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Abstract: Predicting Alzheimer's disease (AD) at an early stage can assist more successfully prevent cognitive decline. 
Numerous investigations have focused on utilizing various convolutional neural network (CNN)-based techniques for 
automated diagnosis of AD through resting-state functional magnetic resonance imaging (rs-fMRI). Two main constraints face 
the methodologies presented in these studies. First, overfitting occurs due to the small size of fMRI datasets. Second, an 
effective modeling of the 4D information from fMRI sessions is required. In order to represent the 4D information, some studies 
used the deep learning techniques on functional connectivity matrices created from fMRI data, or on fMRI data as distinct 2D 
slices or 3D volumes. However, this results in information loss in both types of methods. In order to model the spatiotemporal 
(4D) information of fMRI data for AD diagnosis, a new model based on the capsule network (CapsNet) and recurrent neural 
network (RNN) is proposed in this study. To assess the suggested model's effectiveness, experiments were run. The findings 
show that the suggested model could classify AD against normal control (NC) and late mild cognitive impairment (lMCI) 
against early mild cognitive impairment (eMCI) with accuracy rates of 94.5% and 61.8%, respectively. 
 
Key words: Alzheimer’s disease preliminary diagnosis, machine learning, magnetic resonance imaging, 
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4B fMRI Tabanlı Alzheimer Hastalığının Ön Tespiti için 3B-CAPSNET ve RNN Modellerinin 
Kullanılması  

 
Öz: Alzheimer hastalığının (AH) ilerlemesinin erken tahmini, bilişsel gerilemenin daha etkili bir şekilde yavaşlatılmasına 
yardımcı olabilmektedir. Dinlenme durumu fonksiyonel manyetik rezonans görüntüleme (dd-fMRG) kullanılarak otomatik AH 
tanısı için evrişimli sinir ağlarına (ESA) dayalı farklı yöntemlerin uygulanmasına yönelik çeşitli çalışmalar yapılmıştır. Bu 
çalışmalarda tanıtılan yöntemler iki büyük zorlukla karşılaşmaktadır. Birincisi, fMRG veri kümeleri küçük boyutta olduğundan 
aşırı uyum gözlemlenebilmektedir. İkincisi, fMRG oturumlarının 4 boyutlu (4B) bilgilerinin verimli bir şekilde modellenmesi 
gerekmektedir. Çalışmalardan bazıları, derin öğrenme yöntemlerini, 4B bilgiyi modellemek için fMRG verilerinden oluşturulan 
fonksiyonel bağlantı matrislerine veya ayrı 2B dilimler veya 3B hacimler olarak fMRG verilerine uygulamıştır. Ancak bu 
durumun her iki yöntem türünde de bilgi kaybına neden olduğu gözlemlenmiştir. Bu çalışmada, AD tanısı için fMRG verilerinin 
uzay-zamansal (4B) bilgilerini modellemek amacıyla Kapsül ağı (CapsNet) ve tekrarlayan sinir ağını (RNN) temel alan yeni 
bir model önerilmektedir. Önerilen modelin etkinliğini değerlendirmek için deneyler yapılmıştır. Sonuçlara göre, önerilen 
modelin AH’na karşı normal kontrol (NK) ve geç hafif bilişsel bozukluk (GHBB) ile erken hafif bilişsel bozukluk (EHBB) 
sınıflandırma görevlerinde sırasıyla %94.5 ve %61.8 doğruluk elde edebildiği görülmüştür. 
 
Anahtar kelimeler: Alzheimer hastalığı tespiti, makine öğrenmesi, manyetik rezonans görüntüleme, evrişimli sinir ağları, 
yinelemeli sinir ağı. 
 
1. Introduction 
 
1.1 Preamble 

 
Alzheimer’s disease (AD) is the sixth cause of death among older people in the United States [1]. It is expected 

that the over-60 population will become 2 billion by 2050 which will be 21% of the world’s population after it 
was 8% in 1950 [2]. This reveals a massive increase in the number of people affected by Alzheimer’s disease 
estimated to be 100 million by 2050 [3]. AD is the most common type of dementia, it is a neurodegenerative 
disease that occurs as a result of changes in amyloid and tau protein levels causing a disability of communication 
between neurons and cell death in different brain regions resulting in the loss of cognitive abilities. Several brain 
regions can be damaged due to AD as well as a reduction in some neurotransmitters. As a result, the functionality 
for which a certain region or a neurotransmitter is responsible for is affected. For example, the hippocampus is 
responsible for learning and memory, and it is more likely to get damaged before other regions. Also, 
Acetylcholine (ACh), a neurotransmitter responsible for memory and learning is decreased in concentration. Other 
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regions that are affected by AD include the left medial orbital part of the superior frontal gyrus, left caudate 
nucleus, right middle frontal gyrus, left orbital part of the Inferior frontal gyrus, left triangular part of the inferior 
frontal gyrus, and left inferior temporal gyrus [4]. Till now, there is no treatment for this disease, but an early 
prediction of conversion to AD helps slow down the progression of dementia more effectively. Changes in the 
brain associated with AD begin 20 years before AD symptoms appear [1]. It is more helpful for patients to predict 
the progression of a patient from mild cognitive impairment (MCI) stage toward AD than distinguishing AD from 
health normal control (NC) (see Figure 1 [5]). MCI is the cognitive decline stage before AD immediately, where 
subjects in this stage suffer from mild cognitive ability loss but they are still able to do their daily activities without 
any sign of dementia. This stage is categorized into early MCI (eMCI) and late MCI (lMCI). Another way of 
categorizing subjects in this stage is to divide them into stable MCI (sMCI) and progressive MCI (pMCI) based 
on developing AD or staying stable in a follow-up period [4]. The development of AD always occurs in a time 
range of 6 to 36 months. However, diagnosis of Alzheimer’s disease in its early stages is more challenging than in 
later ones, as distinguishing between sMCI and pMCI or lMCI and eMCI is very hard due to the high similarities 
between brain changes in the distinguished cases. 

