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Abstract. One solution to the multicollinearity problem in the Bell regres-

sion model, which is utilized for over-dispersion issues, is biased estimators. In
recent years, some biased estimators have been proposed in the Bell regression

model that can be used in modelling correlated count data. In this article, Bell

two-parameter ridge estimator (BTPRE) is proposed. This two-parameter es-
timator has some advantages over the previously proposed estimators. More

efficient results are obtained than the Maximum Likelihood estimator (MLE)

and Bell Ridge estimator (BRE) in the case of multicollinearity by using BT-
PRE. Monte Carlo simulation study and real data results are obtained to show

that the proposed estimator is better. Estimators have been compared accord-

ing to the Mean Squared Error (MSE) criterion. BTPRE is superior to other
estimators.

1. Introduction

In count data modelling, the key distribution is the Poisson distribution because
of its simplicity. It has only one parameter, the location parameter, to be estimated.
However, the main drawback of the Poisson distribution is that the mean and
variance of the Poisson distribution are equal, which is called equidispersion. But, in
many real datasets, this assumption does not hold since the variance is greater than
the mean of the data. This situation is called an overdispersion problem. When
the variability of the data is greater than the mean, an overdispersion problem
arises. The most popular overdispersed model is the Negative Binomial regression
model (NBRM). NBRM is a mixture model which obtains a mixture of Poisson and
Gamma distributions.
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The advantage of Poisson regression model (PRM) over NBRM is that it has one
parameter. In response, the advantage of NBRM is that it can be used to model
overdispersed data. As an alternative to this model, the Bell regression model
(BRM), which has a single parameter, has been proposed by Castellars et al. for
modelling overdispersed count data [8]. BRM has the advantages of both PRM and
NBRM; it has been widely preferred recently. As compared with the NBRM, BRM
is more flexible than the NBRM.

One of the general assumptions of regression analysis is that the independent
variables are not collinear. But often, in real-life datasets, the independent variables
are correlated. This problem is called multicollinearity. If the assumptions are
met, a maximum likelihood estimator (MLE) efficiently estimates the parameter.
Highly correlated independent variables affect the performance of MLE. In the case
of multicollinearity problems, the variance of MLE increases, and the confidence
intervals widen. There are many studies on biased estimators to solve this problem.
The variance of MLE, which is an unbiased estimator, is very high in the case of
multicollinearity problems. In this case, alternative estimators with a bias value
and a smaller variance than the variance of the MLE can be used. Thus, the MSE
of the biased estimators is smaller than that of the MLE.

One of the most widely used biased estimators is the Ridge estimator (RE) pro-
posed by Hoerl and Kennard [9]. This estimator depends on the k biased parameter.
As with many biased estimators, RE was first proposed in a linear regression model
(LRM). There are many studies on RE in the literature regarding both its defini-
tions in different regression models and the estimation of the biased parameter. The
logistic ridge estimator was defined by Schaefer et al., the Gamma ridge estima-
tor was defined by Algamal, and the inverse Gaussian ridge estimator was defined
by Algamal and its performances were examined [2, 3, 20]. Regarding modeling of
counting data, RE studies were carried out by Månsson and Shukur, Månsoon and
Amin et al. for PRM, NBRM and BRM, respectively [4,12,13].There are alternative
estimators to the RE in the literature. Many of these estimators have also been
identified in modeling count data [1, 17,18].

In the ordinary least squares estimator (OLSE), there is an orthogonality between
the residuals and the dependent variable. The orthogonality of this estimator is
not available in the RE. In the RE, the aim is to reduce the variance, and model
fit is not considered. A two-parameter ridge estimator (TPRE) was proposed by
Lipovetsky and Conklin [10, 11] as a generalized version of the ridge estimator to
increase the regression fit. The TPRE consists of k and q parameters. With the
added parameter q, orthogonality between the dependent variable and residuals is
provided. In addition, more efficient estimates are obtained from MLE and RE
estimators. The TPRE for the linear model was compared with the OLSE and
RE by Toker and Kaçıranlar according to the matrix MSE criterion [21]. Asar
and Genç proposed TPRE for the logistic regression model [5]. Then, TPRE was
defined for the inverse Gaussian regression model by Bulut and Işılar [7].
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In this study, we propose the BTPRE for the Bell regression model used in
modelling the count data. For this purpose, BRM and BRE are given in Section
2. BTPRE has been defined. In Section 3, the Monte Carlo Simulation study and
actual data results are given to examine the performance of the proposed estimator.
In the Section 4, the results of the studies are examined.

