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The effects of irregular population growth, migration mobility, and vegetation dynamics 
by humans can lead to changes in Land Use and Land Cover (LULC). Changes in LULC are 
particularly significant in coastal areas associated with industrial activities. The 
southeastern Marmara region, which is one of Turkey's industrial coastal areas, is also 
affected by the surrounding changes. The study area was selected to determine LULC 
change and classification accuracy using Sentinel-2 vegetation indices combinations. In 
the study area, the Gemlik-Bursa Northern Interchange Investments Area and TOGG 
(Turkey's Automobile Initiative Group) factory are located. The study area was 
determined by creating a 5-km buffer zone from the coast to the mainland covering 
Armutlu district of Yalova province and Osmangazi, Mudanya, and Gemlik districts of 
Bursa province. Random Forest (RF) classification technique was applied both to the 
original bands and to 21 new band combinations that are derived from Sentinel-2 
multispectral satellite imagery for 3 seasons in 2016 and 2020. The new band 
combinations used for classification were created by adding the normalized vegetation 
indices, the original bands and the bands obtained from the simple ratio formula. In 
2016, the highest accuracy results for the winter, spring, and summer seasons were 
observed for the OI12 (82.93%), ORF (84.44%), and ORF (84.67%) indices, while in 2020 
were observed for the OI5 (85.89%), ORF (84.75%), and OI6 (84.63%) indices. In 
Southeast Marmara, investment decisions taken at national level have led to population 
growth in the region.  Although it was observed that there was no significant change in 
classification accuracy with the addition of spectral features to the original bands such 
as NDVI and SR, we believe that future testing of the data with different statistical and 
machine learning methods provide higher accuracy. 

 

Spektral İndeks Kombinasyonlarının Rastgele Orman (RO) Sınıflandırması Kullanarak 
Mevsimsel Arazi Kullanımı ve Bitki Örtüsü (AKBÖ) Değişiklikleri Üzerindeki 
Etkilerinin Belirlenmesi: Güneydoğu Marmara Bölgesi Örneği 2016-2020 

Anahtar Kelimeler: ÖZ 
Uzaktan Algılama  
AKBÖ 
Vejetasyon İndeksler 
Güney-Doğu Marmara Bölgesi 

Düzensiz nüfus artışı, göç hareketliliği ve insanların vejetasyon dinamiklerine etkileri 
Arazi Kullanım ve Bitki Örtüsü (AKBÖ) değişimlerine yol açabilmektedir. AKBÖ 
değişiklikleri sanayi ile ilişkili kıyı bölgelerinde oldukça önemlidir. Türkiye’nin önemli 
kıyı alanlarından olan Güneydoğu Marmara alanı da çevredeki değişimlerden 
etkilenmektedir. Çalışma alanı, Sentinel-2 tabanlı bitki örtüsü indeksleri 
kombinasyonlarını kullanarak gerek AKBÖ değişimini gerekse sınıflandırmanın 
doğruluğunu belirlemek amacıyla seçilmiştir. Çalışma alanında Gemlik- Bursa Kuzey 
Kavşağı yatırım alanı ve yeni inşa edilen TOGG (Türkiye'nin Otomobili Girişim Grubu) 
fabrikası yer almaktadır. Çalışma alanı, Yalova ili Armutlu ilçesi ve Bursa ili Osmangazi, 
Mudanya ve Gemlik ilçelerini kapsayan alanda kıyıdan anakaraya 5 km’lik tampon bölge 
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oluşturularak belirlenmiştir. Rastgele Orman (RO) sınıflandırma tekniği, 2016 ve 2020 
yıllarında 3 sezon boyunca Sentinel-2 multispektral uydu görüntülerinden elde edilen 
indeksler kullanılarak orijinal bantlara ve 21 yeni bant kombinasyonuna uygulanmıştır. 
Sınıflandırma için kullanılan yeni bant kombinasyonları, normalize edilmiş bitki örtüsü 
indeksleri (NDVI), orijinal bantlar ve basit oran (SR) formülünden elde edilen bantlar 
eklenerek oluşturulmuştur. En yüksek doğruluk sonuçları 2016 yılı kış, ilkbahar ve yaz 
mevsimleri için OI12 (%82,93), ORF (%84,44) ve yine ORF (%84,67) indekslerinde 
gözlemlenirken, 2020 yılında OI5 (%85,89), ORF (%84,75) ve OI6 (%84,63) 
indekslerinde gözlemlenmiştir. Güneydoğu Marmara'da ulusal düzeyde alınan yatırım 
kararları bölgede nüfus artışına yol açmıştır.  NDVI ve SR gibi orijinal bantlara spektral 
özelliklerin eklenmesiyle sınıflandırma doğruluğunda önemli bir değişiklik olmadığı 
gözlemlenmiş olsa da verilerin gelecekte farklı istatistiksel ve makine öğrenimi 
yöntemleriyle test edilmesinin sınıflama doğruluğunu daha fazla artırabilir. 

