Research Article/Arastirma Makalesi

q

azi

OURMAL OF ENGINEERING SCIENCES

GAZI

Gazi

JOURNAL OF ENGINEERING SCIENCES

Keywords: Compliance
minimization, inertial amplification,
periodic structure, topology
optimization, vibration isolator

" Kirklareli University,

Faculty of Engineering,

Dept. of Mechanical Engineering
39010 - Kirklareli, Ttrkiye
Orcid: 0000-0001-9492-1756
e-mail: osmanyuksel@klu.edu.tr

* Kurklareli University,

Faculty of Engineering,

Dept. of Mechanical Engineering
39010 - Kirklareli, Tarkiye
Orcid: 0000-0002-9601-7119
e-mail: erol.turkes@klu.edu.tr

“Corresponding author: osmanyuksel@klu.edu.tr

Anahtar Kelimeler: esneklik
minimizasyonu, atalet artirima,
periyodik yapi, topoloji
eniyilemesi, titresim yaliticist

Lightweight Periodic Vibration Isolator Design via
Compliant Inertial Amplification Mechanisms with
Stiffness Maximized Topologies

Osman Yiiksel?, Erol Tiirkeg®
Submitted: 28.11.2023 Revised: 20.04.2024 Accepted: 25.04.2024 doi:10.30855/gmbd.0705N13

ABSTRACT

As a novel innovative approach in the literature, periodic structures can be utilized as vibration
isolators. In this paper, vibration isolation performance of a lightweight periodic structure is
studied. The periodic structure is formed by using inertial amplification mechanisms with
stiffness maximized topologies. First of all, inertial amplification concept is introduced on a
lumped parameter model. Then, a compliant inertial amplification mechanism, which is the
repetitive building block of the periodic structure (ie., unit cell), is presented. Topology
optimization is conducted on this mechanism to attain a stiffness maximized unit cell with
reduced weight. After that, a one-dimensional periodic structure is constructed by attaching the
lightweight inertial amplification unit cells with stiffness maximized topologies to each other.
Finally, vibration isolation performance of the constructed periodic structure is demonstrated via
transmissibility plots. It is observed that the designed topologically optimized lightweight
periodic structure provides high performance vibration isolation for a wider frequency range with
the same stiffness value and less weight, compared to the original structure.

Direngenligin Maksimize Edildigi Topolojilere Sahip
Esnek Atalet Artirimi1 Mekanizmalari ile Diigtik
Agirlikli Periyodik Titresim Yaliticis1 Tasarimi

(0 )4

Periyodik yapilarin titresim yaliticisi olarak kullanilmasi son zamanlarda literatiirde karsilagilan
yenilik¢i bir yaklasimdir. Bu makalede, digiik agirlikli bir periyodik yapinin titresim yalitimi
performans: ¢aliglmistir. Periyodik yapi, direngenligin maksimize edildigi topolojilere sahip
atalet artirimi mekanizmalar1 kullanilarak olusturulmustur. ilk olarak, atalet artirmmi kavrami
toplu parametreli bir model tizerinde tanitilmustir. Ardindan, periyodik yapinin tekrar eden yap1
blogu (birim hiicre) olan esnek baglantili bir atalet artirrmi mekanizmasi sunulmustur.
Direngenligin maksimize edildigi disitk agirlikli bir birim hiicre elde etmek i¢in, bu esnek
baglantili mekanizma iizerinde topoloji eniyilemesi gergeklestirilmistir. Daha sonrasinda,
direngenligin maksimize edildigi topolojilere sahip bu disitk agirhikli atalet artirimi birim
hiicreleri birlestirilerek bir boyutlu periyodik bir yap1 elde edilmistir. Son olarak, titresim
iletkenligi grafikleri vasitasiyla, olusturulan periyodik yapinn titresim yalitimi performansi
gosterilmigtir. Tasarlanan topolojik olarak eniyilenmis digitk agirlikli periyodik yapinin, aym
direngenlikteki eniyileme yapilmamus orijinal yapiya nazaran, daha disiik bir agirlik ile ok daha
genis bir bant araliginda yiiksek performansl: titregim yalitimi sagladig saptanmustr.
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1. Introduction

Achieving vibration control is crucial for mechanical and/or civil engineers, since uncontrolled excitations
can result in catastrophic failure situations such as broken apart machine parts and collapsed mechanical
structures. In order to mitigate undesired oscillations, active [1-6] and passive [7-11] vibration control
methods can be employed. Active control methods require power sources and controllers to deal with
mechanical oscillations. On the other hand, propagating waves can be isolated or absorbed by means of
passive methods, without employing any electronic device, power source and circuit.