2. Methodology

A discrete random variable Y is said to be Bell distribution with the parameter
θ > 0, Y ∼ Bell(θ), if its probability mass function (pmf) is given as

P (Y = y) =
θye−eθ+1By

y!
, y = 0, 1, 2, . . . (1)

where By = 1
n

∑∞
q=0

qy

q! is called the Bell number [6]. Since the Bell distribution

is a member of the exponential family, the Bell regression model can be written
as a special case of the generalized linear models (GLM’s), which are widespread
to model the mean of the response variable. Using the reparametrization given by
Castellares et al. [8], the pmf can be rewritten as follows:

P (Y = y) = exp
{
1− exp

{
W0(µ)

}}W0(µ)
yBy

y!
, y = 0, 1, 2, . . . (2)

where θ = W0(µ) and W0(.) is the Lambert function. The mean and variance can
be written using this parametrization as follows

E(y) = µ, (3)

V ar(y) = µ[1 +W0(µ)]. (4)

The BRM is a good alternative to NBRM to model count data with overdis-
persion. The response variable distributed as yi ∼ Bell(W0(µi)) where µi =
exp{xT

i β}exp{exp{xT
i β}} for i = 1, 2, . . . , n. Using the Eq. (2), the log-likelihood

function is given as follows

ℓ(µi; yi) = n−
n∑

i=1

exp
{
W0(µi)

}
+

n∑
i=1

yilog
(
W0(µi)

)
+

n∑
i=1

log
(
Byi

)
−

n∑
i=1

log
(
yi!

)
∝

n∑
i=1

yilog
(
exp

{
xT
i β

}
exp

{
exp

{
cTi β

}})
− exp

{
exp

{
xT
i β

}
exp

{
exp

{
xT
i β

}}}
.(5)

Taking the derivative of the log-likelihood function concerning β parameter, we
can obtain the following score function

S(β) =
dℓ(µi; yi)

dβ
=

n∑
i=1

[
xi

(
1 + exp

{
xT
i β

})
(yi − µi)

]
(6)
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The most commonly used estimation method in the GLM’s is the maximum
likelihood estimation (MLE) method. To obtain the MLE of the BRM, we have to
solve Eq. (6). Since the Eq. (6) is a non-linear according to the β, we can use the
method of scoring:

β(m+1) = β(m) + I−1β(m)S
(
β(r)

)
(7)

where S
(
β(m)

)
is the score function evaluated at β(m), and

I−1
(
β(m)

)
= E

[
d2ℓ(µi; yi)

dβdβT

]
= XTW

(
β(m)

)
X,

where W
(
β(m)

)
= diag

{
µi(β

(m))

1+exp
{
xT
i β(m)

}} evaluated at β(m). The final step of the

Eq. (7) can also be written as

β̂MLE = (XT ŴX)−1X ′Ŵ ẑ, (8)

where ẑ = log(µ̂) +W− 1
2V − 1

2 (y − µ), and V = V ar(y). The covariance matrix of
the MLE can be computed as

Cov
(
β̂MLE

)
=

(
XT ŴX

)−1
, (9)

which equals the inverse of the Hessian matrix. The matrix mean square error
(MMSE) and scaler mean square error (SMSE) of the MLE are given by

MMSE
(
β̂MLE

)
= D−1, (10)

SMSE
(
β̂MLE

)
=

l∑
j=1

1

λj
, (11)

where D = XT ŴX, λj are the eigenvalues of D matrix and l is a total number of
parameter.

When the multicollinearity exits, the MLE inflates. So, Amin et al. [4] proposed
the Ridge estimator for the BRM to handle the multicollinearity problem as given
in the following subsection.