 

 
Figure 1. Demonstrates the increase in fMRI activity in neocortical (A) and medial temporal (B) brain areas 

of Alzheimer’s disease (in red) relative to healthy older control subjects (in yellow) [5]. 
 

The human brain consists of multiple regions that interact with each other, neurodegenerative diseases such 
as AD are associated with a change in different brain regions’ activity as well as the interaction patterns between 
different brain regions known as functional connectivity networks [6]. Different from structural magnetic 
resonance imaging (sMRI) (known traditionally as MRI) which scans the brain’s anatomical structure, functional 
magnetic resonance imaging (fMRI) scans brain activity by capturing the blood oxygenation level-dependent 
(BOLD) signal as the indicator for brain activity. The information on the brain’s functional disturbance provided 
by fMRI proved to be very helpful with the diagnosis of several brain diseases at an early stage, as brain activity 
changes happening as a result of AD or any of its previous cognitive decline stages happen earlier than structural 
(anatomical) changes scanned by sMRI [7]. There are two kinds of fMRI: resting-state fMRI (rs-fMRI) and task-
based fMRI. In rs-fMRI, the session is recorded while the subject is at rest. While in task-based fMRI, the subject 
performs some cognitive tasks during the session. The majority of studies use rs-fMRI for automated AD diagnosis 
due to being easier to obtain as the subjects are not performing any task which also reduces the motion artifacts 
making the pre-processing of fMRI data less complicated. Still, fMRI is not yet reliable in the clinical diagnosis 
of AD due to two major problems. First, sophisticated statistical analysis is required for useful information 
extraction from raw fMRI. Second, the difficulty of fMRI visualization due to its complicated data structure. Here 
comes the role of applying deep learning to fMRI images for automated medical diagnosis as a step toward making 
fMRI applicable in clinical practice. An fMRI session is captured as a time series of brain volumes. In the literature, 
very few studies investigated applying deep learning in fMRI-based AD diagnosis. The brain activity information 
recorded by fMRI can be complementary with other neuroimaging biomarkers such as MRI and positron emission 
tomography (PET) for more accurate diagnosis. However, it is still early to rely on fMRI for clinical diagnosis of 
AD. Several challenges need to be overcome to make fMRI usage in automated diagnosis reliable and trustable. 
An fMRI session is captured as a time series of brain volumes. Hence, one of the main challenges is the overfitting 
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problem that goes back to training complex 4D models on fMRI datasets that are always available with small sizes 
to capture the spatial and temporal features of the fMRI time-series [7]. 

 
1.2. Related Work and Contribution 
 
For more than a decade, various machine learning methods have been proposed for automated AD diagnosis 

based on rs-fMRI data. The first conventional approach introduced in the literature was using Pearson’s correlation 
coefficients between pairs of brain regions to construct a functional connectivity (FC) network (matrix) 
representing the temporal functional relationships between different brain regions from an fMRI scan after using 
regions of interest (ROI) template (e.g., AAL) to extract the regions between which the connectivity network is of 
the analysis interest. Each element in this matrix denotes the Pearson correlation coefficient between the time 
series of a pair of ROIs. Then, using a feature extractor to extract from the FC matrices the discriminative features 
to be used in training a machine learning model for classifying different AD stages. For example, Jie et al. applied 
a graph-kernel method to FC networks to measure the topological similarity between different subjects as a feature 
extractor to train an SVM for classification [8]. Different from previous studies that used a single SVM, Bi et al. 
proposed a random SVM cluster to overcome the information loss problem encountered with a single SVM [9]. 
Each SVM in the cluster is built by randomly selecting a set of samples and their FC features achieving higher 
feature diversity. To categorize a sample, the prediction by the majority of the multiple SVMs is used. Jie et al. 
constructed dynamic connectivity networks (DCNs) and extracted both temporal variability features (e.g., the 
temporal correlation between brain regions) and spatial variability features (e.g., spatial variability within a 
specific brain region) neglected by most of the studies that existed before [6]. They used a manifold regularized 
multi-task feature learning model to extract the most important features on which a multi-kernel SVM was trained 
for disease classification. 