As a subgenre of passive methods, in vibration isolation technique, excitation source and target structure to
be protected are separated by an object called vibration isolator. Incoming mechanical waves are directed back
to the source by the isolator, hence target end is protected from exposure to excessive oscillations.
Traditionally, vibration isolators are constructed with employing springs and dampers [12,13]. On the other
hand, as an innovative approach, periodic structures can be utilized as passive vibration isolators, as well [14-
18]. These periodic structures can be Bragg [19,20], local resonance [21,22], or inertial amplification [23,24]

types.

In the literature, by employing inertial amplification type periodic structures, one can obtain high
performance vibration isolators, in which satisfactory levels of isolation can be achieved for wide frequency
ranges. Acar and Yilmaz [25] designed a two-dimensional periodic structure via compliant inertial
amplification mechanisms of rectangular type. On that structure, size optimization was performed to enhance
vibration stop band properties in the low frequency region. Taniker and Yilmaz [26] investigated a three-
dimensional periodic structure constructed with lumped parameter inertial amplification mechanisms in face
centered cubic and body centered cubic formations for the purpose of mitigating incoming mechanical
vibrations for the low frequency band. Yuksel and Yilmaz [27] designed a two-dimensional periodic structure
via shape optimized compliant inertial amplification mechanisms to achieve low frequency vibration
isolation. On that study, superiority of shape optimization over size optimization on vibration stop band
characteristics was also demonstrated. Taniker and Yilmaz [28] designed a three-dimensional octahedron
type periodic structure with triangular type compliant inertial amplification mechanisms for the purpose of
achieving three-dimensional vibration isolation for the low frequency region. Frandsen et al. [29] connected
periodic lumped parameter inertial amplification mechanisms to a continuous beam structure for the purpose
of attaining vibration isolation for a certain frequency band. Taniker and Yilmaz [30] designed a one-
dimensional periodic structure via compliant inertial amplification mechanisms with flexure hinges to obtain
an ultrawide vibration stop band for the mechanical waves coming from one direction. Yuksel and Yilmaz
[31] compared size and topology optimized compliant inertial amplification mechanisms with the same mass
regarding to their vibration stop band characteristics. As one suggests, topology optimized periodic structure
provided better vibration isolation for a wider frequency range. Barys et al. [32] composed periodic structures
with lumped parameter inertial amplification mechanisms and local resonators and they compared these
structures with each other. Besides, efficacy of inertial amplification method over local resonance method was
investigated and discussed. Orta and Yilmaz [33] designed a one-dimensional periodic low frequency
vibration isolator by utilizing compliant inertial amplification mechanisms which converts axial motion to
rotary motion. Li et al. [34], formed a periodic structure with composite sandwich beams, which has a lattice
structure constructed with both translational and rotational springs inside and lumped inertial amplification
mechanisms outside. Yuksel and Yilmaz [35] designed a two-dimensional ultrawide low frequency periodic
vibration isolator with topologically optimized compliant inertial amplification mechanisms with flexure
hinge connections and instant center of rotation. The proposed design provided ultrawide vibration isolation
for the low frequency band, for longitudinal and transverse incoming mechanical waves. Muhammad et al.
[36] studied a one-dimensional periodic beam with variable cross-sectional area and attached lumped
parameter inertial amplification mechanisms, in order to mitigate transverse mechanical vibration
propagation along the structure for a certain frequency range. Yuksel and Yilmaz [37] designed a two-
dimensional broadband periodic structure as a vibration isolator with topologically optimized triangular type
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basic compliant inertial amplification mechanisms. Mizukami et al. [38] designed a two-dimensional periodic
vibration isolator utilizing truss type compliant inertial amplification mechanisms with carbon-fiber
composite material. Xi et al. [39], improved a corrugated-core sandwich panel structure’s vibration properties
by using periodically attached lumped parameter inertial amplification mechanisms with four bar
connections. Mi and Yu [40], added periodic lumped parameter inertial amplification mechanisms to the host
structure in order to enhance sound transmission of a beam. Miniaci et al. [41], discussed the effect of prestress
conditions on vibration isolation stop band properties of a periodic structure constructed with rectangular
type compliant inertial amplification mechanisms. Banerjee et al. [42] investigated a lumped parameter
periodic structure’s vibration isolation band gap properties. The periodic structure was composed of periodic
inclusion of lumped inertial amplification mechanisms coupled with local resonators. Li and Zhou [43]
formed a periodic structure by using scissor-like inertial amplification mechanisms to reduce low frequency
vibration transmission. Er et al. [44], conducted a parametric study on basic rhombus type compliant inertial
amplification mechanism configurations to enhance periodic structure’s vibration isolation performance.
Zeng et al. [45] formed a periodic structure using a distributed parameter inertial amplification model with
levered mass configuration. Li et al. [46], examined a periodic structure constructed with lumped parameter
elastic inertial amplification mechanism building blocks. Li et al. [47] analyzed a periodic structure, which set
up by utilizing a nonlinear lumped parameter inertial amplification mechanism model. Li et al. [48] improved
a double beam structure’s vibration characteristic via periodically employing double inertial amplification
mechanisms throughout the body. Ni and Shi [49] proposed a beam structure with periodically attached
levered mass type lumped parameter inertial amplifiers and they studied vibration transmission properties of
the suggested frame. As can be seen from the literature review, there are numerous designs that consider
vibration isolation properties primarily. However, it is also important for the structure to withstand static
loads, as well. To that end, stiffness based optimized isolator designs should also be addressed.