 
1. INTRODUCTION  

Land use and land cover (LULC) dynamics and 
understanding their relationship with the 
environment are important. It is known that LULC 
occur due to natural or human-induced events 
(Dewidar, 2010). Changes in LULC at regional and 
global level can be associated with irregular 
migration movements, population changes, 
industrial developments, agricultural activities, and 
forest fires. Therefore, understanding these changes 
is of great importance, especially in identifying the 
pressure caused by impervious surfaces. The 
investigation of land cover changes through 
quantitative data analysis and visual interpretation 
is possible through Remote Sensing (RS). Many 
researchers have preferred to use RS data to reveal 
the results of land cover change (El-naggar, 2018; 
Joshi et al., 2011; Sharma & Joshi, 2016). RS data is 
commonly used in geographic information 
production due to its ability to provide data at 
different resolutions according to land conditions, as 
well as its open-access and free availability. The 
Sentinel data, provided by the European Space 
Agency (ESA), are one of the sources contributing to 
the production of high-quality information since 
2015 (Cavur et al., 2019; Myint Htun et al., 2023; 
Yulianti, 2019). RS data is widely used, especially in 
determining the reasons for changes in urban areas, 
studying spatial changes in vegetation classes, and 
investigating the impact of different resolution 
bands on the land, etc. It is known that the spatial 
changes in cities are associated with industrial 
investments and population changes, and this 
uncontrolled progression is thought to influence 
LULC and urban planning. Studies highlight the 
pressure on urban dynamics caused by development 
decisions, especially in industrial areas (Batunacun 
et al., 2018; Chandra Pandey et al., 2019). 
Additionally, it is observed that satellite data, with 
their band combinations, can be used to examine 
these changes and developments, yielding more 
realistic results in various land cover classes. 

In this context, different methods and 
techniques that emerge for determining LULC 
changes are considered sustainable in terms of 
facilitating scientific research. When determining 
LULC change results, classification techniques and 
different band combinations suitable for the study 

areas are commonly used. Many researchers strive 
to achieve maximum accuracy in LULC classification 
through mathematical and statistical inferences. 
Machine Learning (ML) algorithm is one of them. An 
ML algorithm such as Random Forest (RF) is 
frequently used when monitoring LULC changes in 
urban land cover and vegetation classification (Asci 
et al., 2021; Breiman, 2001; Chehata et al., 2009; 
Scornet, 2015). The RF technique is used to separate 
pixels based on their spectral values. It involves 
assigning the training data's previously learned 
information to LULC classes. With its tree structure, 
it aims to minimize the error between pixels, thus 
enhancing accuracy in classification (Guan et al., 
2012). Another method aimed at improving 
classification accuracy involves creating new band 
combinations (Genc, 2002). This allows for the 
identification of changes on the ground by 
understanding how pixels with dominant spectral 
reflectance values respond to new band 
combinations.  

Learning the change dynamics of LULC classes 
through satellite data enables easier and more 
appropriate development of sustainable projects. RS 
has been used extensively to track developments, 
especially in industrial areas, to link local knowledge 
with global outcomes, and to explore new analyses 
and mathematical expressions for understanding the 
landscape. (Mukhawana et al., 2023; Sathian & 
Brema, 2023). It is important to calculate the 
accuracy of the classifications made in different ways 
as an indicator and learn about the feasibility of 
using this method (Kumar & Agrawal, 2019). We can 
use these results.  

Bursa and Yalova provinces in Turkey are 
positioned within the category of developing and 
rapidly growing regions, often referred to as 
industrial cities. While the rapid developments in the 
industrial sector impact various aspects of life, their 
contributions to the country's Gross Domestic 
Product (GDP) may change. Factors such as 
significant investment decisions have led to an 
acceleration in migration activities and irregular 
population growth in industrial-focused regions.  

In this context, Bursa, which is known as an 
industrial city in Turkey and where projects such as 
'Turkey's Automobile Joint Venture Group' (TOGG) 
and Bursa-North Interchange are located, was 
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selected as the coastal study area together with 
Yalova province.  

The aim of the study is to determine the 
accuracy performance of the images created with 
combinations of indices produced using Sentinel-2A 
satellite data.  Secondary aims include examining the 
LULC changes that occurred during the construction 
of the government - supported TOGG factory in the 
area. 

2. MATERIALS and METHOD  

2.1. Study Area  

The study area consists of the Gemlik district of 
Bursa, with 13 neighborhoods; the Mudanya district 
of Bursa with 17 neighborhoods; 2 neighborhoods in 
the Osmangazi district of Bursa; and 7 villages in the 
Armutlu district of Yalova province, covering a total 
area of 495,864 km² in the southeast of the Marmara 
region in Turkey (Figure 1). As the province of 
Yalova has a different form of administration, the 
term 'village' is used instead of 'neighborhood’.  

