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Abstract: It is proved that for any decomposable perfect measure space (𝑍, 𝒜, 𝜇), the space 

𝐿𝜔∗
∞ (𝜇, 𝐸∗) of essentially bounded weak* measurable  functions on 𝑍 to 𝐸∗ is linearly 

isometric to the space 𝐶(𝑍, 𝐸∗
∗) of continuous functions on 𝑍 to 𝐸∗

∗, the latter space is being 

provided with the supremum norm ‖𝑔‖∞ = sup
𝑧∈𝑍

‖𝑔(𝑧)‖, where 𝐸∗
∗ stands for the space 𝐸∗ 

endowed with its weak* topology.  

Key words: 𝐿∞ Space, Vector-Valued Functions, Perfect Measure, Hyperstonean Space, 

Continuous Function Spaces 

1. Introduction 

If 𝜇 is a perfect measure on an extremally disconnected compact Hausdorff space 𝑋 then 

the Banach space 𝐿∞(𝜇) of essentially bounded scalar measurable functions is linearly 

isometric to 𝐶(𝑋), the space of scalar continuous functions on 𝑋 provided with the 

usual supremum norm [1] or [20]. For an arbitrary 𝜇, we may employ the Gelfand-

Naimark theorem to achieve the same result, that is, 𝐿∞(𝜇) is isometric to 𝐶(𝑌) where 𝑌 

denotes the maximal ideal space of 𝐿∞(𝜇), [3], [17] or [12]. In this article, we shall 

generalize this theorem to 𝐿∞spaces of vector-valued functions. We shall restrict our 

study to perfect measures, and the range space will be a Banach dual 𝐸∗ for continuous 

functions, where 𝐸∗
∗ stands for the dual space 𝐸∗ provided with its weak* topology. 

2. Material and Method 

First, let us recall some (not entirely standard) terminology for integration of vector-

valued functions. We will call two measure spaces (𝑋, 𝒜, 𝜇) and (𝑌, ℬ, 𝜇) equivalent if 

each number 1 ≤ 𝑝 < ∞ and each Banach space 𝐸, the Bochner spaces 𝐿𝑝(𝜇, 𝐸) and 

𝐿𝑝(𝜈, 𝐸) are linearly isometric. For basic information about these spaces, see references 

[8,9]. As pointed out in [6] equivalent measure spaces may have different 𝐿∞ spaces. 

Following [1] we will call a measure space (𝑋, 𝒜, 𝜇) perfect if 𝑋 is an extremally 

disconnected locally compact Hausdorff space, 𝒜 contains the Borel algebra and 𝜇 is a 

positive measure on 𝒜 such that every nonempty open set contains a clopen set  𝐾, 

where 𝜇(𝐾) > 0, and for every closed set C with empty interior, 𝜇(𝐶) = 0. 

In [6], Cengiz proves that an arbitrary measure space (𝑋, 𝛴, 𝜇) is equivalent to a perfect 

measure space (𝛺, 𝒜, 𝜇) with the following additional properties: 

i. 𝛺 = ∑ ⊕ 𝛺𝑖𝑖∈𝐼  , where {𝛺𝑖: 𝑖 ∈ 𝐼} of mutually disjoint extremally disconnected 

compact Hausdorff spaces 𝛺𝑖, 𝑖 ∈ 𝐼,   
ii. if a subset 𝑆 of Ω is measurable then 𝑆 ∩ 𝛺𝑖 is measurable  for each  𝑖 ∈ 𝐼, and 

the converse is also true, 
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iii. the restriction of 𝜇 to each 𝛺𝑖  is a regular Borel measure on 𝛺𝑖, 
iv. for each 𝐴 ∈ 𝒜, 𝜇(𝐴) = ∑ 𝜇(𝐴 ∩𝑖∈𝐼 𝛺𝑖), 
v. every 𝜎 –finite measurable set is contained a.e. (almost everywhere) in the union 

of a countable subfamily of {𝛺𝑖: 𝑖 ∈ 𝐼}, and 

vi. every measurable set 𝐴 is equivalent to a clopen set 𝐶, that is,  𝜇(𝐴∆𝐶) = 0. 

