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ABSTRACT The practical near impossibility of empirical attempts in estimating optimal controller gains makes
the use of metaheuristics strategies inevitable to automatically obtain these gains by an iterative heuristic
simulation procedure. The convergence of the gain values to the local or global solutions occur with ease. In
designing controllers for the Twin-Rotor MIMO System (TRMS) Jumping Spider Optimization Algorithm (JSOA),
a novel neoteric population-based bio-inspired metaheuristic approach is used to obtain optimum values for
the Proportional Integral and Derivative (PID) controllers. With the kp, ki, kd controller gains as the decision
variables, the JSOA solution to a nonlinear multi-objective optimization problem subject to some intrinsic
constraints spawned optimal values for the controllers’ variables. Counter to other algorithms (deterministic
and stochastic) that get caught in local minima, JSOA evolved a solution after searchingly rummaging the
entire solution search space in a vectorized fashion for an optimal value. Compared with several other versatile
controllers (using GA, PSO, Pattern Search, and Simulated Annealing), statistical results obtained showed
JSOA technique provided a unique solution and found the gains of the PID controllers marginally in relation to
the others (optimization methods).
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INTRODUCTION

Recent advances in computerized/computing technology have
revolutionized the aerospace industry, putting flying vessels and
equipment at the cutting-edge. Flying vessels or maneuvering
vehicles designed for Vertical Take-Off and Landing (VTOL) like
helicopters, drones, Unmanned Aerial Vehicles (UAVs) are advan-
tageous over fixed-wing types (e.g., airplanes) in that they can
maneuver and hover around in confined and limited spaces (Toha
and Tokhi 2010). To carry out research on the helicopters and
drones, control laboratories around the world are equipped with
a laboratory-scaled version of the helicopter model, the TRMS.
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Essentially, it is an electromechanical, electrodynamic, and aero-
dynamic equipment prototype which models the dynamics of a
typical true-life helicopter (Ezekiel et al. 2020a; Mones and Diaa-
Eldeen 2017; Toha and Tokhi 2011). It is a unique equipment with
fewer Degrees of Freedom (DoF) than a true-life helicopter, and
its Angle Of Attack (AOA) in piercing through space and air is
fixed (see Table 1 for comparison). Since it is an equipment fixed
to the workbench in the laboratory, it most important function is
to develop control strategies to control and maintain the testbed in
a hovering posture (Ezekiel et al. 2020b; Choudhary 2017), signify-
ing a helicopter position when airlifting humans and equipment
during emergency rescues, etc.

The challenge to control multivariable systems (SIMO, MISO,
MIMO systems) has attracted numerous researches over the past
few centuries. This is owing to the problem of cross-linkages
or dynamic couplings which are significant, and pairing issues
between the input-output variables/channels. The best practice is
not to trivialize these coupling and dynamic effects in modeling
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■ Table 1 Similar and contrasting features between a Helicopter and its Prototype/Model (Basturk 2006)

Attributes Helicopter TRMS

Locus of pivot point Main rotor head Three-fifth way between twin-rotor

Vertical control Main rotor’s pitch angle Main rotor Speed control

Horizontal control Tail rotor’s yaw angle Tail rotor Speed control

Degrees-of-Freedom 3-DOF yaw, pitch, and roll axes 1 or 2-DOF pitch and/or yaw

Angle of Attack (AOA) AOA changes (variable) Fixed AOA

and design because in so doing results in degraded controller’s
performance and in unrealized control objectives (Ezekiel et al.
2020b; Choudhary 2017; Raghavan and Thomas 2017). The all-
purpose PID controllers uniquely designed for linear systems are
applicable for only SISO systems, which may not be adequate for
multivariable MIMO systems due to the aforementioned problem
involved, even if the channels are decoupled. Hence the need for
an efficient strategy to handle these effects.

Poised with this challenge, therefore, authors and researchers
have proposed a vast number of methodologies using Classical,
Optimal, Robust, Adaptive, and Intelligent control strategies. The
investigation of deadbeat control as a strategy capable of control-
ling the TRMS as a decoupled subsystem (of vertical and hori-
zontal) was carried out in (Wen and Lu 2008). Simulations were
performed on the decoupled system, which is a linearized system.
It can be inferred that errors due to approximations were system-
atically introduced on the system due to decoupling as reflected
in the final system’s simulations results. Ghellab et al. designed
a multistage fuzzy gain-scheduled feedback linearization-based
controller using the nonlinear TRMS model to stabilize the beam
of the TRMS to its horizontal posture (Ghellab et al. 2018). The
effects of cross-couplings were incorporated in the design of the
control laws. The proposed controller was implemented real-time.
However, the use of output feedback linearization inherently intro-
duced disturbance as presented in the simulations results obtained
therein.

