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ABSTRACT

In this paper, we define a new kind of curve called N -slant curve whose principal normal vector
field makes a constant angle with the Reeb vector field ξ in Sasakian 3-manifolds. Then, we give
some characterizations of N -slant curves in Sasakian 3-manifolds and we obtain some properties
of the curves in R3(−3). Moreover, we investigate the conditions of C-parallel and C-proper mean
curvature vector fields along N -slant curves in Sasakian 3-manifolds. Finally, we study N -slant
curves of type AW (k) where k=1,2 or 3.
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1. Introduction

Characterizations of the special curves such as geodesic, circles, circular helices, general helices, slant helices,
etc. have been studied for a long time. A curve of constant slope or helix is defined by the property that its tangent
vector field makes a constant angle θ with a fixed line l which is axis of the curve in space. A necessary and
sufficient condition that a curve be of constant slope or a general helix is that the ratio of curvature to torsion be
constant. This classical result was stated by Lancret in 1802 (see [18]) and firstly proved by B. de Saint Venant
in 1845 (see [28]). The Lancret theorem was revised and solved by Barros [6] in 3-dimensional real space forms
by using Killing vector fields along curves. Izumiya and Takeuchi [16] have introduced the concept of slant
helices and conical geodesic curves in Euclidean 3-space. A slant helix in Euclidean space E3 is defined by the
property that its principal normal vector field makes a constant angle with a fixed line u. Moreover, they gave
a classification of special developable surfaces under the condition of the existence of such a special curve as a
geodesic.

After that, the notion of slant helix in Euclidean 3-space can be generalized to higher dimensions [1], [2], [29].
Kula and Yaylı [17] studied spherical images of tangent indicatrix and binormal indicatrix of a slant helix and
they showed that the spherical images are spherical helix. Then Okuyucu et al. [21] gave a generalization of
slant helices using the property that its normal vector field makes a constant angle with a left invariant vector
field in a three dimensional compact Lie group G.

As a generalization of Legendre curves, Cho et al. [11] have introduced the notion of a slant curve in Sasakian
3-manifolds. In their study, a curve in a contact manifold is said to be slant curve if its tangent vector field
makes a constant angle with the Reeb vector field ξ. In particular, if the contact angle is equal to

π

2
, then

the curve is called a Legendre curve. Moreover, in another study, Cho et al. [12] showed that biharmonic
curves in 3-dimensional Sasakian space forms are slant helices. Also, Cho et al. [13] construct the slant curves
using the Pseudo-Hermitian connection. Yıldırım [30] obtained curvatures of non-geodesic Frenet curves on
3-dimensional normal almost contact manifolds and provided the results of their characterization.

The mean curvature vector field H of the curve α is defined by H = ∇α′α
′
= κN in 3-dimensional contact

Riemannian manifolds. Lee et al. [20] introduced the notions of C-parallel and C-proper mean curvature
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vector fields along slant curves of Sasakian 3-manifolds in the tangent and normal bundles. They considered
∇α′H = λξ and ∆α′H = λξ (λ ∈ R) corresponding to ∇α′H = λH and ∆α′H = λH, respectively.

The mean curvature vector field H is said to be C-parallel and C-proper mean curvature vector field in the
tangent bundle (or the normal bundle) if ∇α′H = λξ (or ∇⊥

α′H = λξ ) and ∆α′H = λξ (or ∆⊥
α′H = λξ) where

∇ and ∇⊥ denote the operator of covariant differentiation in the tangent bundle and the normal bundle of
Sasakian 3-manifolds, respectively.

After these studies, Özgür and Güvenç [25] studied non-geodesic slant curves in pseudo-Hermitian proper
and pseudo-Hermitian harmonic mean curvature vector fields for the Tanaka-Webster connection in the
tangent and normal bundles, respectively. Also, they obtained some differential equations of slant curves for
Tanaka-Webster connection [26].

In [3], Arslan and West defined the notion of AW(k)-type submanifolds. Then, curvature conditions and
characterizations related to these curves were given in n-dimensional Euclidean space En [4, 23]. Furthermore,
Yoon [31] studied curves of AW(k)-type in the Lie group G with a bi-invariant metric. Also, the characterization
of the general helices in terms of AW(k)-type curve in the Lie group G was given by the same author. Moreover,
The geometry of AW(k)-type submanifolds in different ambient spaces was intensively studied by many
authors [14, 15, 19, 24].