In this study, a one-dimensional periodic vibration isolator is designed using compliant inertial amplification
mechanisms as unit cells. In order to maximize the structure’s stiffness and reduce the material amount used,
topology optimization is conducted on the compliant mechanism. The vibration isolation performance of the
topologically stiffness maximized lightweight periodic structure is demonstrated via transmissibility plots.

2. Inertial Amplification Method

Inertial amplification [23, 24] is one of the stop band generation methods available in the literature [50]. A
stop band is described as a frequency range (band) in which waves cannot propagate [51]. Hence, a structure
with a stop band can be considered to be used as a vibration isolator for the stop band frequency range. Inertial
amplification is a powerful stop band creation method, so that, one can obtain vibration isolation frequency
bands at low frequency regions without decreasing stiffness or increasing mass of an isolator structure.

2.1. Lumped parameter model

In Figure 1, alumped parameter inertial amplification mechanism model [25,27] is shown. In this mechanism,
masses at two ends (donated with m) are connected with a spring with stiffness k, whereas amplifier mass m,
is connected both of the masses m with rigid links. Rigid links and spring do not possess any mass. At the
same time, all masses do not deform, that is to say, they do not have any stiffness value. Hence, the mechanism
shown in Figure 1 indicates a discrete (lumped parameter) model. The acute angle between the rigid links and
the spring is called as 6. The input vibration yis given from the left side and the output vibration x is received
from the right side of the mechanism. Therefore, for small y, and x values, the horizontal displacement of
amplifier mass m, becomes (x+y)/2 whereas, the vertical displacement is (y-x) cot(6)/2 [52].

PRINT ISSN: 2149-4916 E-ISSN: 2149-9373 © 2022 Gazi Akademik Yayincilik 157



Yuksel & Turkes Gazi Muhendislik Bilimleri Dergisi 10(1), 2024

(y — z) cot(6)/2

Figure 1. Lumped parameter inertial amplification mechanism.

The equation of motion of the lumped parameter model provided in Figure 1 can be obtained by employing
the Lagrange method. For this purpose, the kinetic (T) and the potential (V) energies of the system need to

be defined:

N2 S 2
T=§ma [(x:—y) +(yz—xcot9) ] +%m9’cz+%my2 (1)
|4 =§k(x—y)2 (2)

Moreover, the Lagrange function (%) is defined as:

L=T-V 3)

Hence, the Lagrange function of the system shown in Figure 1 becomes:

LN 2 S 2
L=—ma[(x;r—y) +(¥cot9) ]+%m3’c2+%my2 —%k(x—y)2 (4)

Besides, the Lagrange equation for the generalized coordinate x is given as:

i(ﬂ)_a_‘c_o (5)

de \9x ax

Finally, when Equation (5) is solved for Equation (4), the equation of motion is obtained:
[mg (cot? 6 + 1)/4 + m]& + kx = [mg (cot? 8 — 1) /4]y + ky (6)

When the right side of Equation (6) is equated to zero and the left side is solved for the output x, one can

obtain the resonance frequency (wp) as:

k
Wp = \’ mg (cot? 6+1)/4+m 7)

As can be seen from Equation (7), the stiffness value of the system remains as k. On the other hand, by using
displacement amplification mechanism, the single degree of freedom system’s dynamic mass is increased by

mg (cot? 6 + 1) /4 amount compared to the ordinary mass-spring system’s mass m.

