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TEK EKSENLI BASINC ALTINDA BUKULME DAVRANISI GOSTEREN
KOMPOZIT SILINDIRLERIN TASARIMI VE OPTIMiZASYONU

Oz

Bu calismanin amaci kompozit silindirlerin baski yiikii altinda biikiilme performanslarinin
tahminlenmesinde genetik algoritma, kesik degerli parcacik siirli optimizasyonu ve siirekli degerli
parcacik siirli optimizasyonu metodlarinin karsilastirilmasidir. Kompozit malzemeyi olusturan liflerin
referans eksenine olan agilar1 tasarim degiskeni olarak ele alimirken, kompozit malzemedeki katman
sayist sabit kabul edilmistir. Tahminlerin dogrulugu bulgularin istatistiki anlamliligi kullanilarak
karsilastirilmis ve smiflandirilmistir. Elde edilen sonuglar 1s1ginda, hem genetik algoritma, hem de
kesikli parcacik siirii optimizasyonu tekniklerinin ele alinan problem ig¢in yiiksek kaliteli sonuclar
irettigi gorilmiis, kesikli parcacik siirii optimizasyonu ile elde edilen sonuglarin genetik algoritma
kullanilarak elde edilen sonuglardan istatistiki olarak daha iyi oldugu belirlenmistir.

Anahtar Kelimeler: Lamine kompozit malzeme, Istif siralamasi optimizasyonu, Silindir, Genetik
algoritma, Pargacik siirli optmizasyonu.

DESIGN AND OPTIMIZATION OF STACKING SEQUENCE FOR BUCKLING OF
COMPOSITE CYLINDRICAL SHELLS UNDER UNIAXTAL COMPRESSION

ABSTRACT

This work aims at comparing the predictions obtained from various mathematical tools including
genetic algorithm (GA), real valued particle swarm optimization (PSOc) and discrete particle swarm
optimization (PSOp) for buckling of composite cylindrical shells subjected to uniaxial compressive
load. Fiber orientation (stacking sequence) was considered as a design variable, while the number of
plies is considered constant. The accuracy of the predictions was compared and ranked based on
statistical significance of the findings. Results suggest that both GA and PSOp, is able to produce high
quality solutions to the design problem, while the designs produced by PSOp is found to be
statistically better than those found by GA.
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1. INTRODUCTION
Fiber reinforced polymer composites
(FRPCs) have aroused great attention in

structural applications due to their high strength
to weight ratios (1-3). However, since they
exhibit anisotropic mechanical properties, a
more comprehensive analysis of the structure
behavior is required when designing fiber
reinforced polymer composites than that of
metallic structures which exhibit simply
isotropic mechanical properties. For this reason,
in terms of engineering practice, development of
new analysis methods that account for
mechanical behavior of composite materials is
needed (1, 2). When fibers are non-uniformly
distributed in the cross-section of a composite,
its mechanical and stress properties vary across
the composite. Therefore, the strength and
stiffness of structural elements made of
composite materials depend not only on
optimization of the fiber volume fraction and
orientation (stacking sequence), but also on fiber
distribution in the cross-section. Therefore, a
laminated composite is optimized by choosing
the thickness, number and orientation of the
individual  plies as  design  variables.

To achieve the best results, several
optimization techniques hawve been developed so
far. In this study, the behavior of laminated
composite cylindrical shells subjected to uniaxial
compressive loading was predicted through
various optimization tools including genetic
algorithm (GA), real valued particle swarm
optimization (PSO¢) and discrete particle swarm
optimization (PSOp). The predictions obtained
were compared to each other and evaluated in
terms of statistical significance.

2. MODEL

Composite materials
matrix laminate composites have many
parameters due to their special structure.
Therefore, some assumptions are needed for
calculation of their strength with precision. Fig.
1 a and b show composite laminate structures
and stacking sequence configuration used in
classical laminate theory, respectively while Fig
1 ¢ depicts the model for cylindrical laminated
shell.

especially polymer

(a)

(b)

(c)

Figure 1. a) Laminated composite structure b) Laminated composite construction ¢) Laminated
cylindrical shell.