However, the aforementioned methods have the disadvantages of feature extraction and the classifier’s 
training being performed as two separate processes in addition to performing feature extraction in a handcrafted 
manner, which degrades the classification performance. Thanks to deep learning, both processes can be 
automatically combined into a single training process. Hence, the literature shifted toward applying deep learning 
methods, particularly convolutional neural networks (CNNs) to FC networks directly leading to significantly better 
classification accuracy, as feature extraction is directed by the classification feedback through the training process. 
Also, deep neural networks are capable of learning more hidden disease-related patterns. For example, He et al. 
constructed an FC matrix by calculating the time series correlation coefficient between each pair of brain regions 
based on both the variance of the mean value of all voxel time series in the two brain regions over time and the 
covariance of the time series mean value of the two brain regions [10]. Then, feeding the adjacency matrix of each 
subject into a simplified instance of 3D-MobileNet [11] architecture. In another study, Duc et al. applied ICA to 
fMRI data to generate an FC matrix representing the time-series correlations between 16 different independent 
components (brain regions) for each subject [12]. Then, from these matrices, 3D ICA feature maps were obtained 
using dual regression and fed into a 3D VGG-Net model. With another approach to decrease the fMRI dataset’s 
small size overfitting effect, Wang et al. utilized PCANet [13] on FC matrices [14]. The choice of PCA was due 
to its unsupervised nature that eliminates its need for feedback adjustment parameters, making it an efficient choice 
for small datasets. Lin et al. introduced their end-to-end CRNN framework where they combined a CNN with an 
LSTM to model the 4D information [15]. They applied CNNs to dynamic FC (dFC) networks for extracting the 
temporal features based on which an LSTM was used to model the sequential information of the dFC networks. 
To perform the spatiotemporal analysis avoiding the 4D information complexity and model the 4D features at the 
same time, Jia et al. used mReHo transformation [16] that represents the whole time series of volumes as a single 
volume [17]. In the study, a 3D-PCANet was trained on the mReHo volumes as the classifier model. Due to the 
small size of the fMRI dataset, a disparity in sample distribution is encountered causing overfitting. As a solution 
for this problem, graph autoencoder (GAE) was applied over a node-edge connectivity graph that represents each 
node’s (brain region) connectivity profile over the time series [18]. Graph theory helps to model the spatiotemporal 
pairwise correlation between brain regions by encoding the nodes and edges of a graph into a latent vector space 
to capture hidden information despite the disparity of a dataset. The GAE was trained as the generator part of a 
generative adversarial network (GAN) [19] that reconstructs the brain connectivity graphs to enforce the GAE to 
better learn the connectivity graph features benefiting from the discriminator’s loss. In [20], a 3D-CNN was trained 
on fMRI images, and the temporal dimension was neglected. While Wang et al. applied a 2D-CNN to ROIs and 
then passed the extracted spatial features from sequential fMRI volumes to an LSTM to model the temporal 
features, they neglected the third spatial dimension [21].  

Despite the classification performance improvement achieved by applying CNNs to FC networks or mReHo 
representations, both representations have the drawback of losing some spatial and temporal information. Also, 
applying 3D-CNNs to the fMRI session’s volumes separately neglects the temporal dimension totally, and 
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applying 2D-CNNs to fMRI volumes’ slices neglects the third spatial dimension resulting in information loss in 
both cases. To preserve both spatial and temporal information, Li et al. introduced a concatenation of a 3D-CNN 
with an LSTM applied directly to fMRI scans [22]. In this model, the spatial feature maps generated by the 3D-
CNN from all volumes along the fMRI time-series are passed sequentially to the LSTM to model the temporal 
relationship along the fMRI time-series. To model the 4D information, eliminating the complexity of the CNN-
RNN combination, Parmar et al. designed a 3D CNN with the first two convolutional layers of a (1 × 1 × 1) kernel 
to learn the temporal features hierarchically [7], then the spatial features of the volumes in the time-series were 
learned through the following layers. Although CNN-based methods achieved efficient results being the best in 
fMRI-based AD diagnosis, an overfitting problem still exists, especially when applying CNNs to small-size 
datasets, which is always the case for most of the medical datasets, including fMRIs. 

In this study, to develop an effective method for early-stage diagnosis of AD we introduce a CapsNet-RNN 
model to efficiently learn the spatiotemporal features of fMRI data for AD diagnosis tackling the small-size dataset 
problem that causes overfitting. We propose to utilize an enhanced version of CNNs called Capsule Network 
(CapsNet) introduced by Sabour et al. [23] as a solution to the overfitting problem encountered with traditional 
CNNs, combined with a recurrent neural network (RNN) to model the 4D information of fMRI sessions. In other 
words, to address the issue of overfitting in medical datasets, such as fMRIs, the Capsule Network (CapsNet), a 
modified version of traditional CNNs created specifically for this use, was combined with an RNN to simulate the 
spatiotemporal characteristics of fMRI data. The spatial characteristics of every volume in an fMRI time-series 
were extracted using CapsNet to create a feature vector. Next, to simulate the temporal features along the fMRI 
volume time-series, the vectors of the time-series are successively input to an RNN. CapsNet was introduced with 
two main modifications to solve two major problems in traditional CNNs. First, it replaces the scalar feature 
detectors lacking efficient representation of the spatial correlation between different entities (shapes) produced by 
a conventional CNN with the capsule concept, dividing output feature maps into several groups and viewing each 
group of the output feature maps as a grid of capsules. Each capsule outputs a vector and the length of a vector 
indicates the probability that the entity (shape) represented by its capsule exists at this capsule’s location in an 
image, while the orientation of this vector encodes different properties of the entity such as pose, position, size, 
orientation, deformation, and texture. Second, instead of the pooling operation that results in information loss, it 
applies a routing-by-agreement algorithm to alleviate this problem and model the relationship between lower-level 
entities constructing higher-level ones in the image features hierarchy. In our proposed CapsNet-RNN model, the 
CapsNet outputs a feature vector representing the spatial features of each volume in the fMRI time series. The 
vector of each volume is then given to an RNN to model the temporal dependency information between the fMRI 
volume sequences. The proposed model is able to achieve 94.5% and 61.8% accuracy for the AD vs. NC and lMCI 
vs. eMCI classification tasks, respectively. 
 
2. Proposed Model 

 
In this section, firstly, CapsNet and RNN models are overviewed to comprehend the structure of the proposed 

model. Then, the architecture of the proposed model is explained.  
 