 
Figure 1. Study area 

 
The study area has been defined by selecting a 

5-km buffer zone from the coastline towards the 

mainland. The complete list of villages and 
neighborhoods in the area is given in Table 1. 

Table 1. List of neighborhoods and villages in study area 
City District Neighborhood Village 

Bursa Gemlik 

Cihatlı Neighborhood 
Engurucuk Neighborhood 
Karacaali Neighborhood 
Kurtul Neighborhood 
Kucukkumla Neighborhood 
Narli Neighborhood 
Yenikoy Neighborhood 
Ata Neighborhood 
Buyukkumla Neighborhood 
Gencali Neighborhood 
Kumla Neighborhood 
Kursunlu Neighborhood 
Parsbey Neighborhood 

Bursa Osmangazi  Osmangazi Neighborhood 
Gundogdu Neighborhood 

Bursa Mudanya 

Altintas Neighborhood 
Aydinpinar Neighborhood 
Burgaz Neighborhood 
Camlik Neighborhood 
Cepni Neighborhood 
Egerce Neighborhood 
Esence Neighborhood 
Goynuklu Neighborhood 
Haitpasa Neighborhood 
Isıklı Neighborhood 
Kumkaya Neighborhood 
Mesudiye Neighborhood 
Sogutpinar Neighborhood 
Tirilye Neighborhood 
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Yali Neighborhood 

Table 1. Cont. 
City District Neighborhood Village 

Bursa Mudanya 
Yaliciftlik Neighborhood 
Yaman Neighborhood 
Yorukali Neighborhood 

Yalova Armutlu 

Hayriye Village 
Fistikli Village 
Kapakli Village 
Mecidiye Village 
Bayir Neighborhood 
Karsiyaka Neighborhood 
50. Yil Neighborhood 

 
2.2. Data Used  

The Sentinel-2 mission is a terrain monitoring 
mission consisting of two satellites (Sentinel-2a and 
Sentinel-2b) providing optical imagery in 13 spectral 
bands. It has a spatial resolution ranging from 10 m 
to 60 m (Table 2).  

The study obtained six Sentinel-2A satellite 
images for the years 2016 and 2020 from the 
European Space Agency Copernicus website 
(https://scihub.copernicus.eu/). Image processes 
were applied to the images taken on January 9, 2016, 
April 18, 2016, August 16, 2016, February 2, 2020, 
April 17, 2020, and August 15, 2020. 

Table 2. Sentinel – 2 bands features 
Sentinel-2 Bands Central Wavelength(µm) Resolution (m) 
Band 1 –   Coastal Aerosol 0.443 60 m 
Band 2 –   Blue  0.492 10 m 
Band 3 –   Green 0.560 10 m 
Band 4 –   Red 0.665 10 m 
Band 5 –   Vegetation Red Egde  0.704 20 m 
Band 6 –    Vegetation Red Egde 0.741 20 m 
Band 7 –    Vegetation Red Egde 0.783 20 m 
Band 8 –   NIR 0.833 10 m 
Band 8a – Vegetation Red Egde 0.865 20 m 
Band 9 –   Water Vapour 0.945 60 m 
Band 10 – SWIR – Cirrus 0.1374 60 m 
Band 11 –   SWIR   0.1614 20 m 
Band 12 –   SWIR   0.2202 20 m 

 

2.3.  Pre-Preprocessing and Classification 

The satellite images to be used in the study may 
contain various errors. To make the images usable by 
rectifying errors, pre-processing has been applied to 
the images. The Sentinel-2A satellite data used in the 
study are Level 1 data, which have not undergone 
atmospheric correction. Therefore, an atmospheric 
correction process was applied to the images 
initially. Subsequently, a reprojection process was 
applied to bring the images into convenient 
projection. A resampling process was carried out to 
ensure that the bands with different resolutions in 
the satellite image have a consistent resolution (all at 
10 m). All images were determined by considering a 
5-km buffer zone and then clipped from the main 
image. All processing steps were carried out using 
the SNAP 7.0 program.  

The preferred method in this research is shaped 
by extracting prominent features in images using 
spectral indices and then classifying all generated 
images with the RF classification technique to create 
LULC maps (Chan & Paelinckx, 2008; Ghimire et al., 
2010; Pal, 2005). 

The classification process has been created with 
six LULC classes: Agriculture (A), Forest (F), Olive 
(O), Pasture (P), Urban (U), and Water (W). In the 
selection of these classes, fieldwork was conducted 
to detect LULC types, and the classes were 
determined through visual interpretation. A total of 
2050 training data were used for classification for 
the 6 LULC classes.  For accuracy analysis, 410 
ground control points were randomly selected for 
each classification to form homogeneous test data 
for the 6 LULC classes (training/test data: 
2050/410). The process from acquiring the images 
to the accuracy analysis is shown in Figure 2. 