 

Note that the measure space (𝛺, 𝒜, 𝜇) is decomposable [14, p. 317]. Since 𝜇 is perfect, 

for every open set 𝑈, 𝜇(𝑈̅) = 𝜇(𝑈), and from (iv) it follows that every locally null set is 

actually null. (Recall that a measurable set is locally null if its intersection with every 

set of finite measure is null.) 

 

Let Z denote the Stone-Čech compactification of Ω. Then, obviously, Z is extremally 

disconnected, and since Ω is locally compact, it is open in Z, [11, p.245] or [15, p. 90]. 

Using these facts, it is easily shown that the extension of 𝜇 to the Borel algebra ℬ of  

𝑍, which we will continue to denote by 𝜇, by defining the measure of any 𝐵 in ℬ to be 

the measure of 𝐵 ∩ 𝛺𝑖  is indeed a perfect measure on 𝑍. Since 𝑍 ∖ 𝛺 is a null set, we 

will use 𝑍 and Ω interchangeably as the ground set. Hence, every measure is equivalent 

to a decomposable perfect measure on an extremally disconnected (locally) compact 

Hausdorff space. 

 

Following [10] we call an exteremally disconnected compact Hausdorff space 𝑇 

hyperstonean if the union of the supports of the positive normal measures is dense in 𝑇, 

which is equivalent to having a perfect measure on 𝑇 [1]. (We recall that a regular Borel 

measure ν on 𝑇 is normal if 𝜈(𝐵) = 0 for every Borel set of first category.) This 

condition ensures that 𝐶(𝑇) is a dual space [16]. Thus, each measure space is equivalent 

to a hyperstonean measure space.  

 

𝐿∞ Spaces. Let (𝑋, 𝛴, 𝜇) be any measure space and 𝐸 be a Banach space. Let us recall 

that a function 𝑓: 𝑋 → 𝐸 is strongly measurable (or simply measurable) if it is the 

almost everywhere limit in the norm topology of a sequence of measurable simple 

functions, and locally measurable if its restriction to each measurable set of finite 

measure is measurable. A locally measurable function 𝑓: 𝑋 → 𝐸 is essentially bounded 

if for some 𝛼 > 0, the set {𝑥 ∈ 𝑋: ‖𝑓(𝑥)‖ > 𝛼} is locally null, and the infimum of such 

numbers 𝛼 is the essential supremum norm ‖𝑓‖∞ of 𝑓. 𝐿∞(𝜈, 𝐸) will stand for the 

Banach space of all essentially bounded locally measurable functions on 𝑋 to 𝐸. 
 

A function 𝑔: 𝑋 → 𝐸∗ is weak* measurable if for each 𝑒 ∈ 𝐸, the composite function       

𝑒̂ ∘ 𝑔 is measurable, where 𝑒̂ denotes the image of 𝑒 in the second dual under the 

canonical embedding. 

 

Throughout the rest of this paper we will be discussing the 𝐿∞ space of 𝐸∗-valued 

functions rather than 𝐸-valued ones and (𝛺, 𝒜, 𝜇) will denote a fixed perfect measure 

space with additional properties (i) - (iv) mentioned earlier and 𝑍 will stand for the 

Stone-Čech compactification of Ω. The unique extension of 𝜇 to a perfect measure on 

the Borel algebra ℬ of  𝑍 will still be denoted by 𝜇. 
 

For each 𝑔 ∈ 𝐿∞(𝜇, 𝐸∗), the mapping 𝜓𝑔, defined on 𝐿1(𝜇) by 

 

𝜓𝑔(𝑓) = ∫〈𝑓, 𝑔〉𝑑𝜇

𝛺
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for all 𝑓 ∈ 𝐿1(𝜇), is a bounded linear functional with norm ‖𝜓𝑔‖ = ‖𝑔‖∞, where 

〈𝑓, 𝑔〉(𝜔) = 〈𝑓(𝜔), 𝑔(𝜔)〉 = 𝑔(𝜔)(𝑓(𝜔)), 𝜔 ∈ 𝛺. This is a well-known result for 𝜎-

finite measures [8, p.98], and has been generalized recently to perfect measures [7]. And 

the isometry 𝜓: 𝑔 → 𝜓𝑔 from 𝐿∞(𝜇, 𝐸∗) into 𝐿1(𝜇, 𝐸)∗ is surjective if and only if 𝐸∗ has 

the Radon-Nikodým property (RNP) with respect to 𝜇. It means that, each 𝜇-continuous 

