 

block chain, an emerging paradigm for immutable information storage and sharing, has the unique potential 

to improve sustainability communication (Cao et al., 2023). A decentralized digital ledger called a block chain 

can be used to securely and openly record and trace transactions. The supply chain can be made transparent 

and accountable by using block chain technology to produce a tamper-proof record of seafood products from 

their point of origin to their final destination. Researchers and professionals are becoming more aware of 

how block chain technology may inform and enhance the sustainability of the food supply chain (Cao et al., 

2023). Block chain has arisen in this context as a promising technology that enables users to efficiently and 

effectively record the origin and movement of items as well as to totally eliminate or greatly reduce serious 

food fraud. Consumers can benefit from this development by receiving up-to-date, confirmed information in 

relation to the sources and delivery options of their purchases (Treiblmaier and Garaus, 2023). Applying block 

chain technology in seafood traceability could be beneficial as it could enhance higher automation in supply 

chain, lead to transparency and fraud protection. It also leads to positive influence on consumers, food 

authenticity, quality assurance and routine traceability (Patel et al., 2023). Furthermore, it can result in a 

decentralized network, a trustworthy trading system, making data much safe and unchangeable. . While 

different chain stakeholders have differing levels of adoption of this technology, implementing blockchain 

involves financial, technological, and organizational challenges (Sander et al., 2018; Kouhizadeh et al., 2021; 

Tolentino-Zondervan et al., 2022). 

4.4 Electronic monitoring systems 

Electronic monitoring, which is referred to as an integrated system of cameras and sensors on fishing vessels, 

can produce a thorough account of fishing activity that can help with fisheries management and guarantee 
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that rules are being followed (Ruiz et al., 2015). Electronic monitoring systems can be used to track the 

movement and location of fishing vessels, and to monitor their catch and by-catch. Electronic monitoring 

systems can provide real-time information about the fishing activity and can help ensure compliance with 

regulations and sustainability standards. However, EM stands out due to the depth of data it can supply on 

fisheries activities and its thorough accountability. 

 

Figure 3. Electronic monitoring process in Seafoods. Adapted from van Helmond et al. (2020) 

4.5 Digital twin 

Grieves. (2014) initially proposed the digital twin concept.  A reasonable definition of a digital twin is one that 

incorporates physical feedback data with artificial intelligence, machine learning, and software analysis to 

create a digital simulation within an educational platform. Despite differences in definitions, all definitions 

have three major elements namely; virtual space, physical space, and their connections of data and models 

(Liu et al., 2021). A digital twin is a virtual representation of a physical system that includes the environment 

and operational procedures and is updated by information exchanged between the physical and virtual 

systems. It is a gadget that constantly connects its virtual and physical equivalents (the twin) (Van der Burg 

et al., 2021; Neethirajan and Kemp, 2021; Melesse et al., 2023). The aim of digital twin is to characterize the 

behaviour of physical entities by leveraging on their virtual replica in real time (Liu et al., 2022). With the data 
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fusion of each module, the digital twin keeps track of the state of the physical model in real time, which aids 

in the optimization and decision-making of physical items (Söderberg et al., 2017).  

Digital twins are more responsive as a result of two-way communication. In order to automate and display 

the information to the human component in a way that is simple to understand, it is critical to capture expert 

decision making (Dyck et al., 2023). Using digital twins, physical and virtual items are combined in an effort 

to track and enhance resources and business operations (Autiosalo et al., 2020; Jones et al., 2020; Verdouw 

et al., 2021).  Digital twins aid in identifying the post-harvest change of food quality that results, which is 

mainly unexplored. For exporters, retailers, and consumers, digital twins give data that may be used to make 

informed decisions about logistics and marketing, such as how long each shipment's shelf life will last 

(Defraeye et al., 2021). The twins also aid in the diagnosis and forecasting of potential supply chain issues 

that could lower food quality and result in food loss. In order to decrease retail and domestic food losses, 

twins may even recommend preventive shipment-tailored interventions (Defraeye et al., 2021). The visibility 

of the supply chain and the process monitoring would be significantly impacted by the deployment of digital 

twin technology in seafood traceability and management (Lezoche et al., 2020; Burgos et al., 2021; Agrawal 

et al., 2021). 