In the present paper, we consider a new kind of curve called N -slant curve whose principal normal vector
field makes a constant angle with the Reeb vector field ξ. Moreover, we introduce the notion of C-parallel and
C-proper mean curvature vector fields along N -slant curves in Sasakian 3-manifolds. Finally, we investigate
N -slant curves of type AW (k) in Sasakian 3-manifolds.

2. Contact Manifolds and Frenet Curves

Let M be a (2n+ 1)-dimensional differentiable manifold which has a global differential 1-form η such that
η ∧ (dη)n ̸= 0 everywhere on M . In this case, M is said to be a contact manifold and η is called a contact form
[7]. M admits a global non-vanishing vector field ξ and a field φ of endomorphisms of tangent spaces.

If φ, ξ, η satisfy
η(ξ) = 1 , φ2 (X) = −X + η(X)ξ , φξ = 0 and η ◦ φ = 0,

then M is called an almost contact manifold with an almost contact structure (φ, ξ, η) .
M becomes an almost contact metric manifold with an almost contact structure (φ, ξ, η, g) if

g (φX,φY ) = g (X,Y )− η(X)η(Y ),
g (X,φY ) = −g (φX, Y ) ,

η(X) = g(X, ξ),
(2.1)

where X,Y ∈ χ(M) and g is a Riemannian tensor of M [8].
Next, we define a 2-form Ω on M by

Ω(X,Y ) = g(φX, Y ),

for all X,Y ∈ χ(M), called the fundamental 2-form of the almost contact metric structure (φ, ξ, η, g) .
If Ω = dη, then M is called a contact metric manifold. Here dη is defined by

dη(X,Y ) =
1

2

(
Xη(Y )− Y η(X)− η([X,Y ])

)
for any X,Y ∈ χ(M).

The Reeb vector field ξ is a unique vector field satisfying

η(ξ) = 1 and dη(ξ,X) = 0,

for all X ∈ χ(M).
(2n+ 1)-dimensional almost contact metric manifoldM is said to be normal if the normality tensor S(X,Y ) =

Nφ(X,Y ) + 2dη(X,Y ) vanishes, where Nφ is the Nijenhuis torsion of φ defined by

Nφ(X,Y ) = [φX,φY ] + φ2[X,Y ]− φ[φX, Y ]− φ[X,φY ] for any X,Y ∈ χ(M).

Also, in 3-dimensional almost contact metric manifolds, Olszak [22] showed that

(∇Xφ)Y = g(φ∇Xξ, Y )ξ − η(Y )φ∇Xξ,
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for all X,Y ∈ χ(M).
(2n+ 1)-dimensional manifold M is called a Sasakian manifold if it is endowed with a normal contact metric

structure (φ, ξ, η, g). We know that an almost contact metric structure on M is a Sasakian structure if and only
if

(∇Xφ)Y = g(X,Y )ξ − η(Y )X, (2.2)

for all X,Y ∈ χ(M) where ∇ is the Levi-Civita connection on M [7]. From the last equation it follows that

∇Xξ = −φX, (2.3)

for all X,Y ∈ χ(M).
1-dimensional integral submanifold of a contact manifold is called a Legendre curve. We know from [5] that

a 3-dimensional contact metric manifold M is a Sasakian manifold if and only if the torsion of its Legendre
curves is equal to 1.

Let us briefly recall some notions and results about the structure of the Sasakian space forms R3(−3).
Consider on R3(−3) with elements of the form (x,y,z), its standard contact structure defined by the 1-form

η =
1

2
(dz − ydx), the characteristic vector field ξ = 2

∂

∂z
and the tensor field φ is defined by the matrix

φ =

 0 1 0
−1 0 0
0 y 0

 .
Then g = η ⊗ η +

1

4
(dx2 + dy2) is an associated Riemannian metric and (R3, φ, ξ, η, g) is a Sasakian form with

constant ϕ-sectional curvature equal to -3, denoted R3(−3) [5]. The vector field{
X = 2

∂

∂y
, φX = 2

(
∂

∂x
+ y

∂

∂z

)
, ξ = 2

∂

∂z

}
(2.4)

form an orthonormal basis in R3(−3) and after some straightforward, one obtains

∇XφX = ξ = −∇φXX,

∇ξX = −φX = ∇Xξ,

∇ξφX = X = ∇φXξ,

∇XX = ∇φXφX = ∇ξξ = 0.