𝐸∗-valued measure of bounded variation on 𝒜 to 𝐸∗ can be represented (via integral) by 

an 𝐸∗-valued integrable function. (This was first proved by Banach and Taylor [2] for 

Lebesgue measure on the unit interval [0,1] and generalized to 𝜎-finite measures by 

Gretsky and Uhl [13], and its generalization to arbitrary perfect measures is due to 

Cengiz [7]. A nice proof for the 𝜎-finite case can be found in [8].) In particular, for each 

reflexive Banach space 𝐸 we have 𝐿∞(𝜇, 𝐸) ⋍ 𝐿1(𝜇, 𝐸)∗, for such spaces are dual 

spaces and have the RNP with respect to finite measures [8], and this property can be 

generalized to perfect measures as the following proposition shows. (If the measure 

space is not perfect this result may not hold even in the scalar case, [14] or [19].) 

3. Results 

Proposition 3.1 If a Banach space 𝐸 has the RNP with respect to any finite measure 

then it has this property with respect to any perfect measure. Consequently, reflexive 

spaces have the RNP with respect to perfect measures. 

Proof. We will prove this proposition for our fixed perfect measure 𝜇. Let 𝜆 ∶  𝒜 → 𝐸 

be a 𝜇-continuous measure has bounded variation. Then for each 𝑖 ∈ 𝐼, there is a 𝜇-

integrable function 𝑔𝑖 ∶ 𝛺𝑖 → 𝐸 which vanishes outside 𝛺𝑖 satisfies the integration 

𝜆(𝐴) = ∫ 𝑔𝑖𝑑𝜇,    

𝐴

  for all 𝐴 ∈ 𝒜𝑖 , 

where 𝒜𝑖 = {𝐴 ∩ 𝛺𝑖: 𝐴 ∈ 𝒜}. Now let 𝑔 = ∑ 𝑔𝑖.𝑖  Then clearly 𝑔 is locally measurable. 

We claim that it is actually measurable. 

Since 𝜆 has bounded variation, |𝜆|(𝛺) < ∞ . Then we have |𝜆|(𝛺𝑖) = 0 for all but 

countably many 𝑖 ∈ 𝐼, where |𝜆| states for the total variation of 𝜆. Thus, there exist a 

countable subset 𝐽 of 𝐼 such that the set 𝑁𝑖 = {𝑥 ∈ 𝛺𝑖: 𝑔(𝑥) ≠ 0} is null for each        

𝑖 ∈ 𝐼 ∖ 𝐽,  and since ⋃ 𝑁𝑖𝑖∈𝐼∖𝐽  is locally null, it is actually null. Thus, it follows that 𝑔 is 

measurable as claimed. 

Since  

|𝜆|(𝛺) = ∫ ‖𝑔(. )‖𝑑𝜇    

𝛺

   

we conclude that 𝑔 is integrable, and since the support of 𝑔 is contained a.e. in ⋃ 𝛺𝑗𝑗∈𝐽 , 

more simply we may thus suppose that 𝐼 = {1,2, … }. Now, we have 

𝜆(𝐴) = ∫ 𝑔𝑑𝜇 

𝐴

, 

for all 𝐴 ∈ 𝒜, proving our proposition. 
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The following proposition will be needed later. 

Proposition 3.2 Every 𝐸∗-valued measurable function is weak* measurable.  

Proof. Let 𝑔 ∶  𝛺 → 𝐸∗ be measurable. Then by the Pettis measurability theorem, [19] or 

[8], for each 𝑖 ∈ 𝐼, the restriction 𝑔𝑖 of 𝑔 to 𝛺𝑖 is weak* measurable. Thus for each 𝑥 ∈
𝐸, 𝑥̂ ∘ 𝑔𝑖  is measurable, and therefore 𝑥̂ ∘ 𝑔 is locally measurable, and hence (by 

Property (ii) of 𝜇), it is measurable. This completes the proof. 

Proposition 3.3 If 𝑓 ∶  𝛺 → 𝐸 is measurable and 𝑔 ∶  𝛺 → 𝐸∗ is weak* measurable then 

the scalar function 〈𝑓, 𝑔〉 is measurable. 