5. DATA SOURCES FOR SEAFOOD TRACEABILITY 

Data has been the foundation of the seafood industry and will continue to be. Obtaining the right information 

is an important step for traceability. Establishing or identifying reliable data sources is one way to increase 

openness. Based on this backdrop, the various sources of data that can be used to trace seafood products, 

such as catch data, vessel tracking data, and processing plant data are discussed in this section. In addition, 

advancements in technology, such as the Internet of Things (IoT), which keep making it easier to collect and 

analyze data is briefly discussed. 

5.1 Sources of data for traceability 

5.1.1 Catch data 

Information on the fish or other marine animals that are caught by fishermen is referred to as catch data. 

The species, weight, and location of the catch, as well as details on the fishing boat and its crew, can all be 

included in this data. Catch information is crucial for tracking seafood items because it might reveal the 

product's origin and method of capture. Fishermen can collect catch data manually, or sensors and other 

technologies can do it automatically. 

5.1.2 Vessel tracking data 

Data on the movements of fishing vessels as they travel to and from fishing grounds is referred to as vessel 

tracking data. The location, speed, and direction of the vessel, as well as details on the weather and sea state, 

can all be included in this data. In order to trace seafood goods, vessel tracking data is crucial since it may be 

used to identify the product's origin and whether it was caught lawfully or illegally. Different technologies, 

including as satellite-based systems and automatic identification systems (AIS), can be used to gather data 

on vessel tracking. 

Vessel monitoring systems (VMS) and the AIS can be used to track vessels (Orofino et al., 2023) in order to 

generate valuable information that are needed for seafood traceability. Vessel tracking can inform best 

practices, promote the fulfilment of important commitments, and improve transparency and traceability in 

operations in the seafood (Seafood Business for Ocean Stewardship, 2021). 

5.1.3 Processing plant data 

Information about the preparation and packaging of seafood items is referred to as processing facility data. 
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The location of the processing plant, the type and amount of the product, and the date and time of processing 

are just a few examples of the information that might be included. Data from the processing plant is crucial 

for tracking seafood items since it can be used to establish the chain of custody starting with the moment 

the product was captured and ending with the moment it was packaged and sent. Data collection in 

processing plants can be done manually or automatically using sensors and other technologies. 

6. ARTIFICIAL INTELLIGENCE FOR SEAFOOD QUALITY PREDICTION AND 

OPTIMIZATION 

A computing technology known as artificial intelligence (AI) aims to imitate human skills to sense their 

environment, analyze information, make decisions, and take actions to accomplish predetermined goals to 

varying degrees (Manning et al., 2022).  Also, AI refers to a system for data analysis that automates skilful 

model creation (Li, 2021). Again, Chrispin et al. (2020) defined AI as the future made from pieces of the past. 

AI can take the role of human intelligence in problem-solving and decision-making (Kutyauripo et al., 2023).  

The ability of AI to accurately interpret external data, learn from it, and use that learning to accomplish 

specified objectives and tasks is one of its specialities (Hainlein and Kaplan, 2019). AI is increasingly being 

used to establish standards for current behaviours and the outcomes of those practices in the food sector 

and forecast how these elements will affect food supply and quality in the future (Karanth et al., 2023). The 

agriculture industry of which seafoods and crop production as well as harvesting and marketing are inclusive 

has seen tremendous improvement through the use of artificial intelligence (Goel et al., 2022). As a result of 

issues such as food safety, quality control, and classification as well as food sorting, the application of AI in 

the food industry keeps growing (Mavani et al., 2021). 

Several AI are applied in the Prediction and Optimization of the quality of seafood. These includes neural 

networks, deep learning, machine learning, etc.   

In this section, AI applied in predicting and optimization of seaweed quality are discussed. Special emphasis 

is laid on their description, advantages, disadvantages and application in seafood industry. 

