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 ( hwvu ,, ), where h is the laminate 

thickness. 
 

 No slip occurs between the lamina 
interfaces. 

 
Orthotropic lamina is often considered as a 

material, principal directions of which do not 
coincide with the natural directions of the plate. 
This statement does not necessarily means that 
the material itself is not orthotropic. Rather, we 
are just looking at an orthotropic material in an 
unnatural manner, in a coordinate system that is 
orientated at some finite angle to the principal 
material coordinate system. The stress-strain 
relations are in the x–y coordinates as follows,  
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To determine the resultant moments and 

forces acting on the laminate, the kth ply stresses, 
as shown in Fig. 1b, are integrated through the 
ply thickness. The constitutive equation for the 
laminate is defined as follows (3): 
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where, A, B and D matrices are as follows.  
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The stacking sequence lists the fiber 

orientations measured from a reference axis of 
the laminate. If the orientation is 
counterclockwise from the reference direction, it 
is considered to be negative. The standard 
stacking sequence lists orientations of the 
different layers, starting from the top of the 
laminate to the bottom, in a string separated by 
slashes. For a laminate with N layers, each made 
of the same composite material and of the same 
thickness, t, starting with the top layer with a 
fiber orientation 1 , laminate is represented as 
(2): 
 

 N /....// 21                (6) 
 

The thickness of each layer, t, in a 
consolidated form in the laminate is generally 
provided by the manufacturer’s specifications. 
The total thickness, h, of the laminate is h = tN. 
Layers oriented at an angle from the reference 
axes of the laminate a called off-axis layers. 
When the orientation of a layer coincides with 
one of the reference axes of the laminate, = 0˚ 
or   = 90˚, that layer is referred to as an axis 
layer. 

 
When a structure (subjected usually to 

compression) undergoes visibly large 
displacements transverse to the load then it is 
said to buckle. Buckling may be demonstrated 
by pressing the opposite edges of a flat sheet of 
cardboard towards one another. The Euler 
buckling formula gives the critical load at which 
a long column buckles as: 
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Where crF  is the critical load for buckling, l 
is the second moment of area. It is the most basic 
formula for buckling. There are complex 
calculation approximations for laminated 
composites as: 
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In the context of optimization, tailoring the 

material properties is also associated with 
maximization or minimization of a performance 
criterion. The performance criterion may be the 
weight of the laminate, and the desirable 
response quantities, such as stiffness, become 
the constraints. Alternatively, a response 
quantity can be maximized or minimized subject 
to a constraint on weight. In either case, the 
variable typically used for design optimization 
defines the fiber orientation and the number of 
plies that make up the composite laminate. In 
this study, we are interested in maximizing the 
stiffness of the laminate composite given a 
constant number of layers. 

 
Most commercially available composite 

materials are manufactured as a unidirectional 
tape with a fixed thickness. Hence, when 
laminate thickness is optimized, the optimal 
number of layers in the laminate needs to be 
determined which is an integer optimization 
problem. Despite the integer nature of the 
problem, most of early work in the design 
optimization of composite laminates was based 
on the use of continuous-valued ply thicknesses 
as design variables. This was partly due to the 
unavailability of easy-to-use commercial integer 
programming software and the high 
computational cost of solving integer programs. 
 
3. OPTIMIZATION PROCEDURES 
 

A laminated composite can be designed by 
choosing the thickness, number and fiber 
orientation of each individual ply. To achieve 
the best results, metaheuristic techniques has 
been employed (1), (2) and (3). Major 
advantages of using metaheuristics include the 
following: (i) it is not necessary to have a 
gradient information and it can be applied to 
problems where the gradient is hard to obtain or 
does not exist, (ii) they do not get stuck in local 
optima if handled properly, (iii) they can be 
applied to non-smooth or discontinuous 
functions, (iv) they furnish a set of good 
solutions instead of a single one. On the other 
hand, the use of metaheuristics exhibit some 
drawbacks, which include the following: (i) they 
require the tuning of many parameters by trial 
and error to maximize efficiency; (ii) a priori 
estimation of their performance is an open 
mathematical problem; and (iii) a large number 
of function evaluations is required to yield good 
results, which can make the use of 
metaheuristics nonviable depending on the 
computational cost of each function evaluation. 