Proof. Let 𝑔 ∶  𝛺 → 𝐸∗ be a weak* measurable function, and let 𝑠 = 𝑥1𝜒𝐴1
+ ⋯ + 𝑥𝑛𝜒𝐴𝑛

 

be a measurable simple function from Ω to 𝐸, where for a set 𝑆, 𝜒𝑆 denotes the 

characteristic function of 𝑆. Then, since for each 𝑘 = 1,2, … , 𝑛,  𝑥̂𝑘 ∘ 𝑔 and 𝜒𝐴𝑘
 are  

measurable, 

〈𝑠, 𝑔〉 = ∑( 𝑥̂𝑘 ∘ 𝑔)

𝑛

𝑘=1

𝜒𝐴𝑘
 

is measurable. Now let 𝑓 ∶  𝛺 → 𝐸 be a measurable function and 𝑠𝑛 ∶  𝛺 → 𝐸 be a 

sequence of measurable simple functions converging a.e. to 𝑓 in the norm topology on 

𝐸. Then, 

lim
𝑛

〈𝑠𝑛(𝜔), 𝑔(𝜔)〉 = 〈𝑓(𝜔), 𝑔(𝜔)〉  a. e.  on  𝛺, 

which proves that 〈𝑓, 𝑔〉 is measurable, is claimed. 

𝐶(𝑍, 𝐸∗
∗) will denote the space of all continuous functions 𝑓 on 𝑍 to 𝐸∗

∗ provided with 

the supremum norm ‖𝑓‖∞ = sup
𝑧∈𝑍

‖𝑓(𝑧)‖. 

Corollary 3.4 The elements of 𝐶(𝑍, 𝐸∗
∗) are weak* measurable. 

It is tempting to call 𝑔 ∶  𝛺 → 𝐸∗ weak* measurable if 𝑔−1(𝐵) is measurable for every 

weak* Borel subset 𝐵 of 𝐸∗. The following proposition shows that this is true.  

Proposition 3.5 Let 𝑔 ∶  𝛺 → 𝐸∗ be a function such that 𝑔−1(𝐵) is measurable for each 

weak* measurable subset 𝐵 of 𝐸∗. Then 𝑔 is weak* measurable. 

Proof. For each 𝑥 ∈ 𝐸,  the functional 𝑥̂ is weak* continuous and so, it is measurable 

with respect to the weak* Borel algebra on 𝐸∗
∗. Thus, for each Borel set 𝑆 in the field of 

complex numbers (𝑥̂ ∘ 𝑔)−1(𝑆) = (𝑔)−1(𝑥̂−1(𝑆)) is measurable. Hence 𝑔 is weak* 

measurable. 

Theorem 3.6 For our perfect measure space, 𝐿𝜔∗
∞ (𝜇, 𝐸∗) ⋍ 𝐶(𝑍, 𝐸∗

∗) ⋍ 𝐿1(𝜇, 𝐸)∗. 

Proof. Let 𝑔 ∈ 𝐶(𝑍, 𝐸∗
∗ ). Then for each 𝑓 ∈ 𝐿1(𝜇, 𝐸), the function 〈𝑓, 𝑔〉 is measurable 

and since |〈𝑓(. ), 𝑔(. )〉| ≤ ‖𝑓(. )‖‖𝑔‖∞, it is also integrable, and the mapping 𝜓𝑔 

defined on 𝐿1(𝜇, 𝐸) by  
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𝜓𝑔(𝑓) = ∫ 〈𝑓, 𝑔〉𝑑𝜇

𝛺

, 𝑓 ∈ 𝐿1(𝜇, 𝐸) 

is a bounded functional with norm ≤ ‖𝑔‖∞. Actually, since (𝑍, ℬ, 𝜇) is a perfect 

measure space, by a theorem of Cambern and Greim [5] the mapping    𝑔 → 𝜓𝑔 is a 

linear isometry from 𝐶(𝑍, 𝐸∗
∗) onto 𝐿1(𝜇, 𝐸)∗. (The known proof of mentioned theorem 

depends on the observation that 𝐶(𝑍, 𝐸∗
∗) is isometric to the space ℒ(𝐸; 𝐶(𝑍)) of 

bounded operators on 𝐸 to 𝐶(𝑍) which is proved explicitly in [4], therefore a more 

direct proof of the inequality ‖𝑔‖∞ ≤ ‖𝜓𝑔‖, will be welcome.) So, the space 𝐿∞(𝜇, 𝐸∗) 

is isometric to a subspace of 𝐶(𝑍, 𝐸∗
∗ ) and, this isometry is surjective if and only if 𝐸∗ 

has the RNP with respect to 𝜇. 