The axial strain in a beam was related to the
midplane strain and curvature of the beam under
uniaxial load and bending. Similar relationships
can also be developed for a plate under in-plane
loads such as shear and axial forces, and bending
and twisting moments. The classical lamination
theory is used to develop these relationships.
The following assumptions are made in the
classical lamination theory to develop the
relationships:

e FEach lamina is elastic, orthotropic and
homogeneous.

e A line straight and perpendicular to the
middle surface remains straight and
perpendicular to the middle surface
during deformation (yx, = Yy, = 0).

e The laminate is thin and is loaded only
in its plane (plane stress) (6,= Ty, = Ty, =

0).

e Displacements are continuous and small
throughout the laminate
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the laminate

thickness.

e No slip occurs between the lamina
interfaces.

Orthotropic lamina is often considered as a
material, principal directions of which do not
coincide with the natural directions of the plate.
This statement does not necessarily means that
the material itself is not orthotropic. Rather, we
are just looking at an orthotropic material in an
unnatural manner, in a coordinate system that is
orientated at some finite angle to the principal
material coordinate system. The stress-strain
relations are in the X-y coordinates as follows,

Q11 §12 §16 &x
fo}=1o oy t=RNe1=|Q @ Qslla M
Txy Qﬁl Qs Qoo || 7xy

To determine the resultant moments and
forces acting on the laminate, the Kt ply stresses,
as shown in Fig. 1b, are integrated through the
ply thickness. The constitutive equation for the
laminate is defined as follows (3):

o ]

where, A, B and D matrices are as follows.
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The stacking sequence lists the fiber
orientations measured from a reference axis of
the laminate. If the  orientation is
counterclockwise from the reference direction, it
is considered to be negative. The standard
stacking sequence lists orientations of the
different layers, starting from the top of the
laminate to the bottom, in a string separated by
slashes. For a laminate with N layers, each made
of the same composite material and of the same
thickness, t, starting with the top layer with a
fiber orientation &, laminate is represented as

2):
[6,/6,7.../6,] (6)

The thickness of each layer, t, in a
consolidated form in the laminate is generally
provided by the manufacturer’s specifications.
The total thickness, h, of the laminate is h = tN.
Layers oriented at an angle from the reference
axes of the laminate a called off-axis layers.
When the orientation of a layer coincides with
one of the reference axes of the laminate, = 0°
or & = 90°, that layer is referred to as an axis
layer.

When a structure (subjected usually to
compression) undergoes visibly large
displacements transverse to the load then it is
said to buckle. Buckling may be demonstrated
by pressing the opposite edges of a flat sheet of
cardboard towards one another. The Euler
buckling formula gives the critical load at which
a long column buckles as:

L (7

Where F, is the critical load for buckling, |

is the second moment of area. It is the most basic
formula for buckling. There are complex

calculation approximations for Ilaminated
composites as:
4 2.2 ) 2 ?
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In the context of optimization, tailoring the
material properties is also associated with
maximization or minimization of a performance
criterion. The performance criterion may be the
weight of the laminate, and the desirable
response quantities, such as stiffness, become
the constraints. Alternatively, a response
quantity can be maximized or minimized subject
to a constraint on weight. In either case, the
variable typically used for design optimization
defines the fiber orientation and the number of
plies that make up the composite laminate. In
this study, we are interested in maximizing the
stiffness of the laminate composite given a
constant number of layers.

Most commercially available composite
materials are manufactured as a unidirectional
tape with a fixed thickness. Hence, when
laminate thickness is optimized, the optimal
number of layers in the laminate needs to be
determined which is an integer optimization
problem. Despite the integer nature of the
problem, most of early work in the design
optimization of composite laminates was based
on the use of continuous-valued ply thicknesses
as design variables. This was partly due to the
unavailability of easy-to-use commercial integer
programming  software and the  high
computational cost of solving integer programs.