 
In this study, three different optimization 

methods are employed. These are genetic 
algorithm (GA), real valued particle swarm 
optimization (PSOC) and discrete particle swarm 
optimization (PSOD). To the best of our 
knowledge, PSO has not been used in the 
literature before as an optimization tool in the 
design of composite structures. The main 
motivation behind the use of PSOC is to obtain a 
basis for comparison. The results obtained from 
the use of (PSOC) provide an upper bound for 
the maximum value of bending stiffness. PSOD, 
on the other hand, is examined to see the 
performance of the PSO on a combinatorial 
optimization problem. The implementations of 
the three algorithms used are detailed in the 
subsequent sections. 
 
3.1. Genetic Algorithm 
 

Genetic Algorithm (GA) is one of the most 
widely used metaheuristics within the context of 
combinatorial optimization problems. Theoretical 
framework of GA goes back to 1960s, and it is 
formally introduced by Holland in 1975 (2). 
Since then, it has been used to solve many 
combinatorial optimization problems successfully 
including but not limited to, traveling salesman 
problem, sequencing and scheduling, graph 
coloring, knapsack problems and bin packing 
problems. Genetic algorithms (GAs) are 
stochastic global search and optimization 
methods that originally inspired by Darwin’s 
theory of natural selection. GAs operate on a 
population of potential solutions, applying the 
principle of survival of the fittest to produce 
successively better approximations to the best 
solution. At each generation of a GA, a new set 
of approximations is created by the process of 
selecting individuals, according to their level of 
fitness in the problem domain and reproducing 
them using operators borrowed from natural 
genetics.  
 

A GA generally involves genetic operators 
(such as crossover and mutation) and selection 
operators intended to improve fitness of an 
initial random population. Selection usually 
involves a fitness function characterizing the 
quality of an individual in terms of the objective 
function and the other elements of the actual 
populations. Thus, a GA usually starts with the 
generation of a random initial population and 
iterates by generating a sequence of populations 
from the initial one. At each step the genetic 
operators are applied to generate new individuals. 
The fitness of each individual is computed and the  
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whole population is ranked according to fitness. 
A subpopulation is then selected to form a new 
population. Many selection methods may be 
found in the literature. In this study, rank 
selection is applied. Then, all the procedure is 
repeated until a stopping condition is satisfied 
(3).  

 
In GA, the variables of the problem at hand 

are represented as a vector of variables, which is 
also called the chromosome. Traditionally, a 
chromosome is a string of 0s and 1s, however, 
there are many other implementations as well. 
For instance, in this problem we used values 
varying from 1 to 12 as genes which map to 
following orientation angles for each layer of 
lamina. 
 

Since the angles –90˚ and 90˚ refers to the 
same orientation angle, we do not need to 
represent them separately. Whenever a new 
individual is created, first the solution is 
converted into angles using the values from 
Table 1 and then the fitness of the individual is 
calculated by equation (8). 
 
Table 1. Solution Representation and Decoding 

 
Gene 1 2 3 4 5 6 7 8 9 10 11 12

Angle -75 -60 -45 -30 -15 0 15 30 45 60 75 90

 
In GA implementation, an initial population 

of size n = 30 is created randomly.  For parent 
selection, binary tournament selection is used.  
First, two individuals from the parent population 
are randomly selected.  If one of the individuals 
has a better fitness than the other, then that 
individual is selected as one of the parents. The 
same procedure is repeated for the selection of 
the next parent.  Two offspring are created from 
each parent pair using single point crossover 
with a crossover rate of 0.8. Next, the offspring 
are mutated with a probability of 0.01. The 
mutation operator is a simple swap, where two 
randomly selected members of the solution are 
interchanged. With these settings, an offspring 
population of n individuals is created at every 
generation. To select the next generation of 
individuals, the offspring population replaces the 
parent population.  However, the best two 
individuals from the parent population are 
retained. The search terminates after 1,000 
generations.  The same number of generations is 
used in PSO variants as well to allow the GA to 
run for the same number of function evaluations 
as that of PSO. 