Let α be a curve in a Riemannian 3-manifold parametrized by the arc length with Frenet-Serret apparatus
{T,N,B,κ, τ} . Here T,N,B are orthonormal vector fields and κ, τ are the curvature and torsion of the curve
α, respectively. Then the Frenet-Serret formulas of the curve α satisfy:

∇TT = κN , ∇TN = −κT + τB, ∇TB = −τN, (2.5)

where ∇ is the Levi-Civita connection of M.
Geodesics can be regarded as Frenet curves with κ = 0. Note that, in general, an ambient space (M3, g),

geodesics may have non-vanishing torsion. In fact, as we shall see later, Legendre geodesics in a Sasakian
3-manifold have constant torsion 1 [5].

The Frenet-Serret formulas of the curve α imply that the mean curvature vector field H of a Frenet curve α is
given by

H = ∇TT = κN.

Chen [10] proved the following identity:

∆H = −∇T∇T∇TT. (2.6)

Moreover, the Laplacian of the mean curvature in the normal bundle (see [27]) is defined by

∆⊥H = −∇⊥
T∇⊥

T∇⊥
T T, (2.7)

where T =
.
α and ∇⊥ denotes the normal connection in the normal bundle.
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Lemma 2.1. [4] Let α be a curve in a Riemannian 3-manifold M. Then, we have

∇T∇TT = −κ2T + κ
′
N + κτB (2.8)

∇T∇T∇TT = −3κκ
′
T +

(
κ

′′
− κ

3

− κτ2
)
N +

(
2κ

′
τ + κτ

′
)
B, (2.9)

∇⊥
T∇⊥

T T = κ
′
N + κτB, (2.10)

∇⊥
T∇⊥

T∇⊥
T T =

(
κ

′′
− κτ2

)
N +

(
2κ

′
τ + κτ

′
)
B. (2.11)

.

Definition 2.1. [5] The contact angle between the tangent vector field T of a curve α and the Reeb vector field
ξ is the function ψ : I → [0, 2π) given by:

cosψ (s) = g (T (s), ξ)

Then, the curve α is a slant curve if ψ is a constant function [11]. In particular case of ψ =
π

2

(
or ψ =

3π

2

)
, the

curve α is called a Legendre curve.

Theorem 2.1. [20] A non-geodesic curve in a Sasakian 3-manifold M is a slant curve if and only if η
′
(N) = 0 and the

ratio of τ − 1 to κ is constant.

3. N -Slant Curves in Sasakian 3-Manifolds

In this section, we give the definition of the N -slant curve and its axis in Sasakian 3-manifold M with a
contact metric g. Also, we give some characterizations of such a curve.

Definition 3.1. Let α : I ⊂ R →M be a Frenet curve parametrized by arc length in a Sasakian 3-manifold M
with Frenet apparatus {T,N,B,κ, τ}. Then the curve α is called an N -slant curve if its normal vector field N
makes a constant angle with the Reeb vector field ξ . That is,

η (N(s)) = g (N(s), ξ(s)) = cos θ for all s ∈ I, (3.1)

where θ is a constant angle between the Reeb vector field ξ and the normal vector field N of the curve α.

Claim 1. Let α : I ⊂ R →M be a Frenet curve parametrized by arc length in a Sasakian 3-manifold M with
Frenet apparatus {T,N,B,κ, τ}. If we assume that θ is equal to

π

2
, then η′ (N(s)) = 0 and the ratio of τ − 1 and

κ of the curve α is a constant. Then, it follows from Theorem 2.1 that the curve α is a slant one. Consequently,
we see that N -slant curves are a generalization of slant curves in Sasakian 3-manifolds.

After the above Claim, we consider θ ̸= π

2
for an N -slant curve in Sasakian 3-manifolds throught the paper.

Definition 3.2. Let α : I ⊂ R →M be a non-geodesic Frenet curve parametrized by arc length in a Sasakian
3-manifold M with Frenet apparatus {T,N,B,κ, τ}. Then the harmonic curvature function of the curve α is
defined by

H =
τ − 1

κ , (3.2)

where κ and τ are the principal curvature and torsion of the curve α, respectively.

From now on, we work with N -slant curves but not slant curves, otherwise H is constant.