3. OPTIMIZATION PROCEDURES

A laminated composite can be designed by
choosing the thickness, number and fiber
orientation of each individual ply. To achieve
the best results, metaheuristic techniques has
been employed (1), (2) and (3). Major
advantages of using metaheuristics include the
following: (i) it is not necessary to have a
gradient information and it can be applied to
problems where the gradient is hard to obtain or
does not exist, (ii) they do not get stuck in local
optima if handled properly, (iii) they can be
applied to mnon-smooth or discontinuous
functions, (iv) they furnish a set of good
solutions instead of a single one. On the other
hand, the use of metaheuristics exhibit some
drawbacks, which include the following: (i) they
require the tuning of many parameters by trial
and error to maximize efficiency; (ii) a priori
estimation of their performance is an open
mathematical problem; and (iii) a large number
of function evaluations is required to yield good
results, which can make the wuse of
metaheuristics nonviable depending on the
computational cost of each function evaluation.

In this study, three different optimization
methods are employed. These are genetic
algorithm (GA), real valued particle swarm
optimization (PSOc) and discrete particle swarm
optimization (PSOp). To the best of our
knowledge, PSO has not been used in the
literature before as an optimization tool in the
design of composite structures. The main
motivation behind the use of PSOc¢ is to obtain a
basis for comparison. The results obtained from
the use of (PSOc) provide an upper bound for
the maximum value of bending stiffness. PSOp,
on the other hand, is examined to see the
performance of the PSO on a combinatorial
optimization problem. The implementations of
the three algorithms used are detailed in the
subsequent sections.

3.1. Genetic Algorithm

Genetic Algorithm (GA) is one of the most
widely used metaheuristics within the context of
combinatorial optimization problems. Theoretical
framework of GA goes back to 1960s, and it is
formally introduced by Holland in 1975 (2).
Since then, it has been used to solve many
combinatorial optimization problems successfully
including but not limited to, traveling salesman
problem, sequencing and scheduling, graph
coloring, knapsack problems and bin packing
problems. Genetic algorithms (GAs) are
stochastic global search and optimization
methods that originally inspired by Darwin’s
theory of natural selection. GAs operate on a
population of potential solutions, applying the
principle of survival of the fittest to produce
successively better approximations to the best
solution. At each generation of a GA, a new set
of approximations is created by the process of
selecting individuals, according to their level of
fitness in the problem domain and reproducing
them using operators borrowed from natural
genetics.

A GA generally involves genetic operators
(such as crossover and mutation) and selection
operators intended to improve fitness of an
initial random population. Selection usually
involves a fitness function characterizing the
quality of an individual in terms of the objective
function and the other elements of the actual
populations. Thus, a GA usually starts with the
generation of a random initial population and
iterates by generating a sequence of populations
from the initial one. At each step the genetic
operators are applied to generate new individuals.
The fitness of each individual is computed and the
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whole population is ranked according to fitness.
A subpopulation is then selected to form a new
population. Many selection methods may be
found in the literature. In this study, rank
selection is applied. Then, all the procedure is
repeated until a stopping condition is satisfied

3).

In GA, the variables of the problem at hand
are represented as a vector of variables, which is
also called the chromosome. Traditionally, a
chromosome is a string of Os and 1s, however,
there are many other implementations as well.
For instance, in this problem we used values
varying from 1 to 12 as genes which map to
following orientation angles for each layer of
lamina.

Since the angles —90° and 90° refers to the
same orientation angle, we do not need to
represent them separately. Whenever a new
individual is created, first the solution is
converted into angles using the values from
Table 1 and then the fitness of the individual is
calculated by equation (8).

Table 1. Solution Representation and Decoding

Gene |12 (345|678 |9]|10({11|12

IAngle [F751-601-451-30-15| 0 15|30 (45|60(75(90

In GA implementation, an initial population
of size n = 30 is created randomly. For parent
selection, binary tournament selection is used.
First, two individuals from the parent population
are randomly selected. If one of the individuals
has a better fitness than the other, then that
individual is selected as one of the parents. The
same procedure is repeated for the selection of
the next parent. Two offspring are created from
each parent pair using single point crossover
with a crossover rate of 0.8. Next, the offspring
are mutated with a probability of 0.01. The
mutation operator is a simple swap, where two
randomly selected members of the solution are
interchanged. With these settings, an offspring
population of n individuals is created at every
generation. To select the next generation of
individuals, the offspring population replaces the
parent population. However, the best two
individuals from the parent population are
retained. The search terminates after 1,000
generations. The same number of generations is
used in PSO variants as well to allow the GA to
run for the same number of function evaluations
as that of PSO.

