
MATHEMATICAL SCIENCES AND APPLICATIONS E-NOTES
https://doi.org/10.36753/mathenot.1395051
12 (2) 93-100 (2024) - Research Article
ISSN: 2147-6268

c©MSAEN

Certain Results for Invariant Submanifolds of an
Almost α-Cosymplectic (k, µ, ν)-Space

Pakize Uygun∗, Mehmet Atçeken and Tuğba Mert

Abstract
In this paper we present invariant submanifolds of an almost α-cosymplectic (k, µ, ν)-space. Then, we
gave some results for an invariant submanifold of an almost α-cosymplectic (k, µ, ν)-space to be totally
geodesic. As a result, we have discovered some interesting conclusions about invariant submanifolds of
an almost cosymplectic (k, µ, ν)-space.
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1. Introduction
T. Koufogiorgos and C. Tsichlias found a new class of 3-dimensional contact metric manifolds that k and µ are

non-constant smooth functions. They generalized (k, µ)−contact metric manifolds on non-Sasakian manifolds for
n > 1, where the functions k, µ are constants [1].

S. I. Goldberg and K. Yano obtained integrability conditions for almost cosymplectic structures on almost
contact manifolds. The simplest examples of almost cosymplectic manifolds are these structures of almost Kaehler
manifolds, the real R line and the circle S1. Besides, they studied an almost cosymplectic manifold is cosymplectic
only in the case it is locally flat [2].

İ. Küpeli Erken researched almost α−cosymplectic manifolds. They studied, respectively, projectively flat,
conformally flat and concircularly flat almost α−cosymplectic manifolds (with the η−parallel tensor field φh). They
devoted to properties of almost with the η−parallel tensor field φh [3].

For an almost contact metric structure to be almost cosymplectic, Z. Olszak provided a few necessary require-
ments. They established the absence of virtually cosymplectic manifolds in dimensions bigger than three with
non-zero constant sectional curvature. Fortunately, such locally flat manifolds with zero sectional curvature do exist
and were cosymplectic. Additionally, they looked at several constraints on virtually cosymplectic manifolds that
had conformally flat surfaces or constant φ-sectional curvature [4].
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In 2022, M. Atçeken studied the invariant submanifolds of an almost α-cosymplectic (k, µ, ν)-space that satisfy-
ing certain geometric requirements so that Q(σ,R) = 0,

Q(S, σ) = 0, Q(S, ∇̃σ) = 0, Q(S, R̃ · σ) = 0, Q(g, C · R) = 0 and Q(S,C · σ) = 0. He showed that under certain
circumstances, these conditions are identical to totally geodesic [5]. Additionally, some geometers have worked on
the almost Kenmotsu (k, µ, ν)-space [6–8].

Our article’s focus is on invariant submanifolds of an almost α-cosymplectic (k, µ, ν)-space, which is inspired by
the works mentioned studies. In addition, we research several conditions for an α-cosymplectic (k, µ, ν)-space’s
invariant submanifold to be totally geodesic. Then, some classifications and characterizations have been developed.

2. Preliminaries

An almost contact manifold is of 1-form η satisfying on M2n+1, an odd-dimensional manifold, a field φ of
endomorphisms of the tangent spaces, a characteristic or Reeb vector field, and a vector field ξ

φ2 = −I + η ⊗ ξ, η(ξ) = 1, (2.1)

in which I : TM2n+1 → TM2n+1 denotes an identity mapping. Because of (2.1), it follows

η ◦ φ = 0, φξ = 0, rank(φ)=2n. (2.2)