Besides, when the left side of Equation (6) is equated to zero and the right side is solved for the input y, one

can obtain the antiresonance frequency (w,) as:

k
“ = freeion ®)

As seen from Equations (7) and (8), mechanism’s resonance frequency (wp) is always lower than its
antiresonance frequency (w,), which implies that the lumped parameter model in Figure 1 is a vibration

isolator of low pass filter type [8]. Vibration transmissibility of this type of isolator can be calculated as a
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function of a given excitation frequency by using input and output displacements (respectively y and x) or

input and output accelerations (respectively ¥ and ¥ ) as [25, 27]:

[x(w)| _ |#(we)l _ |1-(we/w5)?|
TR = = = 9
(@) (el @)l [|1-(we/wp)?| ©)

where w. denotes excitation frequency. When transmissibility value for a given excitation frequency (w.) is
lower than 1, it means less amount of input oscillations sent from one end can arrive to the output end.
Vibration isolation frequency band starts at the frequency limit where the vibration transmissibility value is

equal to 1 [25, 27]:

(10)

For the frequencies, which are higher than the stop band starting frequency wj, vibration transmissibility
value is always lower than 1, hence vibration isolation is achieved. The lumped parameter system in Figure 1
has only one resonance and one antiresonance frequencies. Therefore, vibration stop band created via this

mechanism does not have any upper bound (i.e., semi-infinite stop band).

2.2. Compliant inertial amplification mechanism

In Figure 2, a compliant inertial amplification mechanism [25,27] is presented. In compliant mechanisms,
bearings and hinges are not utilized. Instead, relative motion between the links are achieved as a result of
deflecting flexible members [53]. The compliant inertial amplification mechanism shown in Figure 2 is a
distributed parameter system. Hence, it has multiple resonance and antiresonance frequencies, which imply
that vibration isolation stop band has an upper bound. It has shown in the literature that, inertial amplification
induced vibration stop bands can be created between the first and the second non rigid in plane vibration
modes of the compliant mechanism [25,27]. In Figure 2; I;, I, I, I; denote the lengths and t,, t,, t;, t; denote
the thicknesses of the corresponding beams.

h bt by 13 Ity
/A e i Al B
ét) \\I 8 | é

\ i

17_, h [4, 1y

Figure 2. Compliant inertial amplification mechanism.

In order to perform structural topology optimization on this compliant mechanism, finite element method
needs to be employed. For this purpose, two-dimensional four node eight degrees of freedom square plane
stress finite elements are utilized.

3. Topology Optimization
3.1. General stiffness maximization problem
Topology optimization is the most comprehensive form of structural optimization field since it involves both

size and shape optimization while altering a structure’s topology [54]. For stiffness maximization (i.e.,
compliance minimization) topology optimization problems, for a prescribed loading and boundary
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conditions, the aim is to find the stiffest structure with certain amount of material. The mathematical
description for this kind of optimization problem can be formulated as [55]:

minimize 4 : comp(d) = u’Ku

subjectto : Ku=f (11)
V(d) = aVO
0<d<1

where; u is the global displacement vector, K is the global stiffness matrix, fis the global force vector, V;is the
design domain volume, V(d) is the material volume, a is the volume fraction, dis the design variable vector.
Each finite element constituting the design space has an individual design variable value between 0 (void) and
1 (solid). At the end of the optimization process, the aim is to reach a solid or void type of design.

3.2. Topology optimized compliant inertial amplification mechanism

In the literature it has shown both numerically and experimentally that, various versions of structurally
optimized compliant inertial amplification mechanism given in Figure 2 isolate incoming excitations
effectively for wide frequency bands [25,27,31]. In these optimization studies, vibration isolation frequency
band is increased for a given amount of material, hence for the same mass, vibration isolation is achieved for
wider frequency regions. On the other hand, for some circumstances, it could be desirable for a vibration
isolator to be able to carry load. Therefore, stiffness of a vibration isolator should also be taken into account
in the design process, as well. So far, the effort shown concentrated on increasing the stop band frequency
range. Yet, in this study, another important design criterion, stiffness is considered. In order to observe the
relationship between the stiffness and vibration isolation performance of the compliant mechanism provided
in Figure 2, topology optimization studies are conducted.