Lemma 3.1. [9] Let α : I ⊂ R →M be a Frenet curve parametrized by arc length in a Sasakian 3-manifold M with
Frenet apparatus {T,N,B,κ, τ}. Then the following equalities

φT = η (B)N − η (N)B,

φN = η (T )B − η (B)T,

φB = η (N)T − η (T )N,

hold.
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O. Ates, İ. Gök & Y. Yaylı

Our next result gives a decomposition of the Reeb vector field ξ in the Frenet frame of the curve α.

Proposition 3.1. Let α : I ⊂ R →M be a Frenet curve parametrized by arc length in a Sasakian 3-manifold M with
Frenet apparatus {T,N,B,κ, τ}. If the curve α is an N -slant curve in M , then the unique Reeb vector field ξ of the curve
α is

ξ =

{
κH

(
1 +H2

)
Hp T +N +

κ
(
1 +H2

)
Hp B

}
cos θ, (3.3)

where H =
τ − 1

κ is the harmonic curvature function of the curve α and θ ̸= π

2
is a constant angle.

Proof. Let α : I ⊂ R →M be a non-geodesic Frenet curve parametrized by arc length in a Sasakian 3-manifold
M with Frenet apparatus {T,N,B,κ, τ}. Then the unique Reeb vector field ξ of the curve α is written by

ξ = λ1T + λ2N + λ3B,

where λ1 = η (T ) , λ2 = η(N) and λ3 = η (B) .
From Definition 3.1, we know

g (N(s), ξ(s)) = cos θ for all s ∈ I.

By differentiating the last equality, we get

g (∇TN, ξ) + g (N,∇T ξ) = 0,

from (2.3) and using the Frenet-Serret formulas, we have

−κg (T, ξ) + τg (B, ξ)− g (N,φ (T )) = 0,

then with the help of the Lemma 3.1, we find

−κg (T, ξ) + (τ − 1) g (B, ξ) = 0.

Using the Definition 3.2, we obtain
g (T, ξ) = Hg (B, ξ) . (3.4)

Differentiating the (3.4) with respect to s, we have

g (∇TT, ξ) + g (T,∇T ξ) = Hpg (B, ξ) +H
(
g (∇TB, ξ) + g (B,∇T ξ)

)
.

Further on using (2.5) and the Lemma 3.1, we obtain

κg (N, ξ) = Hpg (B, ξ)−H (τ − 1) g (N, ξ) ,

which implies that

g (B, ξ) =
κ
(
1 +H2

)
Hp g (N, ξ) . (3.5)

Plugging (3.5) into (3.4), we immediately get

g (T, ξ) =
κH
Hp

(
1 +H2

)
g (N, ξ) .

Consequently, combining the relations (3.1), (3.4) and (3.5) the Reeb vector field ξ of the curve α is given by

ξ = cos θ

{
κH

(
1 +H2

)
Hp T +N +

κ
(
1 +H2

)
Hp B

}
, (3.6)

which completes the proof.

Theorem 3.1. Let α : I ⊂ R →M be a non-geodesic Frenet curve parametrized by arc length in a Sasakian 3-manifold
M with Frenet apparatus {T,N,B,κ, τ}. Then α is a N -slant curve if and only if

κ(1 +H2)
3
2

Hp = tan θ is a constant, (3.7)

where H is the harmonic curvature function of the curve α and θ ̸= π

2
is a constant angle.
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Proof. We know that ξ is a unique Reeb vector field of the curve α. By a straightforward computation, using
(3.6), we can obtain that

κ(1 +H2)
3
2

Hp = tan θ

is a constant function. Conversely, assume that the condition (3.7) is satisfied. Let be the Reeb vector field ξ as
follows:

ξ = ρ1T + cos θN + ρ3B. (3.8)

Differentiating the (3.8) and using (2.3) with the Lemma 3.1, we obtain

ρ1 = ρ3H,
ρ′1 = κ cos θ,

ρ′3 = −κH cos θ.

(3.9)

Then from (3.9), we have

ρ3 =
κ
(
1 +H2

)
Hp cos θ. (3.10)

Finally, we are able to write the Reeb vector field

ξ = cos θ

{
κH

(
1 +H2

)
Hp T +N +

κ
(
1 +H2

)
Hp B

}
. (3.11)

This means that the curve α is an N -slant curve, concluding the proof.

Remark 3.1. It is important to notice here that Izumiya obtained an analogue result (Prop.2.1, [16]) for Euclidean
spaces.

With the help of Theorem 3.1, we can easily reconstruct the Proposition 3.1 and give the following Corollary.