 
3.2. Particle Swarm Optimization 
 

Particle Swarm Optimization (PSO) was 
first proposed by Kennedy and Eberhart (6), 
Kennedy (7) and Kennedy and Eberhart (8). 
They were inspired by the collective behavior of 
bird flocks. In such populations, individuals 
determine their travel path considering both their 
previous experience (cognition) and the 
collective behavior of the entire flock (social 
interaction). PSO is a population based 
optimization method in which individuals (e.g. 
particles) use the principles of flocking in search 
of a best solution of an optimization problem. In 
PSO, each particle is composed of three vectors 
(current location, c, current velocity, v, and the 
best solution found by the particle, p) and two 
fitness values (c-fitness and p-fitness, that 
represent the particle’s current and the best value 
of the objective function, respectively). At each 
iteration of the algorithm the current position of 
the particle is updated according to equations 
below: 
 

      
ididid

idgdidididid

vcc

cpcpvKv



 10U10U 21 ,, 
   (9) 

 
where ci is the current position of particle i, 

vi is the current velocity of particle i, pi is the 
best solution identified by particle i, pg is the 
best solution in the neighborhood of particle i, 

1  and 2  are the learning rates governing the 
cognition and social interaction within the 
swarm, respectively, d is the dth dimension of the 
corresponding vector, d = 1, 2, … D, U(0, 1) is a 
Uniform random number in the interval [0, 
1],and K  is the constriction coefficient 
controlling the velocity update to prevent 
explosion and provide stability as explained in 
(9). Once c is updated, c-fitness is calculated, if 
it is better than p-fitness, p and p-fitness are also 
updated. In this fashion, particles never die; they 
just explore the search space based on the 
information provided to them from their own 
previous experience and the experience of the 
whole swarm. This is the most important 
distinction of PSO from GA. As stated earlier, 
we used two variants of PSO in this study, 
namely the continuous PSO (PSOC) and the 
discrete PSO (PSOD). Implementation details of 
the algorithms are provided below: 
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Continuous PSO – PSOC: This approach is 
employed mainly to provide a basis of 
comparison on the performance of the other two 
optimization methods (GA and PSOC). It is 
thought that relaxing the constraint on the fiber 
orientation angle of the layers, it would be 
possible to increase the value of the objective 
function further, which is actually the case, as 
will be shown later. In PSOC, a swarm of 30 
particles are initialized randomly and 

05221 . . The orientation angles are 
allowed to take continuous values from     –90˚ 
and 90˚. Similar to GA, PSOC, is allowed to run 
for 1,000 iterations. The pseudocode of the 
algorithm is as follows:  
 
Procedure PSOC{ 

t = 0; 
Initialize Swarm(t); //Swarm at tth 
cycle 
Evaluate the particles of the 
Swarm(t); 
While (Not Done) { 

for each particle i  Swarm(t) { 
Select the best member of the 
Swarm(t), g; 
Update (i, g); 
Evaluate particle i; 
}end for 

t ++; 
} end while 

} end procedure 
 

Discrete PSO – PSOD: The discrete PSO is 
identical to PSOC except that when calculating 
the fitness of the current position of the particle, 
we first discretize the particle’s current position 
according to a scale which is calculated by 
dividing the interval [-90˚, 90˚] to twelve equal 
sub intervals. Then the fiber orientation angle for 
a specific layer is determined according to these 
sub intervals.  
 
Procedure PSOD{ 

t = 0;  
Initialize Swarm(t); //Swarm at tth 
cycle 
Evaluate the particles of the 
Swarm(t); 
While (Not Done) { 

for each particle i  Swarm(t) { 
Select the best member of the 
Swarm(t), g; 
Update (i, g); 
cD ← ci; //Calculate the 
discretized angle values for 
particle i;  
Evaluate particle i using cD; 
}end for 

t ++; 
} end while 

} end procedure 

 

As can be understood from the pseudocode, 
PSOD actually works on real valued parameters, 
and only for objective function evaluation 
purposes we discretize the values of the decision 
variables.  
 