The robust and adaptive Sliding Mode Control (SMC) is a con-
troller designed on 2 sliding control surfaces on the control plane
(Mondal 2012a; Butt and Aschemann 2015; Mondal and Mahanta
2012; Mondal 2012b; Dimassi et al. 2019). The main benefits of SMC
as a controller are robust system robustness against nonlinearities,
modeling errors, and parametric uncertainty (variations) as well as
being very effective in rejecting disturbances. In (Mondal and Ma-
hanta 2012), a terminal sliding mode controller was implemented
on the linearized nonlinear TRMS plant. In (Mondal 2012a; Mon-
dal and Mahanta 2012; Mondal 2012b), the 2nd order SMC was
proposed to control the TRMS plant while a MIMO Integral SMC
of a 2-DOF helicopter was proposed in (Butt and Aschemann 2015).
A Fuzzy-Sliding and Fuzzy-Integral-Sliding Controller (FS/FISC)
for the TRMS were presented in (Mondal 2012a). The main chal-
lenge in the use of SMC is the chattering phenomenon that exists
in the control signals owing to the discontinuous control action
that may excite un-modeled high-frequency dynamics powerful
enough to damage the actuators. Although the undesired effects
of chattering were reduced to a barest in simulations in (Mondal
2012a; Mondal and Mahanta 2012), yet the effect still persisted and
the control signal was still discontinuous and not smooth enough

for practical purposes.
Parallel distributed fuzzy LQR controllers were utilized in (Tao

et al. 2010) to accommodate different regions of operation for the
decoupled system to separately control the pitch and yaw angles in
pure simulations without any real-time applications on the system.
Particle Swarm Optimisation (PSO) invented by Kennedy & Eber-
hard in the 90’s, one of the most recent intelligent optimization
strategies, was employed to augment the tuning process of the
popular PID controller in (Toha and Tokhi 2011; Al-Mahturi and
Wahid 2017). It is a population-based stochastic search global opti-
misation technique inspired by nature. It is based on simulating
the phenomenon of a swarm of schools of fishes or flocks of birds
competing for food (Toha and Tokhi 2011). PSO is designed to
operate on a swarm of particles where each particle represents a
candidate solution to the optimization problem (Al-Mahturi and
Wahid 2017). These particles are arranged in an n-dimensional
search space and a randomized selection of positions and velocities
for their best values. The flying experience of each particle swarm
automatically adjusts the velocity of the individual alongside the
other particles in the swarm. The drawback to this technique is
that it cannot directly handle multi-objective optimization prob-
lems and may not converge for large parametric modeling (large
variables).

Juang et al. proposed an evolutionary algorithm methodology
using Real-coded Genetic Algorithm (R-GA) for the parametrized
modeling and optimization of PID controller gains to control the
TRMS (Juang et al. 2008). The simulations results were not satis-
factorily optimal due to the bang-bang inputs used and the highly
oscillatory results obtained. Intelligent systems are employed to in-
telligently tune or determine the best possible values of the system
parameters (decision variables) for optimum system performance.
Some of the techniques used have been mentioned above already
under “Intelligence control schemes”. Mostly these schemes are
nature-inspired or biologically inspired (bio-inspired) from living
organisms or natural processes. In this paper, a Multi-Objective
GA (MOGA) algorithm is employed for tuning custom-designed
PID controller parameters for optimized performance. The pre-
ponderating advantage of the simple design reposes/stands in
the compromise on the various control performance requirements
or preconditions. The paper organization is as follows: Section
1 introduces the TRMS and control strategies developed by re-
searchers; Section 2 reviews related literature; Section 3 focuses on
the mathematical modelling; while section 4 discusses the intelli-
gent bio-inspired JSOA-PID controller design and tuning process
utilized; Section 5 presents and discusses simulation and experi-
mental results obtained and the further discussions of the results;
with a conclusion drawn at the end in Section 6.
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MATHEMATICAL/ANALYTICAL MODELLING OF THE TRMS

The mathematical models used are based on the rotations of the
asymmetrically weight-distributed beam of the TRMS owing to the
unequal weights of the main and tail rotor assemblages placed end
to end. The TRMS as a dynamic system is modelled (i.e. described
by equations) using the phenomenological model (Instruments
2000; Agrawal 2013).