An almost contact manifold M2n+1(φ, ξ, η) is said to be normal if the tensor field N = [φ, φ] + 2dη ⊗ ξ = 0,
where [φ, φ] denote the Nijenhuis tensor field of φ. Any almost contact manifold M2n+1(φ, ξ, η) is known to have a
Riemannian metric like that

g(φω1, φω2) = g(ω1, ω2)− η(ω1)η(ω2), (2.3)

for all vector fields ω1, ω2 ∈ Γ(TM) [9]. A metric of this type, g is known as an equipped metric, and the structure
(φ, η, ξ, g) and manifold M2n+1(φ, η, ξ, g), associated with it, are known as an almost contact metric manifolds
and denoted by as M2n+1(φ, η, ξ, g). It is defined for M2n+1(φ, η, ξ, g) to have a 2-form Φ. It is known as the
fundamental form of M2n+1(φ, η, ξ, g) when Φ(ω1, ω2) = g(φω1, ω2). An almost contact metric manifold is referred
to as a cosymplectic manifold if η and Φ are closed, that is, dη = dΦ = 0 [10].
The definition of an almost α-cosymplectic manifold for every real number α is [11]

dη = 0, dΦ = 2αη ∧ Φ. (2.4)

An α−cosymplectic refers to a normal almost α−cosymplectic manifold [12]. It is well known that the following
equality holds for the tensor h on the contact metric manifold M2n+1(φ, η, ξ, g), described by 2h = Lξφ,

∇̃ω1
ξ = −φω1 − φhω1, hφ+ φh = 0, trh = trφh = 0, hξ = 0, (2.5)

where,∇̃ is the Levi-Civita connection on M2n+1 [6].

The following presented the notation of the (k, µ, ν)−contact metric manifold, which expands above generalized
(k, µ)-spaces:

R(ω1, ω2)ξ = η(ω2) [kI + µh+ νφh]ω1 + η(ω1) [kI + µh+ νφh]ω2, (2.6)

where R is the Riemannian curvature tensor of M2n+1 and certain smooth functions k, µ and ν on M2n+1, ω1, ω2

are vector fields [13].

Lemma 2.1. Given M2n+1(φ, η, ξ, g) is an almost α−cosymplectic (k, µ, ν)−space, so

h2 = (k + α2)φ2, (2.7)

ξ(k) = 2(k + α2)(ν − 2α), (2.8)

R(ξ, ω1)ω2 = k[g(ω1, ω2)ξ − η(ω2)ω1] + µ[g(hω1, ω2)ξ − η(ω2)hω1]

+ν[g(φhω1, ω2)ξ − η(ω2)φhω1], (2.9)
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(∇̃ω1
φ)ω2 = g(αφω1 + hu1, ω2)ξ − η(ω2)(αφω1 + hω1), (2.10)

∇̃ω1
ξ = −αφ2ω1 − φhω1, (2.11)

for any vector fields ω1, ω2 on M2n+1 [9].

Let M be an immersed submanifold of M̃2n+1, which is an almost α−cosymplectic (k, µ, ν)-space. We denote
the tangent and normal subspaces of M in M̃ by Γ(TM) and Γ(T⊥M), respectively, the Gauss and Weingarten
formulas are provided, respectively, by

∇̃ω1
ω2 = ∇ω1

ω2 + σ(ω1, ω2), (2.12)

and
∇̃ω1

ω5 = −Aω5
ω1 +∇⊥ω1

ω5 (2.13)

for all ω1, ω2 ∈ Γ(TM) and ω5 ∈ Γ(T⊥M), σ and A are referred to as the second fundamental form and shape
operators of M , respectively, ∇ and ∇⊥ are the induced connections on M and Γ(T⊥M). Γ(TM) stands for the set
of differentiable vector fields on M . They are associated by

g(Aω5
ω1, ω2) = g(σ(ω1, ω2), ω5). (2.14)

The second fundamental form σ is first covariant derivative is given by

(∇̃ω1σ)(ω2, ω3) = ∇⊥ω1
σ(ω2, ω3)− σ(∇ω1ω2, ω3)− σ(ω2,∇ω1ω3), (2.15)

for all ω1, ω2, ω3 ∈ Γ(TM). If ∇̃σ = 0, the second fundamental form is parallel.
By R, we denote the Riemannian curvature tensor of submanifold, then we have the Gauss formulae.