3.2. Particle Swarm Optimization

Particle Swarm Optimization (PSO) was
first proposed by Kennedy and Eberhart (6),
Kennedy (7) and Kennedy and Eberhart (8).
They were inspired by the collective behavior of
bird flocks. In such populations, individuals
determine their travel path considering both their
previous experience (cognition) and the
collective behavior of the entire flock (social
interaction). PSO is a population based
optimization method in which individuals (e.g.
particles) use the principles of flocking in search
of a best solution of an optimization problem. In
PSO, each particle is composed of three vectors
(current location, ¢, current velocity, v, and the
best solution found by the particle, p) and two
fitness values (c-fitness and p-fitness, that
represent the particle’s current and the best value
of the objective function, respectively). At each
iteration of the algorithm the current position of
the particle is updated according to equations
below:

Vig = Klvig +0,0(0,1)(pg —cig )+ (sz(O'l)(pgd -¢q)) 9)
Cig =Cig *Vig

where ¢; is the current position of particle i,
v is the current velocity of particle i, p; is the
best solution identified by particle i, py is the
best solution in the neighborhood of particle i,

? and %2 are the learning rates governing the
cognition and social interaction within the
swarm, respectively, d is the d™ dimension of the
corresponding vector,d=1,2, ... D, U(0, 1) is a
Uniform random number in the interval [0,
1l,and K is the constriction coefficient
controlling the wvelocity update to prevent
explosion and provide stability as explained in
(9). Once ¢ is updated, c-fitness is calculated, if
it is better than p-fitness, p and p-fitness are also
updated. In this fashion, particles never die; they
just explore the search space based on the
information provided to them from their own
previous experience and the experience of the
whole swarm. This is the most important
distinction of PSO from GA. As stated earlier,
we used two variants of PSO in this study,
namely the continuous PSO (PSO¢) and the
discrete PSO (PSOp). Implementation details of
the algorithms are provided below:
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Continuous PSO — PSOc. This approach is
employed mainly to provide a basis of
comparison on the performance of the other two
optimization methods (GA and PSOc). It is
thought that relaxing the constraint on the fiber
orientation angle of the layers, it would be
possible to increase the value of the objective
function further, which is actually the case, as
will be shown later. In PSO¢, a swarm of 30

particles are initialized randomly and
@ =9,=205. The orientation angles are
allowed to take continuous values from  —90°

and 90°. Similar to GA, PSOc, is allowed to run
for 1,000 iterations. The pseudocode of the
algorithm is as follows:

Procedure PSOq{

t = 0;

Initialize Swarm(t); //Swarm at t*"

cycle

Evaluate the particles of the

Swarm (t) ;

While (Not Done) {

for each particle I € Swarm(t) {

Select the best member of the
Swarm(t), O;

Update (i, Q);
Evaluate particle 1i;
lend for

t ++;

} end while
} end procedure

Discrete PSO — PSOyp: The discrete PSO is
identical to PSO¢ except that when calculating
the fitness of the current position of the particle,
we first discretize the particle’s current position
according to a scale which is calculated by
dividing the interval [-90°, 90°] to twelve equal
sub intervals. Then the fiber orientation angle for
a specific layer is determined according to these
sub intervals.

Procedure PSOp{
t = 0;
Initialize Swarm(t); //Swarm at t*"
cycle
Evaluate the particles of the
Swarm (t) ;
While (Not Done) {
for each particle I € Swarm(t) {
Select the best member of the
Swarm (t), O;
Update (i, Q);
Cp « Cj; //Calculate the
discretized angle values for
particle 1;
Evaluate particle i using Cp;
}end for
t ++;
} end while
} end procedure

As can be understood from the pseudocode,
PSOp actually works on real valued parameters,
and only for objective function evaluation
purposes we discretize the values of the decision
variables.