2.1. Ridge Estimator in the BRM. Amin et al. [4] introduced the Bell Ridge
estimator (BRE) to cope with the multicollinearity problem’s adverse effects. BRE
is given as follows

α̂k = D−1
k Dα (12)

where Dk = (XT ŴX+kIl) and k > 0 is a biasing parameter. α = ZTβMLE where
Z is a eigenvector of D. The MMSE and SMSE of the BRE are given as
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MMSE
(
α̂k

)
= DkDDk + k2D−1

k ααTD−1
k , (13)

SMSE
(
α̂k

)
=

l∑
j=1

λj

(λj + k)2
+ k2

l∑
j=1

α2
j

(λj + k)2
. (14)

In this study, the biased parameter has estimated as follows

k̂ =
l

α̂T α̂
. (15)

2.2. Two Parameter Ridge Estimator in BRM. Lipovetsky and Conklin [11]
has proposed an objective function for the TPRE as follows

S2 = ||Y −Xβ||2 + q1||β||2 + q2||XTY − β||2 + q3||Y T (Y −Xβ)||2. (16)

The generalization of the TPRE in the BRM obtained from the objective function
given in Eq. (16) is given below

α̂qk = qD−1
k Dα̂ (17)

where k > 0 and q > 0. This estimator is the Bell two-parameter Ridge estimator
(BTPRE) in which BRE and MLE are special cases of it. For example, if q = 1 is
taken in Eq. (17), we can obtain α̂k. If we takes q = 1 and k = 0, α̂MLE can be
obtained. The coefficient of determination for the BTPRE is given in Eq. (18).

R2 = 2qrTD−1
k r − q2rTD−1

k DD−1
k r (18)

where r = XT Ŵ ẑ. In order to maximize the model fit, optimal q is as follow

q =
rTD−1

k r

rTD−1
k DD−1

k r
. (19)

MMSE and MSE are computed as

MMSE(α̂qk) = q2D−1
k DD−1

k + (qD−1
k D − I)ααT (qD−1

k D − I), (20)

MSE(α̂qk) = q2
l∑

j=1

λj

(λj + k)2
+

l∑
j=1

α2
j (qλj − λj − k)2

(λj + k)2
. (21)

In the literature related to biased estimators, there are different estimation equa-
tions for the parameters of the estimators. In order to minimize the MSE in the
BTPRE, the derivatives of Eq. (12) for k and q, respectively, were calculated. The
optimal parameter estimates obtained by equating the equations to zero are given
below.

k =

∑l
j=1 qλj + (q − 1)λ2

jα
2
j∑l

j=1 λjα2
j

(22)
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q =

∑l
j=1

λjα
2
j

λj+k∑l
j=1

λj+λjα2
j

(λj+k)2

(23)

Two methods were used for the proposed BTPRE in this study. First, the
parameters for the BTPRE symbolized as α̂qk1

were calculated by following the
steps below.

Step 1. The initial value is determined so that k̂0 > 1
α̂T α̂

.

Step 2. Calculate q̂ using Eq. (23) with k̂0 given in Step 1.

Step 3. It is calculated as k̂ = 1
l

∑l
j=1

q̂λj+(q̂−1)λ2
j α̂

2
j

λj α̂
2
j

.

Secondly, the TPRE calculated with the following steps is given as α̂qk2 .

Step 1. Calculate the initial value as q0 >
∑l

j=1

λj α̂
2
j

1+λj α̂
2
j
.

Step 2. Eq. (22) using q0 yields k0.
Step 3. q̂ is calculated from Eq. (19).
Step 4. Using Eq. (23), q̂ is updated.

Theorem 1. Let k > 0, BTPRE is superior to MLE if k > λj(q − 1) where
j = 1, ..., l.

Proof. The difference between MSE’s of the MLE and BTPRE is obtained by

δ = MSE(α̂)−MSE(α̂qk)

=

l∑
j=1

1

λj
− q2

l∑
j=1

λj

(λj + k)2
−

l∑
j=1

(qλj − λj − k)2α2
j

(λj + k)2
. (24)

The difference between MSE’s is pozitif definite, if 1
λj

− λj

(λj+k)2 is pozitif. The fact

that δ is a p.d. iff k > λj(q − 1). The proof is finished. □

Theorem 2. Let k > 0, MSE(α̂k)−MSE(α̂qk) > 0, if only q > 1.

Proof. The difference between MSE’s of the BRE and BTPRE is obtained by

δ = MSE(α̂k)−MSE(α̂qk)

=

l∑
j=1

λj

(λj + k)2
+ k2

l∑
j=1

α2
j

(λj + k)2
− q2

l∑
j=1

λj

(λj + k)2
−

l∑
j=1

(qλj − λj − k)2α2
j

(λj + k)2

= (1− q2)

l∑
j=1

λj

(λj + k)2
+

l∑
j=1

[k2 − (qλj − λj − k)2]α2
j

(λj + k)2
. (25)

For the δ to be positive, the difference between variances must be positive. If only
q < 1 then (1− q2) > 0. The proof is completed. □
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3. Simulation Study and Real Data Example

The performances of the estimators are compared according to the MSE criterion
in the simulation and a real data example.