(a) A setup of the TRMS in the Measurements Control and Instru-
mentation Laboratory of the Botswana International University of
Science and Technology (BIUST)

(b) Phenomenological model of the TRMS (Instruments 2006)

Figure 1 (a) A setup of the TRMS and (b) Phenomenological
model of the TRMS

Equations of Motion governing the TRMS Based on Newton-Euler
Approach
Let u1, u2 represent the two DC Stepper motors input voltages (for
the pitch and yaw channels) respectively and τ1, τ2 represent their
corresponding output torques. The torque-developed equations
due to the resulting rotations can be modelled as:

τ1 =
K1

T11s + T10
u1

τ2 =
K2

T21s + T20
u2

(1)

where K1, K2, T10, T11, T21, T20 are some lumped-parameter motor
constants (motor torque constants, back emf constants, etc.) that

have been determined experimentally (Instruments 2006).
Summing moments and forces acting on the system about

the pitch axis for vertical motion yields the general form of the
torque-developed equation of motion about the pitch plane (Ragha-
van and Thomas 2017; Instruments 2006; Chaudhary and Kumar
2019a,b; Sodhi and Kar 2014) as:

Im θ̈ = Mm − MFF − MBθ − MG (2)

Mm = α1τ2
1 + b1τ1 (nonlinear static characteristic) (3)

MBθ = B1θ θ̇ − B2θ sin(2θ)φ̇2 (friction forces momentum) (4)

MFF = Mg sin(θ) (gravity momentum) (5)

MG = Kgy Mm φ̇ cos(θ) (gyroscopic momentum) (6)

Equations (3-6) are the momentum equations acting on the vertical
plane.

Similarly, summing moments and forces acting on the system
about the yaw axis yields the general form of the developed torque
equation for motion about the yaw plane (Raghavan and Thomas
2017; Instruments 2006; Chaudhary and Kumar 2019a,b) as:

Itϕ̈ = Mt − MBϕ − MCR (7)

where

Mt = α2τ2
2 + b2τ2 - nonlinear static characteristics (8)

MBϕ = B1ϕϕ + B2θsignϕ̇ - fric. forces momentum (9)

MCR = Kc

(
Tos + 1
Tps + 1

)
Mm - approx. cross-reactn momentum

(10)
Where equations (8-10) are the momentums acting on the horizon-
tal plane due to the rotational dynamics of the twin rotors.

Substituting equations (3-6) into (2) and (8-10) into (7) result in
2 differential algebraic equations with θ̈ and ϕ̈ numerically given
by:

θ̈ =
1
Im

(
α1τ2

1 + b1τ1 − Mg sin θ

−
(

B1θ θ̇ − B2θ sin(2θ)ϕ̇2
)

−Kgy Mmϕ̇ cos θ
)

=
1
Im

(
α1τ2

1 + b1τ1 − Mg sin θ

−B1θ θ̇ + B2θ sin(2θ)ϕ̇2

−Kgy(α1τ2
1 + b1τ1)ϕ̇ cos θ

)
(11)

ϕ̈ =
1
It

(
α2τ2

2 + b2τ2 − B1ϕϕ̇

−Kc(TDs + 1)
TPs + 1

Mm

)
=

1
It

(
α2τ2

2 + b2τ2 − B1ϕϕ̇

−Kc(TDs + 1)
TPs + 1

(α1τ2
1 + b1τ1)

)
(12)

These wholly define the equations of motion for the TRMS.
The MATLAB/Simulink implementation of these equations for
modeling, simulations, and control purposes is shown below:
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Figure 2 TRMS full implementation in Simulink

State-Space Models
The dynamic state of the linear plant given by the state-space repre-
sentation (Chaudhary and Kumar 2019a) using dynamic equation
is:

ẋ = Ax + Bu, y = Cx + Du (13)

The state vector x, input vector u, and output vector y for the
system are given by equations (14-16)

x =

[
θ ϕ θ̇ ϕ̇ τ1 τ2 MCR

]T
(14)

u =

[
u1 u2

]T
(15)

y =

[
θ ϕ

]T
(16)

Modelling of the 2-DOF TRMS
Using the state, input and output vectors (equations (14-16)), the
complete 2-DOF TRMS dynamic equations for the system can be
modelled and in state-variable form by:



d
dt

θ̇ = θ̇

d
dt

ϕ̇ = ϕ̇

d
dt

θ̇ = − Mg
Im

sin θ − B1θ

Im
θ̇ +

B2θ

Im
sin(2θ)ϕ̇2

+
(
1 − Kgyϕ̇ cos θ

) α1τ2
1

Im
+

(
1 − Kgyϕ̇ cos θ

) b1τ1
Im

d
dt

ϕ̇ = −
B1ϕ

It
ϕ̇ +

(
1 − Kc(TDs + 1)

Tps + 1

)
α2τ2

1
It

+

(
1 − Kc(TDs + 1)

Tps + 1

)
b2τ1

It

d
dt

τ1 = −T10
T11

τ1 +
K1
T11

u1

d
dt

τ2 = −T20
T21

τ2 +
K2
T21

u2

d
dt

MCR =
d
dt

(
Kc(Tos + 1)