Figure 3. Stiffness maximization (compliance minimization) topology optimization problem design space.

In Figure 3, stiffness maximization topology optimization problem design space is shown. A unit static force
is applied on the left side of the mechanism while at the right end pinned boundary condition is employed.
Since, a one-dimensional periodic structure will be formed via incorporating the mechanism in horizontal
alignment, stiffness maximization for this direction is considered. The mechanism has 120 mm length in
horizontal and 60 mm width in vertical dimensions. The finite element discretization of the design space is
120 x 60. That is to say, 7200 four node eight degrees of freedom plane stress elements with 1 mm x 1 mm
dimensions are utilized. Besides, beam dimensions are determined as: ;=4 mm, t; =4 mm, L =4 mm, t,= 1
mm, 3= 48 mm, t; =29 mm, I; = 8 mm, t,= 1 mm. Moreover, the 4th beams connect to the 3rd beams at the
middle. An isotropic material with modulus of elasticity E=210 GPa, Poisson’s ratio v = 0.3 and density p =
7800 kg/m® is considered.
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Figure 4. Compliant inertial amplification mechanism design with 100 % material utilized.

In topology optimization, an open source MATLAB code [55] and a post-processing filter [56] are utilized,
and stiffness maximized inertial amplification mechanisms are obtained for several percent material volume
fraction values. In Figure 4, a design, which has 100 % material utilized, is shown. As can be seen, it is a design
in which the design space in Figure 3 is fully solid. For other material volume fraction values, the optimization
problem presented in Eq. (11) is solved. In Figure 5, several stiffness maximized designs are shown, for which,
100 %, 80 %, 60 % and 40 % material in the design space is utilized. Figure 5, also shows the evolutionary path
of the stiffness maximized mechanism as a function of material percentage utilized. It is important to note
that, optimized structures’ stiffness values almost remain the same. For instance, the difference between the
stiffness values of the mechanism with 100 % material utilized (Figure 5a) and the mechanism with 40 %
material utilized (Figure 5d) is only 0.06 %, which implies that the stiffness values are essentially the same.
Such a result is expected, since the axial stiffness of the mechanism primarily depends on the dimensions of
the flexure hinges (i.e., beams enumarated as 2 and 4) and their connection positions to the remaining parts
(i.e., beams enumarated as 1 and 3) [31,35].

100 % 80 %
(@) (b)
60 % 40 %

(c) (d)

Figure 5. Designs with various material percentages utilized in the design space: (a) design with 100 % material used, (b) design with 80
% material used, (c) design with 60 % material used, (d) design with 40 % material used. To note that, stiffness values for all of the
mechanisms from (a) to (d) are essentially the same (e.g., the difference between the stiffness values for 100 % material utilized design
and 40 % material utilized design is only 0.06 %.)
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Figure 6. Variation of (a) first and (b) second natural frequencies of distributed parameter inertial amplification mechanism model
with respect to % material (volume fraction) of the design space given in Fig. 3. Red cross indicates the values for the topology
optimized design in Fig. 8 and 100 % indicates the values for the design in Fig. 4.

As stiffness of the structure given in Figure 3 essentially remains the same independent of the material amount
used, an optimization process’s rational aim becomes to achieve the widest vibration stop band possible with
the least amount of material utilized. To that end, vibration isolation performance of several stiffness
maximized compliant mechanisms are compared for material volume fraction values of 30 % to 100 %. As the
stop band occurs between the first and the second non rigid in-plane modes of the compliant mechanism [25,
27,31], the lower and the upper limits of vibration isolation frequency region are dictated by these two
frequencies. As a result, in Figure 6 in order to compare stop band widths, the first and the second non rigid
in-plane mode frequency values are tabulated. Moreover, to analyze the stop band width more clearly, the
ratio of these two mode frequencies (i.e., £/f;) are calculated in the literature frequently [25,27,31,57]. In
Figure 7, the variation of £/f; ratio with respect to percent material utilized is shown. As can be seen, the
maximum stop band width is achieved for 78% material volume fraction value with £/f; ratio value of 6.32.
Whereas, for the original mechanism shown in Figure 4 with 100 % material volume fraction value, f/f;ratio
value is found as 5.68. Therefore, as a result of topology optimization, vibration isolation stop band width can
be increased by 11 % by using 22 % less material in the compliant mechanism. The topology optimized
compliant inertial amplification mechanism design with 78 % material volume fraction value is presented in
Figure 8.
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Figure 7. Variation of £/f; ratio with respect to % material (volume fraction). Red cross indicates the values for the design in Figure 8
and 100 % indicates the values for the design in Figure 4.