6.1 Machine learning 

Computer science's sub-field of machine learning is categorized as an artificial intelligence technique (Chawla 

et al., 2023). Machine learning is the ability of a computer to learn without being taught for a particular job 

(El Naqa and Murphy, 2015; Anwar et al., 2023). Machine learning could either be supervised or unsupervised 

(Anwar et al., 2023). Samuel (1959) initially proposed the concept of machine learning, which is the study of 

how to enable computers to learn without being explicitly programmed. A subfield of artificial intelligence 

called machine learning makes use of a variety of factual and probabilistic approaches to teach computers 

how to discover hidden patterns (input-output linkages) in vast and frequently noisy data sets (Okafor et al., 

2023). According to purposes and training methods, machine learning can be categorized into three broad 

approaches namely unsupervised learning, supervised learning and reinforcement learning (Chung et al., 

2023). It has the benefit of allowing models to address issues that explicit methods cannot, and it may be 

used to a variety of fields (Chawla et al., 2023).  M5-Prime regression tree, multiple linear regression, support 

vector regression, perceptron multilayer neural networks, and k-nearest neighbour are examples of machine 

learning employed in enhancing food. The development of selective fishing gear that lowers the accidental 

capture of non-target species can be facilitated by the application of machine learning algorithms. In addition 

to protecting biodiversity, this lowers fishermen's financial losses (Rossi, 2022). By analyzing data on the 

behavior and needs of individual species, machine learning algorithms enable individualized care while 

consuming the fewest resources possible. This strategy improves the industry's overall sustainability and 

efficiency (Neethirajan, 2020).  It has proven possible to use machine learning to create chemometric 

discrimination tools by utilizing chemical pollutants and metal isotope ratios in eastern oysters (del Rio-Lavín 
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et al., 2022) 

6.2 Deep learning 

An artificial neural network-based representation learning algorithm known as "deep learning" is a sub-field 

of machine learning (Deng and Yu, 2014). With numerous successful applications in image processing, speech 

recognition, object detection, and other fields, deep learning has established itself as a cutting-edge method 

for big data analysis (Zhou et al., 2019).  Deep learning has demonstrated substantial benefits in automatically 

learning data representations, transfer learning, coping with the enormous amount of data, and achieving 

improved performance and higher precision (Ng et al., 2015; Kamilaris and Prenafeta-Boldu, 2018). Also, 

Jeevanandam et al. (2022) reported that due to the ability of deep learning to feature learning based on 

multi-layer artificial neural networks, it has received significant attention. In recent years, automatic 

identification of fish, sizing as well as counting has been performed by applying deep learning (Ovalle et al., 

2022). Ovalle et al. (2022) investigated various Deep Learning (DL) based length estimation and species 

identification techniques. On the one hand, they modified the Mask R CNN method to the problem of fish 

species identification for the instance segmentation task. On the other hand, the length of each individual 

was estimated using the MobileNet-V1 convolutional neural network. The findings demonstrated that both 

the identification and length estimate algorithms can accurately measure the catch when individual overlap 

is modest to low. When there is a lot of overlap between individual fishes, the outcomes still need to be 

improved. The majority of recent studies on feeding decision-making with deep learning have focused mostly 

on image analysis. Machine vision can be used to create a better feeding plan that considers fish behavior. 

Such a device can stop the feeding process at more reasonable times, reducing labor waste and improving 

fish health (Zhou et al., 2018). Furthermore, behavior serves as a useful point of reference for fish welfare 

and harvesting. Relevant behavior monitoring can provide a nondestructive understanding and an early 

warning of fish status, especially for uncommon actions. Determining the condition of fish and deciding when 

to collect and feed them depend on real-time behavior monitoring. The ability of DL techniques to recognise 

visual patterns is considerable. employing DL to analyse behavior. RNNs, in particular, can solve the 

aforementioned issue successfully because of their strong modeling capabilities for sequential data (Yang et 

al., 2021). 

6.3 Neural networks (NN) 

Machine learning's neural network sub-field uses algorithms to analyse data and create abstractions that 

mimic thinking (Ma et al. 2022).  It processes data, decodes spoken language, and visually identifies objects 

using multiple layers of algorithms. Each layer transmits information, with the output of one layer serving as 

the input for another (Zhou et al., 2019). As neural networks, one type of machine learning model, are 

naturally capable of handling such nonlinear phenomena, they have emerged as the model of choice for 

many researchers (Bali and Singla, 2021). In addition to achieving forward tracking and varied tracing for 

products in the supply chain, neural networks also assess food quality based on the related traceability data 

stored in the system. This can give consumers and related stakeholders more information, such as the 

product's quality level, to improve the consumer experience (Wang et al., 2017). It comprises a straight 

forward perceptive that calculates the weighted total of its inputs and outputs using mathematical 

operations (Zhu et al., 2021). The way an information flows across the network as well as the number of 

connection weights is determinant upon the architecture of the NN models (Maier et al., 2000). Multilayer 

perceptron which possess only three layers in most types of feed forward NN is the most widely and 

commonly used architecture (Csábrági et al., 2017).  