Corollary 3.1. Let α : I ⊂ R →M be a non-geodesic Frenet curve parametrized by arc length in a Sasakian 3-manifold
M with Frenet apparatus {T,N,B,κ, τ}. If the curve α is an N -slant curve, then the unique Reeb vector field ξ of the
curve α is

ξ = cos ϵ(s) sin θT + cos θN + sin ϵ(s) sin θB, (3.12)

where ϵ(s) = arccos

(
H√

1 +H2

)
.

Now, we may give some results for N -slant curves in R3(−3).

Proposition 3.2. Let α : I ⊂ R → R3(−3) is a non-geodesic N -slant curve parametrized by arc length in a Sasakian
3-manifold R3(−3) with Frenet apparatus {T,N,B,κ, τ}. Then T,N and B of the curve α can be expressed as follows:

T =

(
sin ϵ(s) sinϖ (s)− cos ϵ(s) cos θ cosϖ (s)

)
X

−
(
cos ϵ(s) cos θ sinϖ (s) + sin ϵ(s) cosϖ (s)

)
φX + cos ϵ(s) sin θξ,

N = sin θ cosϖ (s)X + sin θ sinϖ (s)φX + cos θξ,

B =

(
− cos ϵ(s) sinϖ (s)− sin ϵ(s) cos θ cosϖ (s)

)
X

−
(
sin ϵ(s) cos θ sinϖ (s)− cos ϵ(s) cosϖ (s)

)
φX + sin ϵ(s) sin θξ (3.13)

for some function ϖ(s).

Proof. If we decompose the normal vector field N as
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N = µ1X + µ2φX + cos θξ,

then, we have µ2
1 + µ2

2 = sin2 θ. So, it follows that µ1 = sin θ cosϖ(s) and µ2 = sin θ sinϖ(s).
Now using the Lemma 3.1 and formulas (2.1), we obtain the above equalities of T and B.

Corollary 3.2. Let α : I ⊂ R → R3(−3) is a non-geodesicN -slant curve parametrized by arc length in a Sasakian 3-
manifold R3(−3) with Frenet curvatures κ and τ . Then the curvatures are represented by the following

κ = sin θ sin ϵ(s)

(
ϖ′(s)− 2 sin θ cos ϵ(s)

)
,

τ = sin θ cos ϵ(s)

(
ϖ′(s)− 2 sin θ cos ϵ(s)

)
+ 1,

for some function ϖ(s) where ϵ(s) = arccos

(
H√

1 +H2

)
.

Theorem 3.2. Let α : I ⊂ R → R3(−3) be a non-geodesic N -slant curve (θ ̸= 0, π) in a Sasakian 3-manifold R3(−3)
with the curvature κ. Then its torsion is

τ =
κ(s) cot θ

∫
κ(s)ds√

1−
(
cot θ

∫
κ(s)ds

)2
+ 1. (3.14)

Proof. Let α be a non-geodesic N -slant curve in a Sasakian 3-manifold R3(−3). Differentiating the formula

g(T, ξ) = η(T ) = cos ϵ(s) sin θ,

along α, it follows that

sin θ(cos ϵ(s))′ = κ(s)g(N, ξ) + g(T,−φT ) = κ(s) cos θ.

Hence, we compute

cos ϵ(s) = cot θ

∫
κ(s)ds. (3.15)

As H =
τ(s)− 1

κ(s) = cot ϵ(s), we have

τ(s) = κ(s) cot ϵ(s) + 1. (3.16)

Plugging (3.15) into (3.16), we obtain (3.14).

Example 3.1. Let α : I ⊂ R → R3(−3) is a non-geodesic N -slant curve parametrized by arc length in a
Sasakian 3-manifold R3(−3) with Frenet apparatus {T,N,B,κ, τ}. Consider on R3(−3) with elements x,y,z
with orthonormal basis (2.4). The tangent vector field can be expressed as

T = α′(s) = (x′, y′, z′).

Here, the tangent vector T of α is also reprensented by the following

T =
y′

2
X +

x′

2
φX +

(
z′ − x′y

2

)
ξ.