Tps + 1
α1τ2

1

)
+

d
dt

(
Kc(Tos + 1)

Tps + 1
b1τ1

)
= 2α1

Kc(Tos + 1)
Tps + 1

τ1τ̇1 + b1
Kc(Tos + 1)

Tps + 1
τ̇1

(17)

or,

ẋ =



x3

x4

− Mg
Im

sin x1 −
B1x1
Im

x2 +
B2x1
Im

sin(2x1)x2
4

+ b1
Im

x6 − Kgy
b1
Im

cos x1x4x6 +
α1
Im

x2
6

−Kgy
α1
Im

cos x1x4x2
6

− B1x3
It

x4 +
(

1 − Kc(TDs+1)
Tps+1

)
b2
It

x6

+
(

1 − Kc(TDs+1)
Tps+1

)
α2
It

x2
6

− T10
T11

x6

− T20
T21

x7

2α1
Kc(Tos+1)

Tps+1 x6 ẋ6 +
Kc(Tos+1)

Tps+1 b1 ẋ6



+

0 0 0 0 0 K1
T11

0

0 0 0 0 0 0 K2
T21


T

u

y =

[
x1 x2

]T

(18)

INTELLIGENT CONTROL DESIGN

Bio-Inspired/Nature-Inspired Algorithm Design Based on a novel
metaheuristic Jumping Spider Optimization Algorithm (JSOA)
In this research, the novel metaheuristic technique called Jumping
Spider Optimization Algorithm (JSOA) is used as the optimiza-
tion strategy for controllers’ tuning. It is a Biologically-Inspired
and Nature-Inspired optimization strategy inspired by the hunting
habits of Arachnida Salticidae spider species (Peraza-Vázquez et al.
2022). JSOA mimics the behaviour of spiders in nature, modelling
how it hunts for food/prey using a search, persecution, and jump-
ing prowess and artistry (skills) to catch and kill (or prey) for its
meal. Just like other evolutionary metaheuristics, this strategic
hunting scheme or ruse of search, persecution, and jumping are
harnessed to strike a balance over the entire solution space (search
space) between exploitation and exploration. This is intended in
solving a global optimization problem.

In this study, JSOA is used as an optimization algorithm to para-
metrically tune the PID controllers’ gains in a decentralized control
system architecture of the underactuated TRMS plant. In addi-
tion to the algorithm globally converging for the multi-objective
problem, its performance is tested by comparing against several
notable, popular, and well-established metaheuristics algorithms
of Genetic Algorithm (GA), Pattern Search, Simulated Annealing,
and Particle Swarm Optimization (PSO). The results (in tables and
graphs) revealed that the proposed algorithm outperforms the
aforementioned algorithms and is capable of solving real-world
problems that can be considered very challenging with unknown
search or solution spaces.

In the TRMS controller design, an optimization problem is setup
where the gains of the PID controllers are set as the parameters to
be optimized by the JSOA metaheuristic optimizer.
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Modelling of the JSOA Optimization Algorithm
The proposed JSOA considers four hunting strategies of the spi-
ders: attacking by persecution, search, jumping on prey and
pheromone rate.

Attacking by Persecution The stealthy jumping to catch move-
ments made by the spider in attacking its prey is modelled using
Newton’s third equation for linear or rectilinear motion. The spi-
der moves along its coordinate axis with increasing or decreasing
velocity at constant/uniform velocity linearly with time and given
by:

xi =
1
2

at2 + vot (19)

where xi is the position of the ith follower spider, vo, a, and t follow
the usual conventional definition for the initial speed, acceleration,
and time respectively. The optimization procedure is an iterative
procedure where each iteration xi(t) is defined in terms of position
with disparity in iterations equalling 1. The initial velocity vo = 0.

x⃗i(t + 1) = x⃗i(t)− x⃗r(t) (20)

where x⃗i(t + 1) is the updated displacement of the jumping spi-
der Search Agent (SA) of (t + 1) generation, x⃗i(t) is the prevailing
or current ith SA in the tth generation, and x⃗r(t) is the rth SA for
a randomly selected r ̸= i where r is a randomized integer in the
interval between 1 and the maximum size of SAs. This is depicted
as shown in Figure 3.