R̃(ω1, ω2)ω3 = R(ω1, ω2)ω3 +Aσ(ω1,ω3)ω2 −Aσ(ω2,ω3)ω1 + (∇̃ω1
σ)(ω2, ω3)

−(∇̃ω2
σ)(ω1, ω3), (2.16)

for all ω1, ω2, ω3 ∈ Γ(TM).

R̃ · σ is given by

(R̃(ω1, ω2) · σ)(ω4, ω5) = R⊥(ω1, ω2)σ(ω4, ω5)− σ(R(ω1, ω2)ω4, ω5)

−σ(ω4, R(ω1, ω2)ω5), (2.17)

where
R⊥(ω1, ω2) = [∇⊥ω1

,∇⊥ω2
]−∇⊥[ω1,ω2]

,

denote the normal bundle’s Riemannian curvature tensor.
For the Riemannian manifold (M2n+1, g), the W ∗1 curvature tensor is determined by

W ∗1 (ω1, ω2)ω3 = R(ω1, ω2)ω3 −
1

2n
[S(ω2, ω3)ω1 − S(ω1, ω3)ω2], (2.18)

for all ω1, ω2, ω3 ∈ Γ(TM) [14].
Similarly, the tensor W ∗1 · σ is defined by

(W ∗1 (ω1, ω2) · σ)(ω4, ω5) = R⊥(ω1, ω2)σ(ω4, ω5)− σ(W ∗1 (ω1, ω2)ω4, ω5)

−σ(ω4,W
∗
1 (ω1, ω2)ω5), (2.19)

for all ω1, ω2, ω4, ω5 ∈ Γ(TM).
Furthermore, the W7-curvature tensor for Riemannian manifold (M2n+1, g) is given by

W7(ω1, ω2)ω3 = R(ω1, ω2)ω3 −
1

2n
[S(ω2, ω3)ω1 − g(ω2, ω3)Qω1] (2.20)

for all ω1, ω2, ω3 ∈ Γ(TM) [15].
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On a semi-Riemannian manifold (M, g), for a (0, k)−type tensor field (0, k)-type tensor field T and (0, 2)-type
tensor field A, (0, k + 2)-type tensor field Tachibana Q(A, T ) is defined as

Q(A, T )(ω11, ω12, ..., ω1k;ω1, ω2) = −T ((ω1 ∧A ω2)ω11, ω12, ..., ω1k)

− T (ω11, (ω1 ∧A ω2)ω13, ..., ω1k)

.

.

.

− T (ω11, ω12, ..., (ω1 ∧A ω2)ω1k), (2.21)

for all ω11, ω12, ..., ω1k, ω1, ω2 ∈ χ(M), where

(ω1 ∧A ω2)ω3 = A(ω2, ω3)ω1 −A(ω1, ω3)ω2. (2.22)

3. Invariant submanifolds of an almost α−cosymplectic (k, µ, ν)-space

Now, let M be an immersed submanifold of M̃2n+1 and M be an almost α − cosymplectic (k, µ, ν)−space. If
φ(Tω11M) ⊆ Tω11M, for each point at ω11 ∈M, then M is said to be an invariant submanifold of M̃2n+1(φ, ξ, η, g)
with respect to φ. Following, it will be clear that a submanifold that is invariant with respect to φ is also invariant
with respect to h.

Proposition 3.1. ξ is tangent to M , let M be an invariant submanifold of an almost α−cosymplectic (k, µ, ν)-space
M̃2n+1(φ, ξ, η, g). Hence, the following equalities hold on M ;

R(ω1, ω2)ξ = k[η(ω2)ω1 − η(ω1)ω2] + µ[η(ω2)hω1 − η(ω1)hω2]

+ν[η(ω2)φhω1 − η(ω1)φhω2] (3.1)

(∇ω1φ)ω2 = g(αφω1 + hω1, ω2)ξ − η(ω2)(αφω1 + hω1) (3.2)

∇ω1
ξ = −αφ2ω1 − φhω1 (3.3)

φσ(ω1, ω2) = σ(φω1, ω2) = σ(ω1, φω2), σ(ω1, ξ) = 0, (3.4)

where ∇, σ and R stand for M ’s Levi-Civita connection, shape operator and the Riemannian curvature tensor on M ,
respectively.