A weak* measurable function 𝑔 ∶  𝛺 → 𝐸∗ may not be essentially bounded in the usual 

sense, or better, the definition of essential boundedness may not apply to 𝑔, for the 

function ‖𝑔(. )‖ need not be measurable, and therefore, the definition of essential 

boundedness for weak* measurable functions should be different. But, in view of 

Proposition 3.2, Corollary 3.4, and the fact that ‖𝑔‖∞ is the same as the norm of the 

operator 𝜓𝑔 when 𝑔 is either in 𝐿∞(𝜇, 𝐸) or 𝐶(𝑍, 𝐸∗
∗), what can be more natural than 

calling a weak* measurable function 𝑔 essentially bounded if 

𝜓𝑔(𝑓) = ∫ 〈𝑓, 𝑔〉𝑑𝜇

𝛺

   

defines a bounded functional on 𝐿1(𝜇, 𝐸), that is, for each 𝑓 ∈ 𝐿1(𝜇, 𝐸), 〈𝑓, 𝑔〉 is 

integrable and there is a constant 𝑘 > 0 such that  

|∫ 〈𝑓, 𝑔〉𝑑𝜇

𝛺

| ≤ 𝑘‖𝑓‖1  for all  𝑓 ∈ 𝐿1(𝜇, 𝐸),   

in which case, we define the essential supremum norm ‖𝑔‖∞ of 𝑔 as the norm of the 

functional 𝜓𝑔 on 𝐿1(𝜇, 𝐸). 

𝐿𝜔∗
∞ (𝜇, 𝐸∗) will denote the normed space of all essentialy bounded weak* measurable 

functions on Ω to 𝐸∗, provided with the essential supremum norm. 

For two normed spaces 𝐸 and 𝐹, the notation 𝐸 ⋍ 𝐹 will indicate that they are linearly 

isometric. 

We can identify 𝐶(𝑍, 𝐸∗
∗) with a subspace of 𝐿𝜔∗

∞ (𝜇, 𝐸∗) in the most natural way, and 

since the mapping 𝑔 → 𝜓𝑔 maps 𝐶(𝑍, 𝐸∗
∗) onto, and 𝐿𝜔∗

∞ (𝜇, 𝐸∗) into 𝐿1(𝜇, 𝐸)∗ we 

conclude that 𝐶(𝑍, 𝐸∗
∗) ⋍ 𝐿𝜔∗

∞ (𝜇, 𝐸∗).  Hence we have completed the proof of the 

theorem. 

Corollary 3.7 𝐿∞(𝜇, 𝐸)∗ = 𝐿𝜔∗
∞ (𝜇, 𝐸∗) if and only if 𝐸∗ has the RNP. 

Corollary 3.8 𝐿∞(𝜇, 𝐸) isometric to a subspace of  𝐶(𝑍, 𝐸∗
∗∗), where 𝐸∗

∗∗ denotes the 

second dual with its weak* topology. 
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Proof. We identify 𝐿∞(𝜇, 𝐸) with the subspace 𝐿∞(𝜇, 𝐸̂) of 𝐿∞(𝜇, 𝐸∗∗) ⋍ 𝐶(𝑍, 𝐸∗
∗∗) 

where 𝐸̂ denotes the image of 𝐸 in 𝐸∗∗ under the canonical embedding. 

Corollary 3.9 𝑍 is the maximal ideal space of 𝐿∞(𝜇). 

Remark For a perfect measure space (𝑋, 𝒜, 𝜈) with 𝑋 compact, 𝐿∞(𝜇) ⋍ 𝐶(𝑋) was 

already known, [1] or [20]. 

4. Conclusion 

In this paper, we prove an important isometry between the 𝐿∞ space of vector-valued 

functions and the space of continuous functions on 𝑍 to 𝐸∗
∗, where 𝑍 is the Stone-Čech 

compactification of  the hyperstonean space Ω. Hyperstonean spaces are very important 

spaces with several properties [21] and they are also huge indeed. So, this relation is 

very crucial between the functional analysis and measure theory. Hence, the results 

obtained will shed light on important studies to be conducted on this subject in the 

future. 
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