2.1. CapsNet 
 

CNNs have proven to be efficient with image classification, especially in the medical domain. However, 
CNNs still suffer from some drawbacks that are more obvious with small datasets, which is almost the case for 
medical image datasets. CNNs suffer from two major drawbacks [23]: first, they use scalar feature detectors, which 
do not efficiently capture the spatial relationships between different entities. This makes CNNs less robust to affine 
transformations, which means that a CNN needs to be trained on a big dataset containing most, if not all, possible 
transformations, while medical datasets like fMRIs are usually of small size with respect to a deep learning model’s 
number of parameters, which causes the trained model to overfit the dataset. The second drawback is performing 
pooling after each convolutional layer to reduce the number of parameters for achieving a lower computational 
complexity. This reduction of parameters results in precise position information loss. To solve these issues, 
CapsNet applies two concepts: vector-output capsules and routing-by-agreement as a replacement for scalar 
feature detectors and max-pooling operation, respectively.  

 
2.1.1. Vector-output capsules 
 

A CapsNet can have one or more convolutional capsule layers; each layer performs convolution on the 
resulting convolutional capsules (feature maps) from the previous layer. Convolution is used to maintain the shared 
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weight property of CNNs (knowledge replication across space) by learning the reusable feature detectors across 
the entire image. Each convolutional capsule represents a shape entity, where a convolutional capsule is a group 
of N feature maps; the number of these feature maps is referred to as the number of atoms. This group of N feature 
maps can be viewed as a grid of capsules, each capsule outputting a vector. At each location on this grid, there is 
a capsule’s N-dimensional output vector that consists of the feature detectors at the same location across this group 
of N feature maps forming the convolutional capsule. The length of a capsule’s output vector represents the 
probability of the existence of the entity (e.g., rectangle, triangle, etc.) represented by its convolutional capsule at 
this capsule’s location. While the orientation of the capsule’s output vector encodes various properties of the entity 
it represents, including different types of instantiation parameters such as pose, position, size, orientation, 
deformation, and texture. The capsules of each convolutional capsule layer represent a set of entities at a certain 
level in a hierarchy of shape complexity, where the entities in a higher layer are constituents of entities from the 
layer below. 
 
2.1.2. Routing-by-agreement 
 

To assign parts to the wholes, an algorithm called routing-by-agreement is used to couple each capsule 
representing an entity in a capsule layer with the capsules of the entities (parts) in the layer below. This routing-
by-agreement process iteratively takes place between each capsule layer and its previous layer for a defined 
number of iterations within a single training iteration for the whole network. There is a coupling coefficient 
between each capsule in the capsule layer and each capsule in the lower layer, indicating the extent to which a 
lower-level capsule (entity) is probably a part of a higher-level capsule. The input to a capsule 𝐬" is calculated as 
a weighted sum over all “prediction vectors” 𝐮$"∣& for this capsule. These prediction vectors are calculated by 
multiplying the output vectors 𝐮& of all capsules in the layer below by a weight matrix 𝐖&" that is learned through 
the training process as in (1) [23]: 

  
		𝐬" = ∑  & 𝑐&"𝐮$"∣&,										𝐮$"∣& = 𝐖&"𝐮&.        (1) 

The following squashing function is applied to capsule input vectors to shrink their values slightly below 1 
as they are used as probability values as follows in (2): 

																																																								𝐯" =
∥∥𝐬0∥∥

1

23∥∥𝐬0∥∥
1
𝐬0
∥∥𝐬0∥∥

 ,                                                                   (2) 

where a capsule 𝑗 receives an input 𝐬" and outputs a vector 𝐯". The summation of prediction vectors  𝐮$"∣& is weighted 
by coupling coefficients 𝑐&" and the coupling coefficients between capsule 𝑖 and all the capsules in the layer above 
sum to 1. A coupling coefficient 𝑐&" is computed by a “routing softmax” whose initial logits are log prior 
probabilities 𝑏&" that a capsule 𝑖 should be coupled to capsule 𝑗 as in (3): 
 

                                       																													𝑐&" =
789:;<0=

∑  > 789	(;<>)
 .                                                               (3) 

 
The logits 𝑏&" are initially set to zero, and their optimal values are learned iteratively through the dynamic 

routing-by-agreement process based on measuring the agreement between a capsule output 𝐯" and the prediction 
vector 𝐮$"∣& from capsule 𝑖. The agreement is calculated as the scalar product  𝑎&" = 𝐯" ⋅ 𝐮$"∣&, then added to the 
current logit 𝑏&" to calculate the new logits and coupling coefficient values for the following iteration and so on. 
The routing-by-agreement algorithm is demonstrated in Table 1. 
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Table 1. Routing algorithm. 
____________________________________________________________________________________ 
Routing algorithm 
____________________________________________________________________________________ 
 
1:    ROUTING(𝑈D"|&, 𝑟, 𝑙) 
2:      for all capsule 𝑖 in layer 𝑙 and capsule 𝑗 in layer (𝑙	 + 1): 𝑏&" 	←  0. 
3:      for 𝑟 iterations do 
4:            for all capsule 𝑖 in layer 𝑙: 𝐶& ← softmax(𝑏&)                     ►softmax computes Eq. 3 
5:            for all capsule 𝑗 in layer (𝑙	 + 1): 𝑆" ← ∑ 𝐶&"& 𝑈D"|& 
6:            for all capsule 𝑗 in layer (𝑙	 + 1): 𝑉" ← squash(𝑆")                ►squash computes Eq. 1 
7:            for all capsule 𝑖 in layer 𝑙 and capsule 𝑗 in layer (𝑙	 + 1): 𝑏&" ← 𝑏&|"  + 𝑈D"|".	𝑉" 
         return 𝑉" 
____________________________________________________________________ 
 
2.2 Recurrent Neural Networks 
 

RNNs are used to label, classify, or generate sequences. Data is input to an RNN as a sequence of feature 
vectors [24]. An RNN can be used to predict a class for each feature vector in the sequence or to predict a class 
for the whole sequence. RNNs are used with any kind of data that contains sequential dependencies. Therefore, 
RNNs are used for applications like natural language processing and forecasting time series.  
 