Proof. As the proof is a consequence of straightforward, we omit it.

We shall assume for the remainder of this work that M is an invariant submanifold of an α−cosymplectic
(k, µ, ν)-space M̃2n+1(φ, ξ, η, g). From (2.5), we have in this instance

φhω1 = −hφω1, (3.5)

for all ω1 ∈ Γ(TM), in other words M is also invariant with respect to the tensor field h.

Theorem 3.1. Let M be an invariant submanifold of an almost α−cosymplectic (k, µ, ν)-space M̃2n+1(φ, ξ, η, g). Then
Q(g,W ∗1 · σ) = 0 if and only if M is either totally geodesic or µ2 + ν2 = 0.

Proof. We suppose that Q(g,W ∗1 · σ) = 0. This means that

(W ∗1 (ω1, ω2) · σ)((ω3 ∧g ω6)ω4, ω5) + (W ∗1 (ω1, ω2) · σ)(ω4, (ω3 ∧g ω6)ω5) = 0,

for all ω1, ω2, ω4, ω5, ω3, ω6 ∈ Γ(TM), which implies that

(W ∗1 (ω1, ω2) · σ) + (g(ω4, ω6)ω3 − g(ω3, ω4)ω6, ω5) + (W ∗1 (ω1, ω2) · σ)

+(ω4, g(ω5, ω6)ω3 − g(ω3, ω5)ω6) = 0. (3.6)
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In (3.6), putting ω2 = ω4 = ω3 = ω5 = ξ and using (2.18), (2.19),(3.1), we observe

(W ∗1 (ω1, ξ) · σ)(η(ω6)ξ − ω6, ξ) = (W ∗1 (ω1, ξ) · σ)(η(ω6)ξ, ξ)

−(W ∗1 (ω1, ξ) · σ)(ω6, ξ)

= R⊥(ω1, ξ)σ(η(ω6)ξ, ξ)− σ(η(ω6)W ∗1 (ω1, ξ)ξ, ξ)

−σ(η(ω6)ξ,W ∗1 (ω1, ξ)ξ)−R⊥(ω1, ξ)σ(ω6, ξ)

+σ(W ∗1 (ω1, ξ)ω6, ξ) + σ(ω6,W
∗
1 (ω1, ξ)ξ) = 0. (3.7)

In view of (2.6) and (2.16), non-zero components of (3.7) vectors give us

σ(W ∗1 (ω1, ξ)ξ, ω6) = σ(ω6, µhω1 + νφhω1) = 0. (3.8)

Also taking φω1 instead of ω1 in (3.8) and by virtue of lemma 2.1 and proposition 1, we have

− µσ(hω1, ω6) + νσ(hω1, ω6) = 0. (3.9)

Equations (3.8) and (3.9) implies that
µ2 + ν2 = 0 or σ = 0.

This proves our assertion.

Theorem 3.2. Let M be an invariant submanifold of an almost α−cosymplectic (k, µ, ν)-space M̃2n+1(φ, ξ, η, g). Then
Q(S,W ∗1 · σ) = 0 if and only if M is either totally geodesic or 2nk(µ2 + ν2) = 0.