Figure 3 (a) Jumping Spider performing persecution (b) Jumping
on prey under a projectile-like motion (c) The local and global
search vectorizations (Peraza-Vázquez et al. 2022)

Jumping on Prey The jumping spider attacks and pounces on
its prey in a projectile motion fashion. It is decomposed into its
horizontal and vertical components and given by:

x⃗i = vo(a)t⃗i
dx
dt

= V⃗x = vo(a)⃗i
(21)


y⃗l =

(
vo sin(a)t − 1

2
gt2

)
i⃗

dy
dt

= V⃗y = (vo sin(a)− gt) i⃗
(22)

Where equations (21) and (22) represent the horizontal and vertical
components respectively. Therefore the equation for the trajectory
is given as:

y = x tan(a)− gx2

2V2
o cos2(a)

(23)

The trajectory w.r.t the iterations in the succeeding generations
is therefore given by:

x⃗l(t + 1) = x⃗l(t) tan(a)−
gx⃗2

l (t)
2V2

o cos2(a)
(24)

where x⃗l(t + 1)= the new displacement/position of the new
search agent, x⃗l(t)= the current ith search agent, V⃗x=100 mm/sec,
g=9.80665 m/s2 is the acceleration due to gravity and a is the angle
determined by a randomly generated ϕ angle lying between the
interval (0, 1).

a = ϕπ/180 (25)

Searching for Prey JSOA in searching for prey executes a random
search within the search space in order to locate its prey. Both the
local and global search models have been developed and used in
the JSOA approach. The local search is modelled as:

x⃗l(t + 1) = x⃗best(t) + walk
(

1
2
− ϵ

)
(26)

where ⃗xbest(t) is the best SA/solution from the preceding gen-
eration (or iteration), walk is a pseudo-random number (PRBS)
generated with a Gaussian distribution in the interval [−2, 2], and
ϵ is a PRBS generated in the interval [0, 1]. The formulation for the
global search model is given by:

x⃗i(t + 1) = ⃗xbest(t) + β ( ⃗xbest(t)− ⃗xworst(t)) (27)

where ⃗xworst(t) is the worst SA (or solution) found in the preceding
generation/ iteration, β is a Cauchy random number with mean
µ = 0 and variance σ = 1.

Pheromone’s Rate Pheromone is a chemical substance/secretion
secreted externally by the body of an individual jumping spider
which is being perceived by the olfactory lobes of another indi-
vidual that influences the physiology or behavior of the other
individual animal of the same species. Pheromone is not unique
to the jumping spider alone but a biological process shared with
many animals particularly insects or arachnids. The modeling of
the rate of pheromone production in jumping spider is given as:

pheromone(i) =
Fitnessbest − Fitness(i)

Fitnessbest − Fitnessworst
(28)

where Fitnessbest, Fitnessworst are the best and worst fitness val-
ues in the current generation/iteration respectively. The fitness
values are normalized in the interval (0, 1), the bounds corre-
sponding to the worst and best pheromone rates respectively. For
low or subjacent pheromone rates (pheromone(i) ≤ 0.3) the posi-
tion/displacement is recalculated by:

x⃗l(t) = x⃗best(t) + γ (x⃗r1 (t)− (−1)σ x⃗r2 (t)) (29)

where x⃗l(t) is the SA (but this time with low pheromone rate for
updating, r1, r2 are random integers numbers randomized within
the interval of [1, maximum size of SAs], r1 ̸= r2, x⃗r1 (t), x⃗r2 (t) rep-
resent the r1th r2th search agents randomly selected, σ is binary
random number generated i.e. σ ∈ [0, 1].
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SIMULATIONS RESULTS AND DISCUSSIONS

Design, modeling, simulations, and algorithms optimizations were
carried out. The following results were obtained as explained in
this section.

Figure 4 Control & error signals compared against step input
signal

The PID controller configuration shows the control action of the
controller in response to non-zero input and the error (Figure 4).
The basic task of intelligent control is the controller-tuning design
problem where satisfactory values for the adjustable parameters
like the proportional gain, normalized gain, and integral time must
be found to satisfy or achieve the desired closed loop requirements
for a given system or process.

Results from Linearization of the TRMS Plant

Using the formulations presented in Klee and Allen (2018) for
linearizing a nonlinear system about an operating point based on
the Jacobian matrix of the vector-valued function f (t, x, u) which
defines the state derivatives in MATLAB/SIMULINK software,
the following useful results were directly obtained:

Figure 5 TRMS Simulink Nonlinear model prepared for lin-
earization

Note: u1, u2 are the step inputs to the TRMS system while
elevation and azimuth are the pitch & yaw outputs. The A, B, C, D
system matrices were obtained to be:

A =



0 0 1 0 0 0 0

0 0 0 1 0 0 0

−4.706 0 −0.08824 0 1.246 0 0

0 0 0 −5 1.482 3.6 18.75

0 0 0 0 −0.8333 0 0

0 0 0 0 0 −1 0

0 0 0 0 −0.01694 0 −0.5



,

B =



0 0

0 0

0 0

0 0

1 0

0 1

0 0



,

C =

1 0 0 0 0 0 0

0 1 0 0 0 0 0

 ,

D =

0 0

0 0


(30)