Figure2. Flowchart of the study 

https://scihub.copernicus.eu/
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         Image classification is commonly used in RS to 
obtain quantitative data from satellite images (Baeza 
& Paruelo, 2020; Radhika & Varadar, 2016; Meinel & 
Neubert, 2004; Mendoza & Martins, 2006). In this 
study, a total of 2050 training vectors were defined 
for classification, with attention to the areas covered 
by the 6 LULC classes in the field. Information about 
the band combinations used in the classification 

process, as well as the names, formulas, and 
references to the resulting indices, can be found in 
Table 3. In the nomenclature of the combinations in 
Table 3, 'O' represents the original bands (10 bands) 
in the image, 'I' represents the new band created 
with the NDVI index (Table 3), and 'SR' represents 
the new band created with the simple ratios (Table 
3).  

Table 3. Indices and their features 

 
 
 

Name 
 

Bands Formula Classification Method Algorithm References 

ORF B2, B3, B4, B5, 
B6, B7, B8, 
B8A, B11, B12 

B2+B3+B4+B5+ 
B6+B7+B8+B8A+B
11+B12 

 
Random Forest 

 
Machine 
Learning 

(Colkesen et al., 2021; 
Demarchi,  et al.,  2014; Goel & 
Abhilasha, 2017; Hütt et al., 
2016; Jamali & Abdul Rahman, 
2019a, 2019b; Kavzoglu et al., 
2015; Phiri et al., 2020; 
Rodriguez-Galiano et al., 2012;  
Wu et al., 2021) 

 
OI5 

B2, B3, B4, B6, 
B7, B8, B8A, 
B11, B12 

B2+B3+B4+B6+ 
B7+B8+B8A+B11+

B12+( 
𝐵5−𝐵4

𝐵5+𝐵4
) 

 
Random Forest 

Machine 
Learning 

(Ahamed et al., 2011; Gitelson 
et al., 2002) 

 
OI₆ 

B2, B3, B4, B5, 
B7, B8, B8A, 
B11, B12 

B2+B3+B4+B5+ 
B7+B8+B8A+B11+

B12+( 
𝐵6−𝐵4

𝐵6+𝐵4
) 

 
Random Forest 

Machine 
Learning 

(Xianju et al., 2017) 
 

 
OI₇ 

B2, B3, B4, B5, 
B6, B8, B8A, 
B11, B12 

B2+B3+B4+B5+ 
B6+B8+B8A+B11+

B12+( 
𝐵7−𝐵4

𝐵7+𝐵4
) 

 
Random Forest 

Machine 
Learning 

(Zarco-Tejada et al., 2001) 

OI₈ B2, B3, B4, B5, 
B6, B7, B8A, 
B11, B12 

B2+B3+B4+B5+ 
B6+B7+B8A+B11+

B12+( 
𝐵8−𝐵4

𝐵8+𝐵4
) 

Random Forest Machine 
Learning 

(Barnes et al., 2000; Herrmann 
et al., 2011; Le Maire et 
al.,2004; Main et al., 2011; 
Penuelas et al., 1997; Wu et al., 
2008) 

OI₈ₐ B2, B3, B4, B5, 
B6, B7, B8, B11, 
B12 

B2+B3+B4+B5+ 
B6+B7+B8+B11+B

12+( 
𝐵8𝐴−𝐵4

𝐵8𝐴+𝐵4
) 

Random Forest Machine 
Learning 

(Tesfaye et al., 2021  Tucker, 
1980; Zhang et al., 2017) 

 

OI₁₁ 

B2, B3, B4, B5, 
B6, B7, B8, 
B8A, B12 

B2+B3+B4+B5+ 
B6+B7+B8+B8A+B

12+( 
𝐵11−𝐵4

𝐵11+𝐵4
) 

Random Forest Machine 
Learning 

Panigrahy et al., 2009; Tucker, 
1979) 

 

OI₁₂ 

B2, B3, B4, B5, 
B6, B7, B8, 
B8A, B11 
 

B2+B3+B4+B5+ 
B6+B7+B8+B8A+B

11+.( 
𝐵12−𝐵4

𝐵12+𝐵4
) 

Random Forest Machine 
Learning 

 
- 

OI₅SR₆ B2, B3, B4, B7, 
B8, B8A, B11, 
B12 

B2+B3+B4+B7+ 
B8+B8A+ 
B11+B12+ 

( 
𝐵5−𝐵4

𝐵5+𝐵4
)+ (

𝐵6

𝐵5
) 

Random Forest  Machine 
Learning 

 
- 

OI₅SR₇ B2, B3, B4, B6, 
B8, B8A, B11, 
B12 
 
 

B2+B3+B4+B6+ 
B8+B8A+ 
B11+B12+ 

( 
𝐵5−𝐵4

𝐵5+𝐵4
)+ (

𝐵7

𝐵5
) 

Random Forest  Machine 
Learning 

- 
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Table 3. Cont. 