4. RESULTS & DISCUSSION 
 

In this study, we consider a laminate 
composite cylindrical shell which is coposed of 
ten layers. In order to provide a better 
comparison of the optimization methods chosen, 
we worked with two different types of materials: 
Carbon Epoxy and Glass Epoxy. Thus, we have 
two test problems in total. The optimization 
problem is defined as the maximization of 
buckling load subject to maximum number of 
ten layers and orientation angles of multiples of 
15˚ within the closed interval of [-90˚, 90˚]. The 
former constraint is handled through the solution 
representation and the latter is handled through 
lower and upper bounds on decision variables, 
which are defined as the orientation angles of the 
layers. Note that the PSOC does not enforce the 
latter constraint, that is, with this procedure 
orientation angles of the layers can take any 
value between -90˚, and 90˚. We performed 30 
independent runs with each procedure and 
performed a statistical analysis to compare the 
results. In order to make a fair comparison, each 
procedure is run for the same number of function 
evaluations which is 30,000. Fig. 2 and Fig. 3 
shows the box plot of the results obtained 
through three algorithms for the test problems. 
From Fig. 2 and Fig. 3, it can be said that the 
PSOC yields the best performance on average in 
maximizing the buckling load, followed by 
PSOD and GA. However, the constraint on the 
orientation angles is relaxed for PSOC. The 
results of the F-test performed (Table 2 and 
Table 4) reveals that the difference between the 
average performances of the three algorithms is 
significant at 95% level of confidence. 
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Figure 2. Boxplots of PSOC, PSOD and GA: 
Carbon Epoxy 
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Figure 3. Boxplots of PSOC, PSOD and GA: Glass Epoxy 
 

Table 2. ANOVA Table: Carbon Epoxy 
 

Source of Variation SS df MS F P F crit

Between Groups 119.41 2 59.7 59.4 0.000 3.101

Within Groups 87.46 87 1.0    

Total 206.87 89     

 
Table 3. Statistical Analysis: Comparison Between Means: Carbon Epoxy 

 
 Ave. Max. st.dev. t P t crit 
PSOC 230.1 230.6 0.526    
PSOD 228.8 229.8 0.670 8.024 0.000 2.00 
GA 227.3 229.4 1.513 5.186 0.000 2.02 

 
Table 4. ANOVA Table: Glass Epoxy 

 
Source of Variation SS df MS F P F crit 

Between Groups 15158011 2 7579005 209.98 0 3.101

Within Groups 3140152 87 36094

Total 18298163 89         

 
Table 5. Statistical Analysis: Comparison Between Means Glass Epoxy 

 

  Ave. Max. st.dev. t P 

t 

crit 

PSOC 52931.89 53183.39 144.6 

PSOD 52689.32 52994.61 209.9 13.4 0 2 

GA 51965.76 52364.48 208.2 5.2 0 2 

 
We also performed two t-tests two see 

whether the average performance of PSOC vs. 
PSOD and PSOD vs. GA is significant at 95% 
level of confidence. Table 3 and Table 5 
summarize the results of these two t-tests. As 
stated earlier, PSOC provides an upper bound on 
the maximum value of buckling load. On 
average, the results obtained via PSOD are 

significantly lower than the upper bound. 
However, the difference is less than 1%. The 
difference between the average performance of 
PSOD with that of GA, albeit smaller, is 
significant at 95% level of confidence for the 
first test problem. The difference between the 
average performance of PSOD with that of GA, 
is more pronounced for the second test problem. 
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5. CONCLUSION 
 

In this study, the design and optimization of 
stacking sequence of laminated composite 
cylindrical shells. We applied both GA and a 
discrete version of PSO to maximize the bending 
stiffness of the laminated composite using the 
orientation angles as decision variables. To 
provide a basis for comparison, a continuous 
version of the PSO is also considered in which 
the constraint on the orientation angles relaxed. 
Results obtained from two test problems suggest 
that both PSOD and GA are able to identify good 
solutions, and PSOD being the superior optimizer 
for the problem at hand. One likely explanation 
for this situation is that the PSOD does not use 
the discrete values in the search procedure, 
however the GA does. Thus, the PSOD performs 
the search for the best solution in a continuous 
space while the GA works in a combinatorial 
environment. The predictions obtained in this 
study will be correlated with the experimental 
measurements.   
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