3.1. Simulation Study. The Xn×p independent variable matrix formed in the
studies on biased estimators was created by McDonald and Galarneau [14] using
the equation given in Eq. (26).

xij = (1− ρ2)1/2zij + ρzip, (26)

where ρ is the correlation coefficient. The zij are pseudo random numbers. yn×1 is
generated as

yi ∼ Bell(W0(exp{β0 + β1xi1 + . . .+ βpxip})), (27)

where βp×1 was selected using the method given in [16]. In the simulation study,
the sample size is chosen as n = 50, 100, 150, 200, 250, and 300 , and the correla-
tion coefficient is ρ = 0.90, 0.95, and 0.99, and finally, the number of independent
variables is taken as p = 3, 5, 7.

This study was done in R program [19] with 2000 repetitions. The results ob-
tained by calculating the performances of the estimators with the MSE equation
given in Eq. (28) are given in Table (1)-(3).

MSE(β̂) =
1

2000

2000∑
r=1

(β̂r − β)′(β̂r − β). (28)

When the Tables (1)-(3) are examined, the MSE of all estimators is decreasing
as the sample size increases. As the correlation coefficient increases, the MSE
values of all estimators increase in all scenarios. Similarly, increasing the number
of independent variables negatively affects the performance of the estimators. The
BTPRE has the smallest MSE value for each sample size and correlation coefficient
in all designs. The result is that the proposed estimator is superior to MLE and
BRE. In addition, two different parameter selection methods were used in the study.
It is seen from the MSE values that the method mentioned as BTPRE2 is better
than BTPRE1. It is seen that the smallest MSE value belongs to BTPRE2 for all
cases.

3.2. Real Data Example. In this subsection, an application study is given to
support the simulation study. Mine fracture dataset provided by Myers et al.,
consisting of n=44 observations, was used as the real dataset [15]. Dependent
variable comprises the number of injuries in coal mines in the Appalachian region.
Models used in modelling the dependent variable are PRM, NBRM and BRM.
Akaike Information Information (AIC) value has been used to select the best model
from the Poisson, Negative Binomial and Bell distributions. The results of the
AIC are given in the Table (4). According to the results from the Table (4), the
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Table 1. MSE values for p=3

n ρ β̂MLE β̂k β̂qk1
β̂qk2

0.90 6.73214 5.87381 2.68612 1.68484
50 0.95 9.28130 7.71959 4.12875 2.35018

0.99 33.36669 24.60985 17.43750 7.44138
0.90 5.42670 4.97601 2.19685 1.37202

100 0.95 6.61325 5.79349 2.87992 1.72569
0.99 16.08049 12.06670 7.10425 3.62146
0.90 5.08468 4.78100 2.12913 1.29036

150 0.95 5.83406 5.27756 2.54194 1.50144
0.99 12.69978 9.89156 6.30262 3.24474
0.90 4.93791 4.71320 2.10739 1.25240

200 0.95 5.35580 4.92607 2.41291 1.39102
0.99 10.10888 8.12280 4.82236 2.56908
0.90 4.86601 4.68486 2.02834 1.19642

250 0.95 5.21363 4.87818 2.38204 1.35741
0.99 9.04588 7.37682 4.44209 2.37815
0.90 4.75503 4.60505 2.01804 1.19031

300 0.95 4.89462 4.62580 2.27716 1.31450
0.99 7.99842 6.65926 3.86502 2.15689

appropriate model is chosen as the BRM since the Bell distribution has the smallest
AIC value. Independent variables used in the dataset are as follows

X1: inner burden thickness in feet,
X2: percent extraction of the lower previously pricked mined seam,
X3: the lower seam height
X4: the time that the mine

The number of conditions used to determine whether the multicollinearity oc-
curred in the data set is 296.5585. The correlation chart showing the correlation
between the independent variables is given in Figure 1.

Because of existing multicollinearity, we calculate the MLE, RE and BTPRE
coefficients for the data set. Then, the estimated coefficients, the standard errors
and the square root of MSE values are given in Table (5).