 
2.4. Classification 

Indices are a mathematical set of operations 
frequently used in RS that enable the extraction of 
dominant features by utilizing spectral bands to 
understand the state of the terrain. The goal is to 
determine changes in LULC by examining the 
responses provided by the values in the bands for 
specific information extraction over an area. Various 
combinations are created to obtain the desired 

geographic information, resulting in the generation 
of indices. 

A total of 21 indices have been created in the 
study. Seven of these indices contain only the bands 
formed in the 'I' shape, while the remaining 14 
include bands formed in both 'I' and 'SR' shapes. The 
bands referred to as 'I' use NDVI mathematics, while 
the bands referred to as 'SR' use simple ratio 
mathematics. When creating these indices, all bands 
used in the new bands (except the red band - B4) 
have been subtracted from the original band content.  

Name 
 

Bands Formula Classification Method Algorithm References 

OI₆SR₆ B2, B3, B4, B7, 
B8, B8A, B11, 
B12 
 
 

B2+B3+B4+B7+ 
B8+B8A+ 
B11+B12+ 

( 
𝐵6−𝐵4

𝐵6+𝐵4
)+ (

𝐵6

𝐵5
) 

Random Forest  Machine 
Learning 

- 

OI₆SR₇ B2, B3, B4, B8, 
B8A, B11, B12 
 

B2+B3+B4+ 
B8+B8A+ 
B11+B12+ 

( 
𝐵6−𝐵4

𝐵6+𝐵4
)+ (

𝐵7

𝐵5
) 

Random Forest  Machine 
Learning 

- 

OI₇SR₆ B2, B3, B4, B8, 
B8A, B11, B12 
 
 
 

B2+B3+B4+ 
B8+B8A+ 
B11+B12+ 

( 
𝐵7−𝐵4

𝐵7+𝐵4
)+ (

𝐵6

𝐵5
) 

Random Forest  Machine 
Learning 

- 

OI₇SR₇ B2, B3, B4, B6, 
B8, B8A, B11, 
B12 
 
 

B2+B3+B4+  
B6+B8+B8A+ 
B11+B12+ 

( 
𝐵7−𝐵4

𝐵7+𝐵4
)+ (

𝐵7

𝐵5
) 

Random Forest  Machine 
Learning 

- 

OI₈SR₆ B2, B3, B4, B7, 
B8A, B11, B12 
 
 

B2+B3+B4+ B7+ 
B8A+ B11+B12+ 

( 
𝐵8−𝐵4

𝐵8+𝐵4
)+ (

𝐵6

𝐵5
) 

Random Forest  Machine 
Learning 

- 

OI₈SR₇ B2, B3, B4, B6, 
B8A, B11, B12 

B2+B3+B4+ B6+ 
B8+B8A+ 
B11+B12+ 

( 
𝐵8−𝐵4

𝐵8+𝐵4
)+ (

𝐵7

𝐵5
) 

Random Forest  Machine 
Learning 

- 

OI₈ₐSR₆ B2, B3, B4, B7, 
B8, B11, B12 

B2+B3+B4+ B7+ 
B8+ B11+B12+ 

( 
𝐵8𝐴−𝐵4

𝐵8𝐴+𝐵4
)+ (

𝐵6

𝐵5
) 

Random Forest  Machine 
Learning 

- 

OI₈ₐSR₇ B2, B3, B4, B6, 
B8, B11, B12 

B2+B3+B4+ B6+ 
B8+ B11+B12+ 

( 
𝐵8𝐴−𝐵4

𝐵8𝐴+𝐵4
)+ (

𝐵7

𝐵5
) 

Random Forest  Machine 
Learning 

- 

OI₁₁SR₇ B2, B3, B4, B6, 
B8, B8A, B12 

B2+B3+B4+ B6+ 

B8+B8A+ B12+ 

( 
𝐵11−𝐵4

𝐵11+𝐵4
)+ (

𝐵7

𝐵5
) 

Random Forest Machine 
Learning 

- 

OI₁₂SR₆ B2, B3, B4, B7, 
B8, B8A, B11 

B2+B3+B4+ B7+ 

B8+B8A+ B11+ 

( 
𝐵12−𝐵4

𝐵12+𝐵4
)+ (

𝐵6

𝐵5
) 

Random Forest Machine 
Learning 

- 

OI₁₂SR₇ B2, B3, B4, B6, 
B8, B8A, B11 

B2+B3+B4+ B6+ 

B8+B8A+ B11 + 

( 
𝐵12−𝐵4

𝐵12+𝐵4
)+ (

𝐵7

𝐵5
) 

Random Forest Machine 
Learning 

- 
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In this way, the subtracted original bands and the 
newly created index bands have been combined. 