2.3 Proposed Model 
 

The proposed model consists of two parts: a CapsNet to capture the spatial features of volumes in the fMRI 
time series, followed by an RNN to capture the temporal features across the time series. CapsNet first receives an 
fMRI time series sample of five volumes to extract the spatial features from each volume as a 32D feature vector. 
Then, these five vectors are fed sequentially into the RNN to model the temporal features of this volume sequence, 
followed by a fully connected layer for final prediction. 
 
2.3.1. CapsNet Architecture 
 

We designed our CapsNet architecture to start with a convolutional layer with a 3D kernel of size 5, stride 1, 
valid (zero) padding, and 16 output channels, followed by 2 other convolutional layers with a 3D kernel of size 5, 
stride 2, valid padding, 32 and 64 output channels, respectively. The convolutional layers are followed by 3 
convolutional capsule layers; the output of each is 32 convolutional capsules, each consisting of 8 atoms. Note 
that the size of a convolutional capsule’s grid in a convolutional capsule layer is the size of the feature maps 
generated from the convolution operation in this layer, and the number of capsules in a convolutional capsule’s 
grid is equal to the size of this grid. Each convolutional capsule layer has a 3D kernel of size 3, stride 2, and 
padding 1. The architecture of the CapsNet is illustrated in Figure 2. It should be noted that the number of 
convolutional capsules from the previous layer to the first convolutional capsule layer is equal to 1, as the previous 
one is a traditional convolutional layer. 
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Figure 2. The CapsNet architecture used in the proposed model consisting of a convolutional layer with a 

3D kernel of size 5, stride 1, valid (zero) padding, and 16 output channels, followed by 2 other convolutional 
layers with a 3D kernel of size 5, stride 2, valid padding, 32 and 64 output channels, followed by 3 convolutional 

capsule layers. 
 
Between every two capsules in two consecutive convolutional capsule layers, there should be a weight matrix, 

as explained in Section 2.1.2. Thus, it is expected to have a number of weight matrices equal to (number of 
convolutional capsules in the lower layer × number of convolutional capsules in the higher layer × grid dimension 
of the lower convolutional capsule layer × grid dimension of the higher convolutional capsule layer), which means 
an explosive number of parameters. To reduce the number of parameters and replicate knowledge across space, an 
approach is applied. Based on this approach, a set of filters convolving the convolutional capsules in the lower 
layer was used, like traditional convolution, which replaces a set of pixels equal to the kernel size by a pixel, a set 
of capsules is replaced by a capsule. Thus, the weights between the capsules of two convolutional capsule 
(convolutional capsule) layers are the weights of convolutional filters (playing the role of weight matrices 𝐖&" 
mentioned in Section 2.1.2). 

The final layer in the CapsNet stage of the proposed model is composed of two 16D capsules; each of these 
two capsules outputs a 16D vector, where two vectors represent the spatial features of an fMRI volume, not acting 
as class capsules like the original CapsNet architecture introduced in [23]. Here, the capsules in the last 
convolutional capsule layer use a separate weight matrix 𝐖&" between each capsule 𝑖 in this layer and each capsule 
𝑗 in the final layer of CapsNet. No convolution is applied between these two layers. 
                  
2.3.2 Recurrent Neural Network Architecture 
 

In our model, we used an RNN to model the fMRI time series properties. Therefore, the two output vectors 
by CapsNet representing the spatial features of each volume are flattened as a single 32D vector, then all the 
flattened vectors are fed as a sequence to the RNN for modeling the temporal features of the volumes’ time series. 
In the RNN architecture, there is a single layer with 64 hidden cells. Finally, the output of the RNN is passed to a 
fully connected layer with a single neuron, after which a sigmoid function is applied to perform the binary 
classification. Overall, the architecture of the proposed model based on CapsNet and RNN is illustrated in Figure 
3.  
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Figure 3. The architecture of the proposed model with an RNN to model the fMRI time series properties. 

 
3. Experiments 

 
3.1. Dataset and Pre-processing 
 

Experiments were performed in order to evaluate the efficiency of the proposed model. In the experiments, 
rs-fMRI data acquired from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database [25] was used. The 
rs-fMRI dataset contains four classes of a total of 147 subjects, including 34 AD subjects, 34 NC subjects, and 80 
MCI subjects divided into 40 eMCI and 40 lMCI. For each subject, 140 volumes were acquired in a session, with 
each volume consisting of 36 − 48 slices. Each slice is of size 64 × 64, slice thickness is 3.1 mm, TE (echo time) 
is 30 ms, and TR (repetition time) is 2200 – 3100 ms. The rs-fMRI dataset was pre-processed using the SPM 12 
toolbox [26] and MATLAB 2022b. The pre-processing steps included removing the first three volumes for 
magnetization equilibrium, head motion correction, slice timing correction, and spatial smoothing by a Gaussian 
kernel with a full-width-at-half-maximum (FWHM) of 6 mm. Finally, fMRIs were co-registered with T1-weighted 
MRIs of the same subjects to normalize the fMRIs onto the standard 152 Montreal Neurological Institute (152 
MNI) space. By the end of this process, the dimension of fMRI volumes is changed from 64 × 64 × 48 to 61 × 73 
× 61 due to the deformations applied by the spatial normalization module to register the images into the standard 
space.  
 