Neural networks have a number of benefits, including high noise tolerance, the ability to generalize, and 

superior adaptation characteristics (Guiné, 2019). Incomprehensible model behavior, multi-source 

heterogeneous data, a lack of software with a food scientist-friendly interface are only a few of the primary 
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issues faced by neural networks (Ma et al., 2022). 

Hyperspectral photography was used by Liu et al. (2019) to investigate the use of a convolutional neural 

network for seafood species recognition. In this study, the usage of a convolutional neural network (CNN) to 

detect various seafood species using hyperspectral data is investigated. According to the study, CNN had a 

high degree of accuracy in its ability to identify various species of seafood.  

In a similar vein, Chang and colleagues in 1999, investigated the use of neural networks to forecast shellfish 

demand. This study explores the use of a neural network to forecast consumer demand for various clam 

varieties based on previous sales information. The study discovered that the neural network could accurately 

estimate demand, and that this method might be helpful for supply chain management optimization.  

Hussaine et al. (2020) investigated the use of blockchain and neural networks for seafood traceability. This 

study explores how to enhance seafood management and traceability using neural networks and blockchain 

technologies. The study suggests using neural networks to assess data on different types of seafood, fishing 

areas, and other variables. 

7. APPLICATION OF AI IN ANALYSIS OF LARGE DATASETS OF SEAFOOD QUALITY 

The Internet of Things (IoT) and recent developments in sensor networks have allowed for the collection of 

vast amounts of data (Rahmani et al., 2021). Big data has been created across many different locations via 

digital tools, platforms, apps, and human communications (Daniel, 2019; Luan et al., 2020). 

More effective techniques with high analytical accuracy are required for the investigation of such vast 

amounts of data (Rahmani et al., 2021). 

The main advantages of the big data revolution are frequently seen to be the extraction of useful knowledge 

and workable patterns from data (Mayer-Schönberger and Cukier, 2013; Jagadish et al., 2014). Big data 

analytics make use of a range of technologies and methods, including signal processing, image recognition, 

text analytics, social network analysis, data mining, visualization, predictive modelling as well as natural 

language processing (Chen and Zhang, 2014). The application of these AI technologies in the of large data 

sets in seafood quality monitoring and evaluation is discussed in this section. 

7.1 Image recognition 

Artificial intelligence is becoming increasingly proficient at applying image recognition, a digital picture or 

video procedure for identifying and detecting an object or feature (Bhardwaj et al., 2021). Based on visual 

signals including colour, texture, and shape, AI algorithms can be trained to identify various varieties of 

seafood and assess their quality.  

An essential approach to verify the quality of fish is to analyze its color changes using imaging software, which 

is a non-hazardous, non-destructive common tool for analyzing data based on photography (Menesatti et al., 

2010). One of the key approaches for enhancing raw photos from diverse sources, such as cameras or satellite 

sensors, space probes, aircraft, etc., is digital image processing (Awalludin et al., 2020).  The use of a computer 

algorithm to perform image processing on a digital image is known as digital image processing. It deals with 

edge detection, edge sharpening, conversion, blurring, recognition, etc (Awalludin et al., 2020). The initial 

image's quality could be improved with the aid of image processing techniques, which also prepared the 

image for automated interpretation. The input images, pre-processing, segmentation, feature extraction, and 

classification of images are all dealt with by image processing techniques (Gamage, 2017). 