The RF classification technique involves 
constructing patterns by forming multiple decision 
trees with random input data, including a structural 
classification process (Perumal & Bhaskaran, 2010). 
Decision trees are created by branching test data in 
the training process (Goel & Abhilasha, 2017). 

In this context, each tree is determined by 
combinations arising from the data in the field and 
the vectors affected by independent variables. Each 
input vector data contains pixel values within its 
content (Breiman, 2001; Phiri et al., 2020). When 
compared to other machine learning techniques, the 
reason for preferring RF is its ability to make pixel 
values meaningful with a small amount of training 
data and its high capability for fast processing.  

RF classification technique uses the Gini index 
as a criterion in the machine learning algorithm. The 
equation for the Gini index is given in Equation 1 
below. It is used as an attribute selection criterion to 
measure the impurity of a feature with respect to 
classes (Pal, 2005). 

 
∑ ∑(𝑓𝐶𝑖 , 𝑇)/(|𝑇|) (𝑓𝐶𝐽, 𝑇)/(|𝑇|                              (1) 

 
The Gini index branches the test data into a tree 

structure based on classes. Here, T represents the 
training dataset, and performs random pixel 
assignment is performed to the representative of 

class Ci (Pal, 2005). 
 
2.5.  Accuracy Assessment 

 
Accuracy analysis is crucial in UA (Akturk & 

Altunel, 2019; Whiteside et al., 2011) for quantifying 
the accuracy of classification outputs on a class-by-
class basis. It is important for investigating 
discrepancies between satellite data and actual 
terrain and examining user errors. In the verification 
process, the comparison between each pixel in the 
field and ground control points is used to understand 
the quality of the generated data.  

In the study, control points were randomly 
selected homogeneously from different pixels 
considering the areas of LULC classes. Accuracy 
analysis conducted total 410 ground control points 
were created in the Google Earth Pro program for the 
6 main LULC classes in each classification.  According 
to the equation found in Guan et al. (2012), ground 
control points were selected beyond the maximum 
number for each class for the verification process 
(Equations 2). For the accuracy analysis of the 
classification, ground sample points were obtained 
separately for each classification, with a total of 410 
homogenous points for each classification. The 
created ground control points were processed on 
Sentinel-2 satellite imagery with 10 m resolution.  
The indices that yielded the highest and lowest 
accuracy as a result of the combinations were 
determined separately for each of the three seasons. 

The equations used to create the error matrix in the 
study are provided in Equations 3 and 4 (Zaidi et al., 
2017). Accuracy assessment results in the classified 
images were obtained for the RF classification 
technique using SNAP 7.0 software.  

 

𝑁 =
𝑍2∗𝑝(100−𝑞)

𝐸²
                                                                 (2) 

 

N = number of points to be selected  
Z = two-sided confidence level (from normal 
standard deviation)  
p = expected percentage accuracy  
q = logic operator  
E= allowable error 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑆𝑢𝑚 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡𝑠

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡𝑠
   (3)       

 

𝑘𝑐 =
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑

1−𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
                                                (4) 

 

3. RESULTS  

In this study, which explored new created index 
combinations, the aim was to find the combination 
that provides the highest accuracy in classification. 

3.1. Results of the Accuracy Analysis of the LULC 
Classification 

         In all accuracy analysis results, the highest and 
lowest accuracy rates for the years 2016 and 2020 
are as follows for different seasons. 

For the 2016-winter season (OI8SR7- overall 
accuracy: 76.04%, kappa: 0.73, OI₁₂- 82.93%, 0. 79), 
for the 2016-spring season (OI₁₁SR₇- 76.16%, 0.71, 
ORF-84.44%, 0.82), 2016-summer season (OI₈ₐ- 
76.64%, 0.71, ORF- 84.67%, 0. 83%) and respectively, 
2020-winter season (OI₁₁SR₇- overall accuracy: 
75.12%, kappa: 0.70, ORF- 82.72%, 0.79), 2020-
spring season (OI₁₂SR₇- 75. 12, 0.70%, ORF- 84.75%, 
0.82), for 2020-summer season (OI₁₁SR₇- 78.05%, 
0.73, Oı6- 84.63%, 0.81) (Table 4-Table 5). 