When the Table (5) is examined, it is seen that BTPRE has the smallest MSE.
The real data results show that the performance of the proposed BTPRE is superior
to the MLE and RE, like the simulation studies. In addition, the method used to
estimate k and q parameters in TPRE2 is more effective than that of TPRE1.
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Table 2. MSE values for p=5

n ρ β̂MLE β̂k β̂qk1
β̂qk2

0.90 9.82742 8.67058 2.91611 1.74571
50 0.95 14.70160 12.30335 5.20670 2.66722

0.99 58.62601 43.50621 31.47012 10.27462
0.90 7.71904 7.18999 2.27929 1.36482

100 0.95 9.53292 8.44894 3.16134 1.75353
0.99 30.45618 23.44846 13.20561 5.28299
0.90 7.00468 6.66178 1.99375 1.21469

150 0.95 8.02216 7.27704 2.60181 1.51511
0.99 21.49925 16.84574 8.92770 3.77031
0.90 6.65705 6.41170 1.96885 1.18348

200 0.95 7.47940 6.92626 2.35127 1.33888
0.99 17.04084 13.75045 6.44487 3.01546
0.90 6.51391 6.31932 1.88913 1.15233

250 0.95 6.94140 6.51257 2.27448 1.31927
0.99 14.35469 11.78576 5.82564 2.69328
0.90 6.43463 6.27732 1.87978 1.12367

300 0.95 6.87342 6.33572 2.00512 1.29277
0.99 12.73392 10.52779 4.84047 2.41665

4. Conclusion

PRM and NBRM have been generally used in the modelling of count data. BRM
has been widely preferred as an alternative to these models in recent years. BRM
may be more suitable for modelling overdispersed count data. As seen in the real
data set discussed in the study, the Bell distribution is more convenient than the
alternative distributions. Considering this situation, alternative biased estimators
are proposed for the Bell regression model to handle the multicollinearity problem.

In this article, we propose BTPRE as an alternative to these estimators. It is
concluded from the simulation study and a real data example that the performance
of the proposed estimator is superior to MLE and BRE.
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Table 3. MSE values for p=7

n ρ β̂MLE β̂k β̂qk1
β̂qk2

0.90 14.06553 12.77779 5.05469 2.72267
50 0.95 19.69486 16.76399 6.42533 3.13107

0.99 82.85781 63.98084 55.16817 15.71594
0.90 13.21807 12.63627 4.93636 2.41681

100 0.95 15.44038 14.15015 5.53295 2.74144
0.99 43.16660 34.19774 19.14917 7.47775
0.90 11.84296 11.46179 4.80369 2.39698

150 0.95 14.01502 13.16318 5.12539 2.67410
0.99 31.62615 26.13034 13.52178 5.87188
0.90 11.57151 11.30324 4.51272 2.10850

200 0.95 12.76125 12.16552 4.86460 2.19485
0.99 25.18756 21.20189 10.95476 5.17243
0.90 10.40783 10.19874 3.40672 2.03554

250 0.95 11.78194 11.30935 4.13962 2.10319
0.99 21.31977 18.07933 7.76840 3.92102
0.90 8.88708 8.71718 2.14829 1.34627

250 0.95 11.21841 10.82050 4.07510 2.07894
0.99 18.49267 15.92869 7.09717 3.11654

Table 4. AIC values of dependent variable

POISSON NEGATIVE BINOMIAL BELL
AIC 173.2554 172.3399 169.4784

Table 5. Results of the Mine fracture dataset

β̂0 β̂1 β̂2 β̂3 β̂4 MSE

β̂ 0.00293 -0.01126 0.01819 -0.02384 -4.00837 1.38936
(1.38907) (0.00106) (0.01684) (0.00679) (0.02179)

β̂k 0.00294 -0.01126 0.01819 -0.02384 -3.57858 1.24044
(1.31249) (0.00106) (0.01599) (0.00676) (0.02178)

β̂qk1
0.00322 -0.00545 0.00117 -0.00021 -0.00001 0.00147
(4.00788) (0.00247) (0.06173) (0.00514) (0.02970)

β̂qk2
-0.00294 -0.00140 0.00020 -0.00003 -0.00001 0.00043
(4.00784) (0.00359) (0.06547) (0.00367) (0.02969)
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Figure 1. Correlation chart between independent variables
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