Some studies have been conducted on the use of image recognition for monitoring seafood quality 

(Muhamad at al., 2009; Wang et al., 2013; Duta et al., 2016). Of these, Muhamad at al. (2009) proposed a 

fuzzy logic-based method for classifying the freshness of fish whilst Wang et al. (2013) suggested a regression-
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based technique on depending on the eye from samples of fish. Fuzzy logic technology was used in a 2009 

study by Muhamad and colleagues to classify fish freshness based on image processing.  To categorize the 

freshness of the fish in this study, the RGB color image processing data with a focus on the eye and gill of the 

fish was analyzed and simplified. A fuzzy logic technology has been applied to this goal. There are two 

different kinds of fuzzy input techniques that have been discussed: and involves two inputs, one of which is 

the mean RGB value for both the eye and the gill. There are six inputs where the input is an RGB value for 

the eye and gill, respectively. Results show that produce better results when compared to categorizing 

seafood freshness. 

In order to cut expenses and time-consuming human inspection, the development of automatic fish sorting 

methods utilizing image analysis has been studied (Strachan and Kell, 1995). A study by Zion et al. (1999) 

created an image processing system based on moment-invariants combined with geometrical considerations 

for discriminating between photographs of three species of fish.  

7.2 Predictive modelling 

Predictive modelling is a crucial area of research in the seafood industry. For the food industry to increase 

productivity and minimize waste, the use of mathematical predictive models to evaluate microbial behaviour 

under various environmental circumstances is an intriguing approach. Predictive modelling can be used in a 

variety of contexts to improve the safety and quality of seafood, including quantitative (microbial) risk 

assessment, food chain modelling, quality and safety management, modelling of food processes, sampling, 

and plant design (Vasilis et al., 2013). Application of mathematical modelling for predicting shelf life 

necessitates adequate product rotting mechanism information has been reported (Koutsoumanis and 

Nychas, 2001). AI is able to find patterns and predict future seafood quality based on variables like 

temperature, water quality, and storage conditions by evaluating vast datasets of seafood quality metrics. 

One key field in the development of the food industry is predictive modelling (Membré and Lambert, 2008). 

Predictive models and their applications can be categorized into three namely; incident support to estimate 

the grade of impact on consumer safety or product quality, supporting food safety decisions that need to be 

made when implementing or running a food manufacturing operation and product innovation for assessing 

the rate of microbial proliferation (Calanche et al., 2020).  

Some studies have been conducted to evaluate predictive modelling as a tool in the seafood industry 

(Koutsoumanis, 2001; Calanche et al., 2020; Giarratana et al., 2020; Garcia, 2022; Giarratana et al., 2022). 

Predictive modelling approaches have been used to determine the growth of pathogenic microorganisms in 

seafoods (Dalagaard et al., 2002).  

According to Calanche and colleagues in 2020, the physico-chemical and microbiological parameters had a 

satisfactory correlation. The establishment of a shelf-life of 10 days, which corresponded to a poor grade 

(according to the European Community's system of grading fish for marketing purposes) with a freshness 

index below 50%, was made possible through sensory analysis and microbiological counts. Gill and flesh 

texture were the characteristics most susceptible to spoiling while storage in ice, according to sensory 

profiles. Following practical validation, the predictive models for the freshness index (%) and ice storage 

duration (h) showed an accuracy close to 90%. 

Based on dynamic temperature conditions and a subsequent statistical analysis of the outcomes, Giarratana 

et al. (2022) built a deterministic mathematical model. The shelf-life of Atlantic mackerel was predicted using 

this model at certain storage temperatures. A total of 60 fresh fish were divided into two groups and held in 

ice for 12 days, one group at a constant temperature of 10.5°C and the other at a variable temperature of 1–

7°C. At regular intervals, each fish had a microbiological examination and a sensory assessment using the 

Quality index method (QIM). After 9 days of storage for Group A and 3 days for Group B, a critical value of 6 



Journal of AI 

29 

Log cfu/g of spoilage bacteria (mostly psychoactive) linked with a considerable degradation of the sensory 

qualities was exceeded. By modelling the Quality index method (QIM) as a function of the behaviour of the 

spoilage bacteria, a trustworthy prediction of fish freshness was made possible. The spoilage bacteria load 

was converted into a Quality Index score using a coefficient of correlation. 