4. RESULTS & DISCUSSION

In this study, we consider a laminate
composite cylindrical shell which is coposed of
ten layers. In order to provide a better
comparison of the optimization methods chosen,
we worked with two different types of materials:
Carbon Epoxy and Glass Epoxy. Thus, we have
two test problems in total. The optimization
problem is defined as the maximization of
buckling load subject to maximum number of
ten layers and orientation angles of multiples of
15° within the closed interval of [-90°, 90°]. The
former constraint is handled through the solution
representation and the latter is handled through
lower and upper bounds on decision variables,
which are defined as the orientation angles of the
layers. Note that the PSO¢ does not enforce the
latter constraint, that is, with this procedure
orientation angles of the layers can take any
value between -90°, and 90°. We performed 30
independent runs with each procedure and
performed a statistical analysis to compare the
results. In order to make a fair comparison, each
procedure is run for the same number of function
evaluations which is 30,000. Fig. 2 and Fig. 3
shows the box plot of the results obtained
through three algorithms for the test problems.
From Fig. 2 and Fig. 3, it can be said that the
PSOc yields the best performance on average in
maximizing the buckling load, followed by
PSOp and GA. However, the constraint on the
orientation angles is relaxed for PSOc. The
results of the F-test performed (Table 2 and
Table 4) reveals that the difference between the
average performances of the three algorithms is
significant at 95% level of confidence.
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Figure 2. Boxplots of PSO¢, PSOp and GA:
Carbon Epoxy
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Figure 3. Boxplots of PSO¢, PSOp and GA: Glass Epoxy

Table 2. ANOVA Table: Carbon Epoxy

Source of Variation  SS df  MS F P F crit
Between Groups 119.41 2 597 594 0.000 3.101
Within Groups 87.46 87 1.0

Total 206.87 89

Table 3. Statistical Analysis: Comparison Between Means: Carbon Epoxy

Ave. Max. st.dev. t P tcrit
PSO¢ 230.1 230.6 0.526
PSOp 228.8 229.8 0.670 8.024 0.000 2.00
GA 227.3 229.4 1.513 5.186 0.000 2.02
Table 4. ANOVA Table: Glass Epoxy
Source of Variation SS df MS F P F crit
Between Groups 15158011 2 7579005 209.98 0 3.101
Within Groups 3140152 87 36094
Total 18298163 89

Table 5. Statistical Analysis: Comparison Between Means Glass Epoxy

Ave. Max. st.dev. t P crit
PSO¢ 52931.89 53183.39 144.6
PSOp 52689.32 52994.61 209.9 13.4 0
GA 51965.76 52364.48 208.2 5.2 0

We also performed two t-tests two see
whether the average performance of PSOc vs.
PSOp and PSOp vs. GA is significant at 95%
level of confidence. Table 3 and Table 5
summarize the results of these two t-tests. As
stated earlier, PSO¢ provides an upper bound on
the maximum value of buckling load. On
average, the results obtained via PSOp are

significantly lower than the upper bound.
However, the difference is less than 1%. The
difference between the average performance of
PSOp with that of GA, albeit smaller, is
significant at 95% level of confidence for the
first test problem. The difference between the
average performance of PSOp with that of GA,
is more pronounced for the second test problem.
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5. CONCLUSION

In this study, the design and optimization of
stacking sequence of laminated composite
cylindrical shells. We applied both GA and a
discrete version of PSO to maximize the bending
stiffness of the laminated composite using the
orientation angles as decision variables. To
provide a basis for comparison, a continuous
version of the PSO is also considered in which
the constraint on the orientation angles relaxed.
Results obtained from two test problems suggest
that both PSOp and GA are able to identify good
solutions, and PSOp being the superior optimizer
for the problem at hand. One likely explanation
for this situation is that the PSOp does not use
the discrete values in the search procedure,
however the GA does. Thus, the PSOp performs
the search for the best solution in a continuous
space while the GA works in a combinatorial
environment. The predictions obtained in this
study will be correlated with the experimental
measurements.
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