Figure 8. Topology optimized inertial amplification mechanism, i.e., the design with 78 % material used.

4. Numerical Results

In this section, vibration isolation performance of unit cell and periodic structures are demonstrated via
transmissibility plots and compared.

{.1. Unit cell mechanis

A unit cell is the smallest repeating unit of a periodic structure. The first unit cell considered is the compliant
inertial amplification mechanism design with 100 % material utilized (see Figure 4). The second unit cell is
the topology optimized inertial amplification mechanism with 78 % material used (see Figure 8). The first two
non rigid mode shapes of these two unit cell mechanisms are provided in Figure 9. Both mechanisms perform
similar mode shape motions for their first two modes, which is a result that is in accordance with the literature
[25,27,31]. Note that, for both of the unit cells, vibration isolation stop band starts just above the first natural
frequency and ends just below the second natural frequency, which can be regarded (with small error
introduced) as the stop band limits are f; and £ [25,27,31]. As the stiffness value remains essentially the same,
the first modes appear almost for the same frequency values. The small discrepancy stems from the fact that
topology optimized design has less weight, which shifts the first natural frequency of the topology optimized
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design by a factor of 1/4/m, a result which can be observed in nonlinear behavior seen in Figure 6(a). On the
other hand, as a result of topology optimization, second natural frequency is shifted away for the topology
optimized design compared to the original compliant mechanism.

f,=164.4 Hz f, =176.7Hz
f,=933.2Hz f,=1117.3 Hz

(@ (b)

Figure 9. The first two mode shapes of distributed parameter inertial amplification mechanisms. (a) Compliant mechanism. (b)
Topology optimized mechanism.

102 T T T T T

Compliant mechanism
Topology optimized mechanism

10"

10"

o
EN

Vibration Transmissibility (log)

107 ' ' ' ;
0 200 400 600 800 1000 1200

Frequency (Hz)
Figure 10. Vibration transmissibility comparison of unit cell compliant (red dotted line) and topology optimized (blue solid line)
inertial amplification mechanisms.
In order to compare the vibration isolation performances of the original (Figure 4) and the topology
optimized (Figure 8) unit cell designs, vibration transmissibility plots for these two mechanisms are provided
in Figure 10. As can be seen, for both of the designs, similar vibration isolation levels (around 20 %) are
achieved for most of the stop band. On the other hand, topology optimized design provides wider vibration
stop band compared to the original compliant mechanism. For the original compliant mechanism in Figure
4 vibration isolation is achieved between 174 Hz — 926 Hz, whereas for the topology optimized compliant
mechanism in Figure 8 vibration isolation is obtained between 186 Hz — 1106 Hz. Therefore, by utilizing 22
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% less construction material, topology optimized design provides vibration isolation for wider frequency band
as compared to the original mechanism.

4.2. Periodic structures

In order to achieve high performance vibration isolation, compliant mechanisms demonstrated in Figure 4
and Figure 8 can be used as unit cells to form periodic structures. It has been shown in the literature that,
vibration isolation starting and ending frequencies will be approximately the same as the unit cell
mechanisms’, whereas vibration isolation levels rise as the number of unit cells (compliant mechanisms)
utilized in the periodic structures is increased [25, 27, 31, 35]. In Figure 11, a sample periodic structure, which
is formed via incorporating 3 original compliant inertial amplification mechanisms in a one-dimensional
array, is shown. Input excitation (y) is provided to this periodic structure from one end and output response
(x) is taken from the other end. Then, vibration transmissibility is calculated with finite element method. The
vibration transmissibility of the periodic structure in Figure 11 is demonstrated in Figure 12 as red dashed
line. As can be seen, between 168 Hz — 931 Hz, vibration isolation is achieved. Moreover, in Figure 12, the
effect of employing more mechanisms (unit cells) in the formation of periodic structures are clearly seen. As
the number of, unit cells utilized increases, vibration isolation levels increase, as well. For instance, the
periodic structure formed via incorporating 8 original compliant inertial amplification mechanisms provide
99.9 % vibration isolation for almost entire of the stop band frequency range between 165 Hz - 933 Hz (blue
solid line in Figure 12). Please note that, as the number of unit cell mechanisms utilized in the periodic
structure increase, stop band starting and ending frequencies closely resemble the first and the second natural
frequencies of the unit cell (i.e., f; = 164.4 Hz, £, = 933.2 Hz; also see Figure 9a).