The results of the accuracy analysis conducted 
for RF classification using original satellite image 
bands and classification with a combination of 21 
indices, in terms of the reasons for the highest and 
lowest accuracy, are as follows:  

➢ For the winter season of 2016, classification 
results have been obtained for OI12 (high) and OI₈SR₇ 
(low) (Table 4). OI12 yielded a high classification 
result because, during the period when Band 12 had 
an impact, there was a high moisture content in the 
early growth stage of crops in the study area. 
Additionally, the specific characteristics of the index 
used in its mathematics, such as B12 measuring 
moisture content (for both soil and vegetation) and 
B8 being used for vegetation detection, contributed 
to the high result. In the classification of OI₈SR₇, it 
was observed that on the specified date, the 
mathematical expression did not capture the 
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vegetation pixels with Band 8 (B8). Band 7 (B7) did 
not have an impact on pixel visibility because it was 
subtracted from the original bands. 

➢ For the spring season of 2016 (Table 4), the 
ORF classification provided better discrimination for 
both urban and agricultural areas. This was 
attributed to the fact that the original content and 
combination of the ten bands remained unchanged. 
At the examined date, the land surface was covered 
with vegetation up to 70-80%, facilitating the 
distinction between urban and agricultural areas. 
Similarly, in the OI11SR7 classification for the same 
season, the low accuracy rate was exclusion of Band 
5 (B5) and B7 from the original band combination. 

Attributed to the weakening of detection due to the 
vegetation at the date (mostly in the early growth 
stage). This was also due to the challenge of 
detection caused by Band 11 (B11)'s wide band 
range.  

➢ In the summer season of 2016 (Table 4), 
once again, the ORO classification provided higher 
accuracy results for the same reasons as the spring 
season. However, it was believed that the low 
accuracy of the OI8a index might have been due to the 
agricultural areas not being selected in the 
classification process because the vegetation cover 
in the study area was less extensive. 

 
Table 4. Results of the Accuracy Analysis in 2016(light blue: low accuracy, pink: high accuracy 

 
➢ For the winter season of 2020, the OI5 

classification provided higher accuracy results 
(Table 5) because agricultural areas did not exhibit 
significant features at the examined date, while 
urban and other areas did. Furthermore, the absence 
of mathematical operations on the original ten bands 
contributed to the higher accuracy. In contrast, the 
OI11SR7 index was found to not match agricultural 
areas due to the bands included in its content, which 
did not allow for the measurement of moisture 
content and vegetation content. 

➢ For the spring season of 2020 (Table 5), the 
significant effect of the ORF index, like the spring 
season of 2016, was understood to be due to the 
same influencing factors. The low results of the 
OI12SR7 index can be attributed to the exclusion of B5 

and B7 from the original bands, crucial for vegetation 
analysis.  Additionally, along with the detection 
weakness in the combination formed with Band 12 
(B12), provides an explanation for the observed low 
values.  

➢ For the summer season of 2020 (Table 5), 
OI6 index was identified as more suitable for 
classification. This suitability stems from its 
interaction with the red-edge band in the original 
bands, thereby enhancing its discriminative power 
for vegetation separation, especially during the 
targeted season. On the other hand, for OI11SR7, it 
was understood that there were no products in the 
field where the moisture content in vegetation would 
have an effect, and the removal of B5 and B7 from the 
original bands had a negative impact.
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Table 5. Results of the Accuracy Analysis in 2020 (light blue: low accuracy, pink: high accuracy) 

 
 

 

Figure 3.  Accuracy Analysis Results 

-In the changes obtained according to the 
combinations with the highest accuracy in 2016 and 
2020 in the winter images (Figure 4 – Figure 5), it 
was observed that artificial green areas were formed 
because of the expropriation of the olive areas on the 
roadside. Therefore, it is understood that there has 
been a transformation from class O to class A. 
Technical errors in the classification of satellite data 
due to the ongoing construction of the Gemlik-Bursa 
North Interchange showed that U areas were 
confused with P class.  

- Looking at the observations obtained from the 
spring images (Figure 6 – Figure 7), it is thought that 
there is a transformation from F areas to A areas, and 
that U and O classes have increased with the 
formation of rural settlements next to agricultural 
areas. It was also observed that the Gemlik-Bursa 
North Interchange, which was put into service on 
March 12, 2017, also affected the change of U areas.  

- On the basis of the summer season (Figure 8 – 
Figure 9), it was concluded that the vegetation in the 
P class was mixed with the F class with the growing 
plant size. 
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Figure 4. 2016 – 2020 the area changes in classes 
(Winter) 
 

 
 
Figure 5. 2016 – 2020 the area changes in classes - 
map display (Winter)   
 

 
 
Figure 6. 2016 – 2020 the area changes in classes 
(Spring) 
 

 
 
Figure 7. 2016 – 2020 the area changes in classes – 
map display (Spring) 
 

 
 
Figure 8. 2016 – 2020 the area changes in classes 
(Summer) 
 

 
 
Figure 9. 2016 – 2020 the area changes in classes - 
map display (Summer) 
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4. DISCUSSION and CONCLUSION  

4.1. Discussion 

This study aimed to map LULC classes for three 
seasons using satellite imagery from 2016 and 2020 
in order to observe the temporal effects of various 
state-funded investment decisions in Southeast 
Marmara region. It was found that the classification, 
using new indices, yielded accuracy results similar to 
those obtained from the original images. The 
construction of the TOGG factory and the decisions 
related to the Gemlik-Bursa Northern Interchange 
were observed to increase urbanization and 
consequently lead to population growth in the area. 
Additionally, it is believed that the COVID-19 
pandemic, which occurred during the study period, 
led to an increase in the construction and real estate 
sectors, especially due to migrations to rural coastal 
areas such as Mudanya and Armutlu. 