Representing the system matrices in transfer function transform
the continuous-time state-space system matrices to the following
equations in the frequency-domain:

G11 =
1.246

s3 + 0.9215s2 + 4.78s + 3.922

G21 =
1.482s + 0.4234

s4 + 6.333s3 + 7.083s2 + 2.083s
G12 = 0

G22 =
3.6

s3 + 6s2 + 5s

(31)

As can be seen from the 4 transfer functions obtained (equation
31) for our particular TRMS plant, there are main rotor - yaw plane
or axis i.e., G21 interactions or cross couplings but there seems to
be no interaction at all between the tail rotor and the pitch axis
or pitch plane, i.e., G12. There is therefore the need to design a
decoupler to eliminate or reduce to the barest the G21 interactions
offered by the tail rotor (powered by its DC motor) which serves
as disturbance to the movements/ rotations about the yaw axis.

Let Gm and Gt represent the pitch & yaw planes’ transfer func-
tions respectively of the decoupled system. Making substitutions
for G11, G12, G21, G22 to obtain Gm and Gt respectively, in MATLAB,
as:
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
Gm =

1.246
s3 + 0.9215s2 + 4.78s + 3.922

Gt =
3.66

s3 + 6s2 + 45s

(32)

Optimizing the pitch model of the TRMS is tasking and
very involved because of the system complexity and the cross-
correlational existing between the main and tail rotors’ effects.

Results from Decoupling the TRMS

Accordingly, from equation 34 it follows that



Ginv11(s) = 0.8026s3 + 0.74s2 + 3.2s + 3.144

Ginv12(s) = 0

Ginv21(s) =
−0.3304s7 − 2.381s6 − 5.711s5 − 13.74s4 − 19.18s3

s4 + 6.333s3 + 7.083s2 + 2.083s + 2.637 · 10−13

+
−10.96s2 − 1.851s + 1.982 · 10−12

s4 + 6.333s3 + 7.083s2 + 2.083s + 2.637 · 10−13

Ginv22(s) = 0.2778s3 + 1.667s2 + 1.389s
(33)

Using the simplified decoupling technique/methodology based
on the generalized procedure of matrix inversion formula (Yang
et al. 2016), the decoupling plant transfer matrix GR(s) as presented
in (Yang et al. 2016) is expressed as:

GR(s) =

Gm(s) 0

0 Gt(s)

 (34)

where Gm(s), Gt(s) are the decoupled transfer functions for the
main and tail rotors subsystems respectively and given by equation
(32). To obtain the decoupling matrix, we apply equations given in
(Yang et al. 2016) to get:

GD(s) =

GD11(s) GD12(s)

GD21(s) GD22(s)

 (35)

So that



GD11(s) =
s3 + 0.9215s2 + 4.78s + 3.922
s3 + 0.9215s2 + 4.78s + 3.922

= 1

GD12(s) = 0

GD21(s) =
−0.4117s7 − 2.967s6 − 7.116s5 − 17.12s4 − 23.9s3

s7 + 7.255s6 + 17.7s5 + 42.8s4 + 60.61s3 ...,

−13.65s2 − 2.306s + 2.47 × 10−12

37.74s2 + 8.17s + 1.034 × 10−12

GD22(s) =
s3 + 6s2 + 5s
s3 + 6s2 + 5s

= 1

(36)

(a) Control system designed for optimizing with JSOA intelligent
scheme

(b) Squared errors (IAE, ITAE, ISE, etc.) pitch

(c) Squared errors (IAE, ITAE, ISE, etc.) yaw

(d) Decoupler

(e) TRMS1

Figure 6 (a) Control system designed for optimizing with JSOA
intelligent scheme, (b) Squared errors (IAE, ITAE, ISE, etc.) pitch,
(c) Squared errors (IAE, ITAE, ISE, etc.) yaw, (d) Decoupler, (e)
TRMS1
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Figure 7 JSOA-PID Optimization convergence graph for 30
search agents (jumping spiders) and 200 generations

JSOA-PID Optimization Simulations Results

(a) With dead time

(b) Without dead time

Figure 8 Set-point tracking responses of pitch and yaw angles
using JSOA-based controllers (a) With dead time (b) Without
dead time

Multi-objective optimization algorithm was written and used with
the JSOA code for faster convergence. JSOA is a slow converging
procedure taking several hours or even days to converge depend-
ing on the size of the design variables, search agents/ number of
iterations, population size, and other design settings used. An
exponential relationship exists between number of search agents
or population size and time to converge (the larger the population
size, the more time required to converge). Also, another factor here
is the size of the population. The visible vibrations or ripples seen
on the plot resulted from the fact that the plant (i.e., TRMS) is a
very stiff system as well as the significant cross-couplings. For this
design, 30 search agents were employed.