X

%

y
-

Figure 11. Sample periodic structure constructed with 3 compliant unit cell mechanisms given in Figure 4.
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Figure 12. Vibration transmissibility plots of periodic structures formed with various number of compliant unit cell mechanisms
shown in Figure 4.
With the same methodology, periodic structures by utilizing various number of topology optimized unit cell
mechanisms in Figure 8 can be constructed, as well. A sample one-dimensional periodic structure, formed via
incorporating 3 topology optimized inertial amplification mechanisms, is shown in Figure 13. As for the
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previous case, input excitation (y) is provided from one end and output response (x) is taken from the other
end. Consequently, vibration transmissibility is calculated (the red dashed line in Figure 14). Vibration
transmissibilities of periodic structures, formed using several topology optimized inertial amplification
mechanisms as unit cells, are shown in Figure 14. As can be seen, for all of the periodic structures, vibration
isolation frequency range (stop band) closely resembles the first and the second natural frequencies of the
topology optimized design (see Figure 9b). On the other hand, as the number of unit cell mechanisms utilized
in the periodic structure increase, vibration isolation levels increase, as well. For example, for almost all of the
frequency range between 178 Hz - 1117 Hz, 99 % vibration isolation is achieved by the periodic structure
formed via incorporation of 8 topology optimized compliant inertial amplification mechanisms (see the blue
solid line in Figure 14).

y
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Figure 13. Sample periodic structure constructed with 3 topology optimized unit cell mechanisms given in Figure 8.
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Figure 14. Vibration transmissibility plots of periodic structures formed with various number of topology optimized unit cell
mechanisms shown in Figure 8.

As can be observed from Figures 12 and 14, periodic structures formed with topology optimized inertial
amplification mechanisms provide satisfactory vibration isolation for wider frequency range with utilizing
less construction material but having the same axial stiffness value of the original mechanism. In order to
make the comparison more comprehensive, vibration transmissibility plots of two periodic structures formed
with utilizing 8 original and 8 topology optimized mechanisms is shown in Figure 15. As can be seen, topology
optimized periodic structure provides vibration isolation for 11 % wider frequency range by using 22 % less
material. On the other hand, the vibration isolation levels of topology optimized periodic structure is slightly
less than the original periodic structure, i.e., 99 % vs 99.9 %, which is a difference that can be neglected for
practical purposes. Moreover, as the axial stiffness values of the unit cell mechanisms are almost the same,
both periodic structures can withstand the same loading conditions.
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Figure 15. Vibration transmissibility comparison of periodic structures formed with 8 compliant (red dotted line) and 8 topology
optimized (blue solid line) inertial amplification mechanisms.

4.3. Comparison of the results with the literature

Although the compliant inertial amplification mechanism topology represented in Fig. 2 has been studied
before [25,27,28,31,37,58], there is not a study conducted on design of such mechanisms considering stiffness
properties as its main objective function yet. Therefore, this work’s major contribution to the literature is
obtaining a topologically optimized complaint inertial amplification mechanism with maximized stiffness
value. However, a comparison of the results of the current study and the existing ones [27,58] which considers
stiffness as a constraint in their optimization problem formulation can be insightful, as well.