3.1. Implementation Details 
 

The Python-based Pytorch framework was used to implement and train the proposed model. Besides, Google 
Colab Pro was used to perform the experiments, utilizing the NVIDIA A-100 GPU with 40 GB of RAM and 83.5 
GB of CPU RAM. The proposed model was trained for two binary classification tasks: AD vs. NC and lMCI vs. 
eMCI classifications. Binary cross-entropy was used as a loss function for the proposed model. The model was 
trained using the Adam optimizer with a learning rate of 1e-6 and L2 regularization to prevent overfitting with a 
regularization coefficient of 0.1. The training was completed in 20 and 15 epochs (to avoid overfitting) for the AD 
vs. NC and lMCI vs. eMCI tasks, respectively. Moreover, the batch size was set to 2 for both classification tasks. 
The proposed model was trained for nearly 1 hour and 10 minutes. It should be noted that the number of parameters 
in our model is 4.4 M parameters. Furthermore, the GPU RAM consumption was 1.9 GB, and the CPU RAM 
consumption used mainly for holding the dataset was 49.5 GB and 43.9 GB for AD vs. NC and lMCI vs. eMCI 
tasks, respectively. 

Before the implementation, the dataset was divided into three categories: 70% as training data, 10% as 
validation data, and the remaining 20% as testing data. The proposed model was trained on 34 AD, 34 NC, 40 
lMCI, and 40 eMCI subjects, taking a maximum of three sessions and two sessions from each subject in AD vs. 
NC and lMCI vs. eMCI, respectively, due to memory constraints. Following an approach applied in [7], we 
obtained the first 100 volumes from each session after the pre-processing stage and divided these 100 volumes 
into 20 samples to have 5-volume time-series samples. Obtaining five samples from a single session increases the 
number of trainable samples, leading to a higher generalization of the proposed model. Thus, 1680 AD, 1680 NC, 
1460 lMCI, and 1460 eMCI samples were obtained to carry out the experiments. 
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3.2 Results 
 
3.2.1. Classification performance 
 

The classification accuracy achieved by the proposed model for the two binary classification tasks is given in 
Table 2. For the AD vs. NC classification task, it is clear that the proposed model achieved the accuracy at 100%, 
100%, and 94.5% for training, validation, and testing datasets, respectively. For the lMCI vs. eMCI task, it 
achieved the accuracy at 99%, 64.3%, and 61.8% accuracies for training, validation, and testing datasets, 
respectively. 

The loss and accuracy curves for the AD vs. NC task are plotted in Figure 4 and 5, respectively, and for the 
lMC vs. eMCI task in Figure 6 and 7, respectively. 

 
Table 2. Classification accuracy of the proposed model. 

Accuracy AD vs. NC lMCI vs. eMCI 
Training 100% 99% 

Validation 100% 64.3% 
Test 94.5% 61.8% 

 

 
Figure 4.  Loss curves of AD vs. NC. 

 
 
 

3.2.2. Comparison with State-of-the-Art Methods   
In this section, the accuracy of the proposed method is compared with several state-of-the-art methods 

proposed in the literature. We can see from Table 3 that the proposed model performs comparably well in terms 
of testing accuracy to the recent studies for the AD vs. NC task. Besides, it can be seen that nearly all the models 
reach high accuracies with the AD vs. NC task, while there is still a gap between the accuracies achieved by our 
study and studies [6], [21] when performing lMCI vs. eMCI classification and those achieved by nearly all studies 
in the AD vs. NC task. Thus, the lMCI vs. eMCI task and its similar sMCI vs. pMCI are reported to be challenging 
tasks in the literature [4]. Hence, the authors are planning to consider enhancing the accuracy of the lMCI vs. eMCI 
task in the near future. 
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Figure 5. Accuracy curves of AD vs. NC. 

 

 
Figure 6.  Loss curves of lMCI vs. eMCI. 

 

 

Figure 7. Accuracy curves of lMCI vs. eMCI. 
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Table 3. Comparison with other studies. 

Study Method AD vs. 
NC lMCI vs. eMCI pMCI vs. sMCI Multi-Class 

He et al. [10] 2D-CNN applied to FC 
matrices. 93% N/A N/A N/A 

Duc et al. [12] 
3D-CNN applied to 3D-

ICA feature maps based on 
FC networks. 

85.27% N/A N/A N/A 

Jie et al. [6] 
Multi-task feature 

learning+SVM applied to 
FC networks. 

N/A 78.8% N/A N/A 

Wang et al.       
[14] 

PCANet applied to FC 
matrices. 88% 100% N/A N/A 

Jia et al. [17] PCANet applied to mReHO 
transformation images. 80% N/A N/A N/A 

Mirakhorli et al 
[18] 

Graph-CNN applied to 
brain connectivity node-

edge graph. 
97.1% N/A N/A N/A 

Lin et al.  [15] CNN+LSTM applied to FC 
networks 92.8% N/A N/A AD vs eMCI vs lMCI 

vs NC: 61.7% 

Wang et al. [21] 
2D-CNN+LSTM applied to 

overlapping windows of 
ROIs. 