■ Table 2 Baseline JSOA-PID controller’s parameters/gains
values

Parameters Kp Ki Kd

Main -1.2171 -1.2432 -2.3345

Tail -2.3897 -0.0485 -2.026

Six (6) other methods or strategies were compared against JSOA
strategy.

Performance Indices
The parameter tuning rules are based on the following perfor-
mance measures: Integral of the Absolute Error (IAE), Integral of
Time Absolute Error (ITAE), Integral Squared Error (ISE), Integral
Time Squared Error (ITSE), and Root Mean Squared Error (RMSE).
These measures or indicators are indices that show or indicate how
well the system performed during the execution/run).

Objective Function
The objective function used is given by:

J(Kp, Ki, Kd, θ, ϕ) = 2 ∗ (ω1 ∗ pitch (ISE) + ω2 ∗ yaw (ISE)) (37)

where ω1, ω2 are some carefully chosen weighting coefficients. In
this study, ω1 = ω2 = 0.5.

Fitness Function
The error signal minimization is achieved by the use of the PID
controller via performance index minimization in the objective
function value J. And we know that the smaller the J value of
performance index of the corresponding search agent, the fitter
the search agent will be and vice versa. Hence, J varies inversely
to the fitness of the chromosomes. Therefore, the fitness of the
chromosomes is defined as:

Fitness function =
1
J
=

1
2
∗ 1

ω1 ∗ pitch(ISE) + ω2 ∗ yaw(ISE)
(38)
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(a) Combined Simulink Model (b) PID Controllers

(c) PID+GA Controllers (d) PID+Pattern Search Controllers

(e) PID+Simulated Annealing Controllers (f) LQG Controllers

(g) PID+PSO Controllers (h) PID+JSOA-based Controllers

Figure 9 Set-point tracking responses of the seven methods: (a) Combined Simulink Model, (b) PID Controllers, (c) PID+GA Con-
trollers, (d) PID+Pattern Search Controllers, (e) PID+Simulated Annealing Controllers, (f) LQG Controllers, (g) PID+PSO Controllers, (h)
PID+JSOA-based Controllers
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(a) Results for PID Controllers (b) Results for PID+GA Controllers
(c) Results for PID+Pattern Search Con-
trollers

(d) Results for PID+Simulated Annealing
Controllers (e) Results for LQG Controllers (f) Results for PID+PSO Controllers

(g) Results for PID+JSOA-based Controllers (h) Results for Combined Pitch Angles (i) Results for Combined Yaw Angles

Figure 10 (a) Results for PID Controllers, (b) Results for PID+GA Controllers, (c) Results for PID+Pattern Search Controllers, (d) Re-
sults for PID+Simulated Annealing Controllers, (e) Results for LQG Controllers, (f) Results for PID+PSO Controllers, (g) Results for
PID+JSOA-based Controllers, (h) Results for Combined Pitch Angles, (i) Results for Combined Yaw Angles
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■ Table 3 Summary of PID parameters for six methods

Method Horizontal
plane Kp

Horizontal
plane Ki

Horizontal
plane Kd

Vertical plane
Kp

Vertical plane Ki Vertical plane Kd

PID 7.5803 -0.2479 9.7221 1.7053 2.1643 3.0066

GA 4.9553 0.0693 5.2448 2.1593 1.5238 3.9310

LQG – – – – – –

Pattern Search 11.7969 -0.2656 19.2324 1.2267 2.5595 1.7598

Simulated An-
nealing

4.7778 0.0835 5.8484 2.6264 2.0038 4.5171

PSO -8.2211 -2.6907 -19.9187 -12.8273 -12.0269 -19.9996

JSOA -2.3897 -0.04852 -2.026 -1.2171 -1.2432 -2.3345

■ Table 4 Quantitative comparison of the proposed JSOA-PID controller and six other controllers design strategies with performance
indices for pitch & yaw angles