In Yuksel and Yilmaz [27], size optimized and shape optimized mechanisms were designed with each has a
stiffness value of 1000 kN/m. The material selected was steel with modulus of elasticity value of 205 GPa,
Poisson’s ratio value of 0.29 and density value of 7800 kg/m’. Using shell elements in the finite element
analysis, shape optimized design’s fo/f; ratio was calculated as 3.13 whereas, size optimized design has a 2.63
f/f ratio value. Moreover, two dimensional structural area of the designs were each 896 mm?. Again, in Yuksel
and Yilmaz [58], size optimized and shape optimized mechanisms were obtained with each has a stiffness
value of 1000 kN/m. The material selected was steel with modulus of elasticity value of 210 GPa, Poisson’s
ratio value of 0.29 and density value of 7800 kg/m®. Using one dimensional beam elements with eccentricity
in the finite element analysis, shape optimized design’s fi/f; ratio was calculated as 3.34 whereas, size
optimized design has a 2.82 £,/f; ratio value. Besides, two dimensional structural area of the designs were each
961 mm?. As a result, the values obtained for these two studies can be considered as almost identical ignoring
the finite element type utilized and small differences in material area. It should be noted that, in the studies
mentioned in Yuksel and Yilmaz [27] and [58], the objective function was to maximize the ratio of £/fj,
whereas stiffness is given as a constraint of both size and shape optimization problems.

On the other hand, in this study, final topologically optimized design has a stiffness value of 55500 kN/m
which is much higher compared to the designs provided in Yuksel and Yilmaz [27] and [58]. Although the
material properties are similar, the discrepancy stems from thick compliant hinge connections (i.e., 2nd and
4th beams) and the objective function of the topology optimization problem which is stiffness maximization.
Moreover, material area of the current design is 3488 mm?, which is much larger than the structures’ indicated
in Yuksel and Yilmaz [27] and [58]. As a result, a higher value of 6.32 for £/f ratio is achieved. In summary,
a much stiff structure with a broad vibration isolation frequency band is attained with a cost of increased
material area compared to the investigated studies [27,58] that are found in the literature.
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Moreover, as a final comparison with the work of Yuksel and Yilmaz [31] can be done to investigate the
differences between the topologically optimized designs obtained with employment of different objective
functions. In Yuksel and Yilmaz [31], the topology optimization problem’s objective function was the
maximization of the £/f; ratio of the unit cell mechanism. Although the material of construction was steel
with the same modulus of elasticity and Poisson’s ratio values used in this study, the design space was 100
mm by 50 mm, which is significantly smaller than the current study. Since the primary concern was achieving
the highest frequency gap (i.e., vibration stop band) available, fy/f; ratio was obtained as 6.07 as a result of
solution of the dynamic topology optimization problem. f; is achieved at 304.4 Hz whereas £; is achieved at
1847.7 Hz. Material area of the topologically optimized design obtained in Yuksel and Yilmaz [31] is 1512
mm?*which is 56.7 % less than the current design obtained in this study. The discrepancy between the results
obtained from Yuksel and Yilmaz [31] and the current study stems from the fact that, the current study’s
design has much more weight, hence its first natural frequency occurs at 176.7 Hz, which is 41.6 % below than
the design in Yuksel and Yilmaz [31]. In addition to the increase in the weight, the current design is longer
and wider, hence the resulting second frequency is 39.5 % lower than the design in Yuksel and Yilmaz [31].
That, difference makes £,/f; ratio of the design provided in Yuksel and Yilmaz [31] as 3.96 % less than the
current design presented in this study. Moreover, the stiffness value for the design given in Yuksel and Yilmaz
[31] is calculated as 41400 kN/m, which is 25.4 % less than the current design. To sum up, the topologically
optimized mechanism in Yuksel and Yilmaz [31] provides a vibration isolation for a fairly large frequency
range with much less amount of material, which is a result coincides with the objective function of that study,
which is frequency gap maximization. On the other hand, in the current study, the objective function is to
attain the stiffest possible structure, hence a stiffer structure which has approximately the same frequency
range of vibration is achieved at the expense of increasing the optimized mechanism’s weight.

4. Conclusion

In this study, a lightweight periodic structure, which can be used as a high-performance vibration isolator, is
considered. A compliant mechanism’s weight is reduced via topology optimization while stiffness of the
structure is maintained. Among available topology optimized mechanisms, a design which provides vibration
isolation for the widest frequency range possible, is chosen. The selected design has 22 % less weight and
provides vibration isolation for a frequency range which is 11 % higher than the original mechanism. By using
the topology optimized mechanisms, sample periodic structures are formed and vibration transmissibility
plots indicate that high vibration isolation levels can be achieved. It is shown that, a periodic structure formed
with 8 topology optimized mechanisms provide 99 % vibration isolation for almost all of the frequency range
between 178 Hz - 1117 Hz.
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