Proof. We believe that Q(S,W ∗1 · σ) = 0, which follows that

Q(S,W ∗1 (ω1, ω2) · σ)(ω4, ω5;ω3, ω6) = 0,

for all ω1, ω2, ω4, ω5, ω3, ω6 ∈ Γ(TM), by virtue of (2.19) and (2.21), we obtain

S(ω3, ω4)(W ∗1 (ω1, ω2) · σ)(ω6, ω5)− S(ω6, ω4)(W ∗1 (ω1, ω2) · σ)(ω3, ω5)

+S(ω3, ω5)(W ∗1 (ω1, ω2) · σ)(ω4, ω6)

−S(ω6, ω5)(W ∗1 (ω1, ω2) · σ)(ω4, ω3) = 0. (3.10)

Expanding (3.10) and putting ω2 = ω4 = ω3 = ω5 = ξ, non-zero components is

2nkσ(ω6,W
∗
1 (ω1, ξ)ξ) = 0. (3.11)

As a result, by combining the previous equation and applying (2.20), we reach

2nkµσ(ω6, µhω1) + 2nkνσ(ω6, φhω1) = 0. (3.12)

On the other hand, substituting φω1 for ω1 in (3.12) and taking into account (2.7) and (3.4), we conclude that
2nk

[
(µ2 + ν2)

]
σ(hω1, ω6) = 0,which follows that, 2nk(µ2 + ν2) = 0 or σ = 0.

Thus proof is completed.

Theorem 3.3. Let M be an invariant submanifold of an almost α−cosymplectic (k, µ, ν)-space M̃2n+1(φ, ξ, η, g). Then
Q(g,W7 · σ) = 0 if and only if M is either totally geodesic or

[
k2 + (k + α2)(µ2 + ν2)

]
= 0.

Proof. We suppose that Q(g,W7 · σ) = 0. This means that

(W7(ω1, ω2) · σ)((ω3 ∧g ω6)ω4, ω5) + (W7(ω1, ω2) · σ)(ω4, (ω3 ∧g ω6)ω5) = 0,

for all ω1, ω2, ω4, ω5, ω3, ω6 ∈ Γ(TM), which implies that

(W7(ω1, ω2) · σ) + (g(ω4, ω6)ω3 − g(ω3, ω4)ω6, ω5) + (W7(ω1, ω2) · σ)

+(ω4, g(ω5, ω6)ω3 − g(ω3, ω5)ω6) = 0. (3.13)
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In (3.13), putting ω2 = ω4 = ω3 = ω5 = ξ and by using (2.6), (2.20), we observe

(W7(ω1, ξ) · σ)(η(ω6)ξ − ω6, ξ) = (W7(ω1, ξ) · σ)(η(ω6)ξ, ξ)

−(W7(ω1, ξ) · σ)(ω6, ξ)

= R⊥(ω1, ξ)σ(η(ω6)ξ, ξ)− σ(η(ω6)W7(ω1, ξ)ξ, ξ)

−σ(η(ω6)ξ,W7(ω1, ξ)ξ)−R⊥(ω1, ξ)σ(ω6, ξ)

+σ(W7(ω1, ξ)ω6, ξ) + σ(ω6,W7(ω1, ξ)ξ) = 0. (3.14)

In view of (2.17) and (2.20), non-zero components of (3.14) give us

σ(W7(ω1, ξ)ξ, ω6) = σ(ω6, kω1 + µhω1 + νφhω1) = 0. (3.15)

Substituting φω1 for ω1 in (3.15) and considering the equations (2.1) and (2.7), then we get

kσ(φω6, ω1)− µσ(ω6, φhω1) + νσ(ω6, hω1) = 0. (3.16)

From (3.15) and (3.16), we conclude that[
k2 + (k + α2)(µ2 + ν2)

]
σ(ω6, hω1) = 0

So, the proof is finished.

Theorem 3.4. Let M be an invariant submanifold of an almost α−cosymplectic (k, µ, ν)-space M̃2n+1(φ, ξ, η, g). Then
Q(S,W7 · σ) = 0 if and only if M is either totally geodesic or 2nk

[
k2 + (k + α2)(µ2 + ν2)

]
= 0.