Controller
Method

Horizontal
plane ϕ
angle
IAE

Horizontal
plane ϕ
angle
ITAE

Horizontal
plane ϕ
angle ISE

Horizontal
plane ϕ
angle
ITSE

Horizontal
plane ϕ
angle
RMSE

Vertical
plane
θ angle
IAE

Vertical
plane
θ angle
ITAE

Vertical
plane θ
angle ISE

Vertical
plane
θ angle
ITSE

Vertical
plane
θ angle
RMSE

PID 1.787 31.32 0.997 10.72 0.02268 2.583 35.38 1.364 15.3 0.0009143

GA 3.78 87.21 1.193 15.58 0.04985 2.858 43.47 1.417 15.92 0.008896

LQG 2.068 24.49 1.384 15.02 0.000004 5.501 76.03 3.645 45.38 0.000003

Pattern
Search

1.638 21.5 1.007 10.7 0.004712 2.29 30.04 1.327 14.63 0.003673

Simulated
Anneal-
ing

3.946 90.81 1.243 16.47 0.04331 3.278 58.43 1.382 16.08 0.03074

PSO 4.109 76.61 1.551 20.9 0.002231 2.723 41.4 1.318 14.84 0.0008534

JSOA 2.008 14.6 0.904 0.7934 0.002157 3.138 28.47 1.194 2.041 0.003753

CONCLUSION

The score or performance of JSOA alongside other techniques used
in this study are quantified in tables and graphs. It is seen that
the optimum solution for the controller parameters Kp, Ki, and
Kd values for the pitch are -1.2171, -1.2432, & -2.3345 while for
the yaw are -2.3897, 0.0485, & -2.026 respectively. These global
solutions converged after about 22 hrs of simulation time in MAT-
LAB/Simulink software. For PID, Pattern Search and Simulated
Annealing, the values obtained were: ZN: 7.5803, -0.2479, 9.7221,
1.7053, 2.1643, & 3.0066, Pattern Search: 11.7969, -0.2656, 19.2324,
1.2267, 2.5595, 1.7598; Simulated Annealing: 4.7778, 0.0835, 5.8484,
2.6264, 2.0038, 4.5171 respectively for the pitch and yaw. In terms
of performance on a comparative scale, the fitness function for
JSOA is 0.953288847 or 95.3%.

From the final plot (figure 9), a cursory look suggests that GA
did not perform well (worst performing) while JSOA was the best
performing among the optimization techniques in spite of the
stiffness offered by the system, though the yawning action has an
unresolved error that continued at the steady state, which is not
surprising. This is because of the computational effort required
(figure 4). The graphs confirm that methods like GA are unsuitable
for optimizing nonlinear systems.

The physical significance of these results is that with a PID
controller, the derivative gain (D) can have a different sign from
the integral gain (I), in order to return a stable controller even if one
or more gains are negative. This is in order for phase adjustment in
the loop, if the plant is non-minimum phase. The TRMS is clearly
a non-minimum phase system, having a pole or zero at the origin
and so can be made asymptotically stable. This means the system
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■ Table 5 Objective function values against Controller design strategy for the seven methods

Controller Method Yaw plane (ϕ angle) ISE Pitch plane (θ angle) ISE Objective function

PID 0.997 1.364 1.1805

GA 1.193 1.417 1.305

LQG 1.384 3.645 2.5145

Pattern Search 1.007 1.327 1.167

Simulated Annealing 1.243 1.382 1.3125

PSO 1.551 1.318 1.2309

JSOA 0.904 1.194 1.049

■ Table 6 Fitness function (or score) against Controller Design Strategy (Method) for the seven methods

Controller Method Yaw plane (ϕ angle) ISE Pitch plane (θ angle) ISE Fitness score

PID 0.997 1.364 0.847098687

GA 1.193 1.417 0.766283525

LQG 1.384 3.645 0.397693378

Pattern Search 1.007 1.327 0.856898029

Simulated Annealing 1.243 1.382 0.761904762

PSO 1.551 1.318 0.697107006

JSOA 0.904 1.194 0.953288847

veers to the opposite direction first before following the prescribed
trajectory.

In this study, white box modelling approach was used, where
rotational kinematics equations developed by Newton and Euler
were used to accurately describe the rotational forces and mo-
ments/momentums of the TRMS in flight. A PID controller was
then subsequently developed for the decoupled and linearized
plant, being a nonlinear, complex, system with dynamic couplings.
To obtain the optimum values for the PID controller, JSOA was em-
ployed which was able to evolve a global solution readily without
having to search through the entire solution search space, and time
to process increases exponentially as the size of the search agents
or population size. A maximum generation with population sizes
of 100 and 30 respectively were used in this study. The fitness score
of 0.953288847 or about 96% showed highly fit individuals as the
global solution evolved, which is excellent for any meaningful con-
trol design performance in terms of reference tracking, trajectory
tracking and servo and regulatory control.

This should be ‘Controlling the TRMS using conventional
means is a huge challenge, particularly tuning of the gains es-
pecially when the number of parameters to be tuned is large. For
a stiff system, determining the gains by trial and error, may be
impractically impossible, hence the need and use of intelligent
methods like GA among others. Among the many intelligent tech-

niques, JSOA has proven to be unique, in that it is capable of
evolving the global solution with relative ease, including systems
and processes with very fast changing dynamics. Ultimately the
main idea about using optimization techniques in scientific and
engineering studies of this kind is to help in tuning some goals (pa-
rameters/variables), so as to achieve the best possible or optimum
values for our overall design. This is true in all fields of human
endeavours.
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