90.28% 79.36% N/A 

AD vs. MCI vs. NC: 
71.76% 

AD vs. eMCI vs. lMCI 
vs. NC: 60.67% 

Li et al.  [22] 3D-CNN+LSTM applied to 
fMRI volumes time-series. 97.37% N/A N/A AD vs MCI vs NC: 

89.47% 

Parmar et al. [7] 
 

A special configuration of 
3D-CNN to model the 4D 

information applied to 
fMRI volumes time-series. 

N/A N/A N/A AD vs. eMCI vs. lMCI 
vs. NC: 93% 

Our study CapsNet +RNN applied to 
fMRI volumes time-series. 94.5% 61.8% N/A N/A 

 
  As discussed earlier, there are two aims behind combining a CapsNet with an RNN in the same model. The 
first is to model the 4D information by applying the model directly to the time series of fMRI volumes in order to 
avoid information loss associated with applying CNNs to FC networks or mReHo transformation images, and the 
second is to overcome the overfitting problem that occurs with traditional CNNs that was replaced with CapsNet. 
From the comparison results, it has been observed that the proposed model and the studies introduced in [7] and 
[22], which model the 4D information from the fMRI volume sequence directly, were able to achieve better 
accuracies than the models introduced in [10], [12], [14], [15] (which apply CNNs to FC networks), and [17] (that 
apply CNNs to mReHO images). Moreover, despite CapsNet being designed to achieve better generalization than 
traditional CNNs, the method which applies CNNs with LSTM directly to fMRI volumes [22] still achieves better 
accuracy than our model. Hence, we concluded that some enhancement is required in the pre-processing stage to 
improve the performance of our model, which can be considered as a future work. 

 
4. Discussion  
 

The proposed CapsNet-RNN-based model exhibits a high capability of generalization and learning more 
hidden patterns of interest from a small dataset and in a relatively small number of epochs. In addition, it efficiently 
models the 4D information of fMRI sessions, which is unique to fMRI different from other neuroimaging 
modalities. 

Medical datasets generally suffer from being of small size including brain neuroimaging datasets. This is due 
to several reasons, such as the difficulty of acquiring medical datasets from a wide range of subjects and privacy 
and data protection concerns. Here, the role of CapsNet comes as a solution to one of the CNNs’ drawbacks that 
becomes more obvious with smaller datasets. CNNs suffer from a lack of capturing sufficient affine transformation 
features, as discussed earlier resulting in an overfitting problem. CapsNet with its representation of shape entities 
as vectors and applying the routing-by-agreement algorithm can efficiently learn the relationship features of 
assigning parts to wholes, which alleviates the need for big datasets to learn all possible affine transformations as 
in the case of CNNs.  

Regarding fMRI data, the CapsNet-RNN models both brain activity dynamic changes within a specific region 
and dynamic FC between different regions across the fMRI time series. It does not need to construct FC matrices 
as a pre-processing step, where it learns the spatiotemporal features entirely through the training process performed 
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directly on fMRI images. Thus, it avoids the information loss associated with constructing FC networks or just 
taking into account the spatial features and neglecting the temporal ones. 

This relatively high accuracy reached in less than 20 epochs with the AD vs. NC task reveals the powerfulness 
of CapsNet to generalize and converge in a relatively small number of epochs with small-size datasets. Similarly, 
CapsNet converged to the desired classification accuracy in 10 epochs in another study utilizing it in a multi-class 
brain tumor classification [27]. The promising results of CapsNet in the medical domain and other various domains 
[28] show that CapsNet is revolutionizing computer-vision-related applications, thus it can be helpful with several 
medical tasks such as diagnosis, prognosis, and segmentation. 

 
5. Conclusion and Future Work  
 

To capture the 4D information of the rs-fMRI time-series data for AD diagnosis, an end-to-end deep learning 
model (CapsNet-RNN) is proposed in this study. Specifically, an RNN was concatenated with a version of standard 
CNNs known as CapsNet, created for this purpose, to represent the spatiotemporal aspects of fMRI data, therefore 
mitigating the overfitting issue associated with medical datasets, including fMRIs. The spatial characteristics of 
every volume in an fMRI time series were extracted as a feature vector using CapsNet. Subsequently, an RNN is 
trained with the time series vectors in order to model the temporal properties along the fMRI volume time series. 
The robustness of CapsNet to obtain a reasonable generalization level on limited datasets is demonstrated by the 
reasonably high accuracy (94.5%) reached in fewer than 20 epochs with the AD vs. NC task. 

Although the results of applying the suggested model to fMRI data for AD diagnosis have been encouraging, 
the pre-processing step still needs to be revised.  Furthermore, it is also essential to enhance the proposed model 
to achieve closer accuracy achieved by well-known models for the AD vs. NC task and to attain similar accuracy 
for the AD vs. NC task along with more challenging tasks like the lMCI vs. eMCI task. As a future work, 
combining different neuroimaging biomarkers, such as sMRI and PET with fMRI using CapsNets for AD 
diagnosis needs to be investigated. Combining multi-imaging modalities can lead to better diagnosis accuracy in 
clinical practice, as different modalities can provide complementary information to each other. Moreover, only 
binary classification was used in this investigation. The suggested model is anticipated to be used in the near future 
for multi-class classification of various phases of AD or possibly for differentiating AD from other types of 
dementia. 

 
Acknowledgements 

 
Publicly available datasets from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database were 

analyzed in this study. Data accessible from: Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 
(https://adni.loni.usc.edu). 