Using the above formulas for the Levi-Civita connection, we have

∇TT = κN =

(
y′′

2
+ x′

(
z′ − x′y

2

))
X +

(
x′′

2
− y′

(
z′ − x′y

2

))
φX +

(
z′′

2
− x′′y − x′y′

2

)
ξ. (3.17)

It follows that
z′′ − ∂

∂s
(x′y) = 2 cos θκ(s). (3.18)
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After integration we obtain,

z′ − x′y = 2 cos θ

∫
κ(s)ds = 2 sin θ cos ϵ(s). (3.19)

From the arc-length parametrization condition, we have

x′2 + y′2 + (z′ − x′y)2 = x′2 + y′2 + 4 sin2 θ cos2 ϵ(s) = 4. (3.20)
Finally, the tangent vector fields T of the curve α is represented

x′(s) = 2 sin ϵ(s),

y′(s) = 2 cos θ cos ϵ(s),

z′(s) = 2 sin θ cos ϵ(s) + 4 cos θ sin ϵ(s)

∫
cos ϵ(s)ds.

We take for example cos ϵ(s) = cos(s) and θ =
π

4
. Then we may find an explicit parametric equations of

N−slant curves with ξ =
√
2

2

(
cos(s)T +N + sin(s)B

)
which are not slant curves.

x(s) = −2 cos(s) + c1,

y(s) =
√
2 sin(s) + c2,

z(s) =
√
2 sin(s)−

√
2

2
sin(2s) +

√
2s+ c3,

where c1, c2 and c3 are constants. Finally, from (3.15) and (3.16) we find κ = − sin(s) and τ = 1− cos(s).

4. C-Parallel and C-Proper Mean Curvature Vector Fields along N -Slant Curves in
Sasakian 3-Manifolds

4.1. C-Parallel Mean Curvature Vector Field

For a non-geodesic N -slant curve α in a Sasakian 3-manifold M , using the equations (2.8) and (3.12), we find
that the curve α satisfies ∇TH = λξ if and only if

−κ2 = λ cos ϵ(s) sin θ, (4.1)

κ
′
= λ cos θ, (4.2)

κτ = λ sin ϵ(s) sin θ, (4.3)

where λ is a real constant.

Theorem 4.1. Let α be a non-geodesic N -slant curve in a Sasakian 3-manifold M . Then α has a C-parallel mean
curvature vector field if and only if the curve α has the curvature κ and the torsion τ related by κ2 + τ2 = τ where

κ = (λ cos θ) s+ s0 and τ =
1

2
±

√
1

4
−
(
(λ cos θ) s+ s0

)2

where s0 is a non zero constant.

Proof. Assume that α be a non-geodesic N -slant curve which has a C-parallel mean curvature vector field.
From (4.1) and (4.3), we have

τ2 − τ + κ2 = 0. (4.4)
After integration (4.2), we obtain

κ = (λ cos θ) s+ s0. (4.5)

Combining with (4.4) and (4.5), we get τ =
1

2
±

√
1

4
−
(
(λ cos θ) s+ s0

)2

.

Remark 4.1. If we consider that λ is equal to zero in equality ∇TH = λξ , we have Corollary 4.3 in [20]. Also,
Özgür and Tripathi [24] showed that Legendre curves satisfying ∇TH =0 in a Sasakian 3-manifold M are
geodesics.
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4.2. C-Proper Mean Curvature Vector Field

For a non-geodesic N -slant curve in a Sasakian 3-manifold M , using the equations (2.9) and (3.12), we find
that the curve α satisfies ∆TH = λξ if and only if

3κκ
′
= λ cos ϵ(s) sin θ, (4.6)

−κ
′′
+ κ

3

+ κτ2 = λ cos θ, (4.7)

−2κ
′
τ − κτ

′
= λ sin ϵ(s) sin θ, (4.8)

where λ is a real constant.

Theorem 4.2. Let α be a non-geodesic N -slant curve in a Sasakian 3-manifold M . Then α has a C-proper mean
curvature vector field if and only if α is a circular helix with λ = κ3 + κτ2 where κ and τ ̸= 1 are non zero constants

(θ = 0) or α has the curvature κ =

√(
2
3λ sin θ

∫
cos ϵ(s)ds

)
and the torsion τ satisfy the following non-linear relation

3κ2κ′
= (1− τ)(2κ′

τ + κτ ′
) (θ ̸= 0).

Proof. Assume that α be a non-geodesic N -slant curve with C-proper mean curvature vector field.
(i) The case of θ = 0 : From (4.6) and (4.8), we can easily see that κ and τ are non zero constant. It follows

that λ = κ3 + κτ2.

(ii) The case of θ ̸= 0 : It is clearly obtained from the integrating (4.6) that κ =

√(
2
3λ sin θ

∫
cos ϵ(s)ds

)
.