In varied isothermal circumstances between 0° C and 15° C, Koutsoumanis (2001) observed the behavior of 

the natural microflora of Mediterranean gilt-head seabream (Sparus aurata) during aerobic storage. The 

influence of temperature on pseudomonad growth was modeled using a Belehradek type model employing 

the growth data of pseudomonads, which were established as the particular spoiling organisms of aerobically 

preserved gilt-head seabream. For the maximal specific growth rate (max) and the lag phase (tLag), the 

nominal minimum temperature parameters of the Belehradek model (Tmin) were found to be 11.8 and 

12.8°C, respectively. By contrasting predictions with actual growth in dynamically changing tests, the model's 

applicability in forecasting pseudomonad growth on fish at shifting temperatures was assessed. Utilized were 

temperature scenarios created in the lab and simulations of actual temperature profiles seen in the fish chill 

chain. As comparison indices, bias and accuracy factors with corresponding ranges of 0.91 to 1.17 and 1.11 

to 1.17 were utilized. For all temperature profiles studied, the average percent difference between shelf life 

experimentally measured by sensory analysis and shelf life projected based on pseudomonad development 

was 5.8%, demonstrating the model's accuracy in predicting fish quality under realistic circumstances. 

7.3 Data clustering/Cluster analysis 

A variety of exploratory multivariate statistical techniques that seek to isolate homogeneous groupings 

within a data set are collectively referred to as cluster analysis (Daniel and Gastón, 2014). A data-driven 

technique called cluster analysis is used to group people with comparable traits into groups. Based on quality 

criteria, AI can group together similar types of seafood, enabling researchers to find shared traits and 

potential quality-affecting variables. Since it may be used to categorise a set of samples according to many 

different features, cluster analysis is significant. Cluster analysis can also be used to more effectively evaluate 

huge data sets from instrumental measurements (Daniel and Gastón, 2014). In order to produce food 

products for particular consumer segments, cluster analysis is frequently used to identify groups of customers 

with varied preference patterns based on their liking of a collection of samples (Yenket et al., 2011). 

Data mining, document retrieval, image segmentation, and pattern classification are only a few exploratory 

patterns analysis, grouping, decision-making, and machine learning applications where clustering is helpful 

(Jain, 2010). Clustering has been used to investigate genome data (Baldi and Hatfield, 2002) as well as group 

services delivery engagements for workforce management and planning (Hu et al., 2007). 

7.4 Drone technology  

Drones are revolutionizing land-based businesses; shops are looking into drone-based delivery systems, and 

realtors are using them to take aerial images of properties that are for sale. Underwater drones could bring 

about a similar transformation in the marine resources field by giving researchers eyes beneath the waves so 

they can monitor water quality and inexpensively remedy equipment issues (Whitt et al., 2020). These 

underwater drones will test dissolved oxygen levels and other physical and chemical data, and they will be 

outfitted with cameras to identify tears in nets before they get too serious, according to the drone creators 

(Orlowski, 2017). Divers may be put in danger during these checks, but the underwater drone is resistant to 

bad weather and much adverse weather conditions (Xiang et al., 2022). By using the drone's data on fish 

movements and environmental factors, fishermen may increase growth, reduce waste, and enhance 

accuracy. By examining fish stress levels, the data can also be utilized to reduce disease outbreaks and death 

(Fujita et al., 2018). Analyzing light conditions, on the other hand, can help control maturity and improve 

harvest quality (Ding & Ma, 2012). EyeROV TUNA, the first remotely operated underwater drone available 
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for purchase in India, can send real-time footage of ships and other underwater structures to help with 

upkeep and repairs (Bagde & Pathan, 2023). The drone's capacity to navigate to a depth of 50 meters and 

take real-time HD video photos for underwater analysis has saved the usage of more costly and risky human 

examination by divers. One of the most cutting-edge systems, fishSHOAL, uses robot fish to find sources of 

underwater pollution (Müller-Schloer & Tomforde, 2017).   

7.5 Data mining 

Data mining is the technique of computing that identifies patterns in big data sets and extracts pertinent 

information (Kubat et al., 1998). It entails the application of both straightforward and sophisticated 

techniques, such as k-means clustering, k-nearest neighbour classification, support vector machine binary 

classifiers, dynamic prediction, modeling, artificial neural networks, and algorithm architecture, for the 

purpose of extracting useful data from relational, transactional, object-oriented, spatial, temporal, and 

relational databases, as well as from global information systems (Liao et al., 2012). Association, evolution, 

generalization, classification, characterisation, clustering, data visualization, pattern matching, and meta-rule 

guided mining are the main categories of data mining techniques (Gladju et al., 2022). 