 
References 

 
[1] Alzheimer’s Association Report. 2017 Alzheimer's disease facts and figures. Alzheimer’s & Dementia 2017; 13(4): 325-

373. 
[2] Haux R. Health information systems - past, present, future. Int J Med Inform 2006; 75(3-4): 268-281. 
[3] Janghel RR, Rathore YK. Deep convolution neural network based system for early diagnosis of alzheimer’s disease. IRBM 

2021; 42(4): 258-267. 
[4] Ebrahimighahnavieh MA, Luo S, Chiong R. Deep learning to detect Alzheimer’s disease from neuroimaging: a systematic 

literature review. Computer Methods and Programs in Biomedicine 2020; 187: 105242. 
[5] Kivistö J, Soininen H, Pihlajamaki M. Functional MRI in Alzheimer’s Disease. Advanced Brain Neuroimaging Topics in 

Health and Disease - Methods and Applications. InTech; 2014.  
[6] Jie B, Liu M, Shen D. Integration of temporal and spatial properties of dynamic connectivity networks for automatic 

diagnosis of brain disease. Med Image Anal 2018; 47:81-94. 
[7] Parmar H, Nutter B, Long R, Antani S, Mitra S. Spatiotemporal feature extraction and classification of alzheimer’s disease 

using deep learning 3D-CNN for fMRI data. Journal of Medical Imaging 2020; 7(5): 056001. 
[8] Jie B, Zhang D, Wee CY, Shen D. Topological graph kernel on multiple thresholded functional connectivity networks for 

mild cognitive impairment classification. Hum Brain Mapp 2014; 35(7):2876-2897. 
[9] Bi XA, Shu Q, Sun Q, Xu Q. Random support vector machine cluster analysis of resting-state fMRI in alzheimer’s disease. 

PLoS One 2018; 13(3): e0194479. 
[10] He Y, Wu J, Zhou L, Chen Y, Li F, Qian H. Quantification of cognitive function in alzheimer’s disease based on deep 

learning. Front Neurosci 2021; 15: 651920. 
[11] Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H. MobileNets: efficient 

convolutional neural networks for mobile vision applications. arXiv 2017; 1704.04861. 



Ali İSMAİL, Gonca Gökçe MENEKŞE DALVEREN  
 

235 
 

[12] Duc NT, Ryu S, Qureshi MNI, Choi M, Lee KH, Lee B. 3D-deep learning based automatic diagnosis of alzheimer’s 
disease with joint mmse prediction using resting-state fMRI. Neuroinformatics 2020; 18(1), 71-86. 

[13] Chan TH, Jia K, Gao S, Lu J, Zeng Z, Ma Y. PCANet: a simple deep learning baseline for ımage classification? IEEE 
Transactions on Image Processing 2015; 24(12): 5017-5032. 

[14] Wang Y, Liu X, Yu C. Assisted diagnosis of alzheimer’s disease based on deep learning and multimodal feature fusion. 
Complexity 2021; 2021: 6626728. 

[15] Lin K, Jie P, Dong P, Ding X, Bian W, Liu M. Convolutional recurrent neural network for dynamic functional mrı analysis 
and brain disease ıdentification. Front Neurosci 2022; 16: 933660. 

[16] Jiang L, Zuo XN. Regional homogeneity: a multimodal, multiscale neuroimaging marker of the human connectome. 
Neuroscientist 2016; 22(5): 486-505. 

[17] Jia H, Lao H. Deep learning and multimodal feature fusion for the aided diagnosis of alzheimer’s disease. Neural Comput 
Appl 2022; 34(22): 19585-19598. 

[18] Mirakhorli J, Amindavar H, Mirakhorli M. A new method to predict anomaly in brain network based on graph deep 
learning. Rev Neurosci 2020; 31(6): 681-689. 

[19] Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. ArXiv 2014; 
1406.2661. 

[20] Ghafoori S, Shalbaf A. Predicting conversion from MCI to AD by integration of rs-fMRI and clinical information using 
3D-convolutional neural network. Int J Comput Assist Radiol Surg 2022; 17(7): 1245-1255. 

[21] Wang M, Lian C, Yao D, Zhang D, Liu M, Shen D. Spatial-temporal dependency modeling and network hub detection 
for functional MRI analysis via convolutional-recurrent network. IEEE Trans Biomed Eng 2020; 67(8): 2241-2252. 

[22] Li W, Lin X, Chen X. Detecting alzheimer’s disease based on 4D fMRI: an exploration under deep learning framework. 
Neurocomputing 2020; 388: 280-287. 

[23] Sabour S, Frosst N, Hinton GE. Dynamic routing between capsules. In: Proceedings of the 31st International Conference 
on Neural Information Processing Systems; 4-9 December 2017; Long Beach, California, USA: Curran Associates Inc. 
pp. 3859–3869. 

[24] Schmidt RM, Recurrent neural networks (RNNs): a gentle introduction and overview. ArXiv 2019; 1912.05911. 
[25] Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack CR, Jagust W, Trojanowski JQ, Toga AW, et al. Ways toward an 

early diagnosis in alzheimer's disease: the alzheimer's disease neuroimaging ınitiative (ADNI). Alzheimers Dement. 2005; 
1(1): 55-66. 

[26] The FIL Methods Group and honorary members, SPM12 Manual. Functional Imaging Laboratory, Institute of Neurology, 
UCL, 2015, http://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf. 

[27] Afshar P, Mohammadi A, Plataniotis KN. Brain tumor type classification via capsule networks. In: 25th IEEE 
International Conference on Image Processing (ICIP): 07-10 October 2018; Athens, Greece: IEEE. pp. 2381-8549. 

[28] Goceri E. Analysis of capsule networks for image classification. In: International Conference on Computer Graphics, 
Visualization, Computer Vision and Image Processing: IADIS. pp. 53-60. 

 
 