When examining the accuracy analysis results 
of the performed classifications, it was observed that 
the classification results from the original bands 
showed high accuracy. Additionally, the indices 
created using B6, B12, and B5 (indices without a 
simple ratio) also yielded favorable accuracy 
outcomes.  

In this study, the combination that yielded the 
highest accuracy among index classifications was 
identified. The observed changes between 2016 and 
2020 are believed to have resulted from various 
socioeconomic and technical reasons. 

 Accordingly, the dynamics of transformation 
from class O to class A in winter images are thought 
to be related to the expropriation of olive groves 
near the main road, leading to the creation of 
artificial green areas. Changes in classes U and P, on 
the other hand, were understood to be caused by 
technical errors in classification due to the 
continuation of the Gemlik-Bursa Northern 
Interchange project. In the spring season, there was 
a transformation from class F to class A due to the 
need for fertile soil. Consequently, the emergence of 
rural-urban areas, near agricultural areas led to an 
increase in classes U and O. Additionally, it was 
observed that the Gemlik-Bursa Northern 
Interchange, which became operational on March 12, 
2017, impacted class U during the season. During the 
summer season, it was concluded that the growing 
vegetation height in class P often led to confusion 
with class F during the classification process. This 
study, conducted at the coastal scale, can be 
extended to examine other vegetation types in the 
region, and more detailed analyses can be applied. 

The research emphasizes the importance of 
exploring the dynamics of land cover changes using 
new derived indices. In a study by Gitelson et al. 
(2002), various indices such as NDVI, ARVI, Soil 
Adjusted Vegetation Index (SAVI), and the red edge 
(700 nm) vegetation index were used for 
classification to measure sensitivity to atmospheric 
effects. It was found that NDVI yielded higher results. 

This study is in line with the aim of finding an index 
suitable for the purpose, but using existing indices 
may not provide a sufficient foundation for future 
modelling based on the accuracy assessment results 
which do not significantly differ from what expected. 

A similar study conducted in the Western Ghats 
of South India addressed the effects of the pandemic 
through LULC classes and applied classification 
processes to Sentinel-2A satellite imagery using the 
NDVI index between 2018 and 2021. The study 
concluded that the dynamics of vegetation and 
urbanization changed due to the pandemic (Sathian 
& Brema, 2023). The outputs of this study, 
suggesting that changes in vegetation were based on 
urbanization, align with the findings of our study. 

This study aimed to contribute to the literature 
by addressing the existing issues and providing an 
original perspective through the creation of LULC 
class results using classified images based on indices. 
In this context, our classifications and results have 
shown that investments in industrial zones near 
coastal areas are likely to have various effects, 
including population growth, migration movements, 
and changes in vegetation dynamics. It was 
determined that the increase in urban areas due to 
population growth had significant effects on LULC 
classes. The use of remote sensing data, different 
classification techniques, and various specific band 
combinations is expected to give more accurate 
results for future studies determining LULC 
dynamics. 

4.2. Conclusion 

The study was conducted to investigate LULC 
and vegetation dynamics along the coastal area of 
Southeastern Marmara Region with band 
combinations created using new vegetation indices. 
The combination that gives the best classification 
accuracy according to the seasons was determined 
and the accuracy analysis was used as a classification 
success scale. it was identified that how investment 
decisions taken by the government have led to an 
increase in impervious surfaces and how this has led 
to a change in other LULC classes The RF 
classification technique was applied to indices 
obtained from Sentinel-2A satellite images in three 
different seasons in 2016 and 2020. Subsequently, 
accuracy analysis was performed on classified 
images using ground control points obtained 
through Google Earth Pro. The study shows that the 
coastal area of Southeastern Marmara has been 
examined in detail with respect to LULC classes 
affected by various decisions using indices obtained 
from open-access and medium-resolution satellites. 
The study concludes that government investments in 
coastlines have caused significant LULC changes in 
the region and that these changes will be the 
beginning of other changes in the region. It is also 
concluded that the detailed LULC change detection 
can be further improved with the help of remote 
sensing and advance machine learning techniques. 
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In future studies, the use of machine learning 
methods, high-resolution images, more complex 
indices, and different classification techniques will 
facilitate a faster understanding of LULC dynamics 
and the investigation of future predictions. 
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