Proof. Let us assume that Q(S,W7 · σ) = 0. It follows that

Q(S,W7(ω1, ω2) · σ)(ω4, ω5;ω3, ω6) = 0,

for all ω1, ω2, ω4, ω5, ω3, ω6 ∈ Γ(TM), by virtue of (2.17) and (2.20), we deduce that

S(ω3, ω4)(W7(ω1, ω2) · σ)(ω6, ω5)− S(ω6, ω4)(W7(ω1, ω2) · σ)(ω3, ω5)

+S(ω3, ω5)(W7(ω1, ω2) · σ)(ω4, ω6)− S(ω6, ω5)(W7(ω1, ω2) · σ)(ω4, ω3) = 0. (3.17)

By setting ω2 = ω4 = ω3 = ω5 = ξ in the last equation and it non-zero components is

2nkσ(ω6,W7(ω1, ξ)ξ) = 0. (3.18)

On the other hand (3.18) can be written as follows:

2nk [kσ(ω6, ω1) + µσ(ω6, hω1) + νσ(ω6, φhω1)] = 0. (3.19)

In the same way, by using (3.15) and (3.16), we get
2nk

[
k2 + (k + α2)(µ2 + ν2)

]
σ(hω1, ω6) = 0, this means that,

2nk
[
k2 + (k + α2)(µ2 + ν2)

]
= 0 or σ = 0.

This proves our assertion.

Example 3.1. Let M = {(ω1, ω2, ω3, ω4, ω5) ∈ R5, ω5 6= ±1, 0} and we take

e1 = (ω5 + 1)
∂

∂ω1
, e2 =

1

ω5 − 1

∂

∂ω2
, e3 =

1

2
(ω5 + 1)2

∂

∂ω3
,

e4 =
5

ω5 − 1

∂

∂ω4
, e5 = (ω5 − 1)

∂

∂ω5

are linearly independent vector fields on M. We also definite (1, 1)−type tensor field φ by φe1 = e2, φe2 = −e1,
φe3 = e4, φe4 = −e3 and φe5 = 0.

Furthermore, the Riemannian metric tensor g is given by

g(ei, ej) = {1, i = j; 0, i 6= j} .
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By direct computations, we can easily to see that

φ2ω1 = −ω1 + η(ω1)ξ, η(ω1) = g(ω1, ξ)

and
g(φω1, φω2) = g(ω1, ω2)− η(ω1)η(ω2).

ThusM5(φ, ξ, η, g) is a 5-dimensional almost contact metric manifold. From the Lie-operatory, we have the non-zero
components

[e1, e5] = −(ω5 − 1)e1, [e2, e5] = (ω5 + 1)e2, [e3, e5] = −(ω5 − 1)e3,

[e4, e5] = (ω5 + 1)e4.

Furthermore, by ∇, we denote the Levi-Civita connection on M, by using Koszul’s formula, we can reach at the
non-zero components

∇e1e5 = −(ω5 − 1)e1, ∇e2e5 = (ω5 + 1)e2, ∇e3e5 = −(ω5 − 1)e3,

∇e4e5 = (ω5 + 1)e4.

Comparing the above relations with
∇ω1e5 = ω1 − η(ω1)e5 − φhω1,

we can observe

he1 = −ω5e2, he2 = −ω5e1, he3 = −ω5e4, he4 = −ω5e3 and he5 = 0.

By direct calculations, we get

R(e1, e5)e5 = ke1 + µhe1 + νφhe1 = 2(ω5 − 1)e1,

R(e2, e5)e5 = ke2 + µhe2 + νφhe2 = −2w5(ω5 + 1)e2,

R(e3, e5)e5 = ke3 + µhe3 + νφhe3 = 2(ω5 + 1)e3,

and
R(e4, e5)e5 = ke4 + µhe4 + νφhe4 = −2w5(ω5 + 1)e4,

which imply that k = −(ω5 + 1), µ = 0 and ν = 2− 1
ω5

+ ω5.
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