7.6 Robotic cages  

For use in the open ocean, robotic cages are complete cages equipped with cameras, sensors, feeding and 

recirculation systems. A cage that fishermen can place their fish in before setting it adrift in the ocean (Føre 

et al., 2023). Brass mesh creates a cage, which prevents biofouling or the growth of algae and barnacles on 

submerged objects. By doing this, drag, and the requirement to clean the cages are reduced (Bagde & Pathan, 

2023). Aquapods (Small Amphibious Robots with Sampling Capabilities) are a common name for robotic 

cages. These monitoring tools can be applied to aquaculture and exploration (Mackowiak, 2019). Data and 

AI will be necessary for commodity seafood markets, such as those for prawns and salmon, where 

international competition determines the price (Engle et al., 2016). 

8. RESEARCH GAPS AND FUTURE OUTLOOK 

Economic, technological, policy and ecological factors would greatly determine the contribution of seafood 

in meeting future food supply globally. A crucial issue that impacts both the commercial viability of the 

seafood business and the sustainability of seafood resources is the reduction of losses and wastage in 

seafoods. One viable answer to this challenge is the use of smart tools and biosensors based on artificial 

intelligence (AI) to enhance seafood processing and storage. 

Although some progress has been made with respect to the use of AI based smart tools and biosensors in 

ensuring seafood are managed sustainably, lots of research gaps exist. There is therefore the need to fill 

these gaps to maximize the potential of biosensors and smart tools in reducing wastage and losses along the 

seafood value chain.  

Analyzing and processing data in large quantities or amounts could be problematic. In this regard, researchers 

should focus on looking at tools that can analyze large amounts of data generated from the use of biosensors 

and smart tools based on artificial intelligence. In solving this challenge, there will be the need to conduct 

further studies to develop artificial intelligence algorithm that has the potential to produce insights that are 

actionable and can interpret complex data sets for sustaining production of seafoods. 

Researchers should focus their studies on the utilization of deep learning, advanced molecular analysis 

methods like chromatography, electrophoresis, and spectroscopy, as well as genome characterization, to 

provide a revolutionary method for examining the quality dynamics of food ingredients. 

Ability to detect fish spoilage which leads to great loss and wastage very early is important in ensuring food 
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security. In this regards, it is important produce biosensors that can accurately detect early characteristics of 

contamination in seafood samples or seafood spoilage. Again it will be prudent to direct research towards 

development of biosensors that has the ability to detect varied range of microorganisms and compounds in 

seafood samples. 

9. CONCLUSION 

This review sort to highlight the role of smart tools and biosensors based on artificial intelligence in reduction 

of losses and wastage in seafood industry. The findings of this review demonstrate that a wide range of 

biosensors, grouped according to their modes of operation, can be used to assess the quality of seafood. 

These biosensors include microbial biosensors, optical biosensors, tissue-based biosensors, immunosensors, 

DNA-based biosensors, electrochemical biosensors, enzyme-based biosensors, optical biosensors, and 

piezoelectric biosensors.  The most prominent of these biosensors are optical biosensors, electrochemical 

biosensors, and mechanical biosensors. Again, this study shows that a number of smart technologies are used 

for seafood traceability and management, including blockchain technology, quick response (QR) codes, data 

analytics, digital twins, and RFID tags. Data from the processing plant, vessel tracking information, and catch 

data are a few of the various data sources that can be used to track seafood products. The quality of seafood 

can be predicted and enhanced using artificial intelligence methods like neural networks, deep learning, 

machine learning, and others. There is a need to fill research gaps in the creation of biosensors capable of 

identifying a wide range of bacteria and chemicals in samples of seafood, even though some studies have 

been conducted regarding the role of smart tools and biosensors based on artificial intelligence that could 

reduce losses.  Studying the creation of biosensors that can accurately detect the earliest indications of 

seafood contamination or rotting is essential. 
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