Moreover, from (4.6) and (4.8), we have 3κ2κ′
= (1− τ)(2κ′

τ + κτ ′
).

Remark 4.2. Let α be anN -slant curve in a Sasakian 3-manifoldM . Then λ is equal to zero in equality ∆TH = λξ
if and only if α is a geodesic [20]. Also, Özgür and Tripathi [24] showed that Legendre curves satisfying ∆TH =0
in a Sasakian 3-manifold M are geodesics.

4.3. C-Parallel Mean Curvature Vector Field in the Normal Bundle

For a non-geodesic N -slant curve α in a Sasakian 3-manifold M , using the equations (2.10) and (3.12), we
find that the curve α satisfies ∇⊥

TH = λξ if and only if

λ cos ϵ(s) sin θ = 0, (4.9)

λ cos θ = κ
′
, (4.10)

λ sin ϵ(s) sin θ = κτ, (4.11)

where λ is a real constant.

Theorem 4.3. Let α be a non-geodesic N -slant curve in a Sasakian 3-manifold M . Then α has a C-parallel mean
curvature vector field in the normal bundle if and only if α has the curvature κ = λs+ c and the torsion τ = 0 where c
and λ ̸= 0 are real constants.
Proof. Assume that α is a non-geodesicN -slant curve withC-parallel mean curvature vector field in the normal
bundle. Then from (4.9) and (4.11), we obtain that τ = 0. or τ = 1. Let τ be equal to zero, then using (4.11), we
see that θ = 0 or θ = π and it has the curvature κ = λs+ c. Now, considering the curve α is a Legendre curve.
From (4.10) and (4.11) we have λ cos θ = 0. Since θ ̸= π

2
, this case is not possible.

Remark 4.3. Let α be anN -slant curve in a Sasakian 3-manifoldM . Then λ is equal to zero in equality ∇⊥
TH = λξ

if and only if the curve α becomes a circle as κ is a non zero constant and τ = 0 [20].

4.4. C-Proper Mean Curvature Vector Field in the Normal Bundle

For a non-geodesic N -slant curve α in a Sasakian 3-manifold M , using the equations (2.11) and (3.12), we
find that the curve α satisfies ∆⊥

TH = λξ if and only if

λ cos ϵ(s) sin θ = 0, (4.12)

λ cos θ = −κ
′′
+ κτ2, (4.13)

λ sin ϵ(s) sin θ = −2κ
′
τ − κτ

′
, (4.14)
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where λ is a real constant.

Theorem 4.4. Let α be a non-geodesicN -slant curve in a Sasakian 3-manifoldM . Then α has aC-proper mean curvature
vector field in the normal bundle if and only if we have following cases

i) The case of λ = 0 : The curve α has the curvatures

κ =
1

c0

(
c1 −

(
c20s+ c2

)2) 1
2

and τ =
c0
κ2
,

where c0 ̸= 0, c1, c2 are real constant.
ii) The case of λ ̸= 0 : The curve α is a Legendre helix with curvature κ = λ cos θ or the curvature of the curve

α satisfies the following differential equation κ′
= ±

(
2λκ + c0κ−2 + d1

) 1
2 and its torsion is τ =

c0
κ2
,where c0, d1

are real constant.

Proof. Assume that α is a non-geodesic N -slant curve with C-proper mean curvature vector field in the normal
bundle.
(i) The case of λ = 0 : From (4.14), we have 2κ′

τ + κτ ′
= 0. It follows τ =

c0
κ2
. Plugging the last equality into

(4.13), we obtain the following differential equation

κ
′′
− c0

κ3
= 0.

One immediately gets the solution, namely

κ =
1

c0

(
c1 −

(
c20s+ c2

)2) 1
2

.

(ii) For the case of λ ̸= 0, from (4.12) and (4.14), we can easily see that
(
2κ′

τ + κτ ′
)
(τ − 1) = 0. Considering

τ = 1, we get κ = λ cos θ. Then, considering 2κ′
τ + κτ ′

= 0, we obtain

κ
′
= ±

(
2λκ + c0κ−2 + d1

) 1
2 and τ =

c0
κ2
.

5. N -Slant Curves of AW (k)-Type in Sasakian 3-Manifolds

In [4], Arslan and Özgur studied curves of AW (k)-type. In this section, we investigate N -slant curves of type
AW (k) from the viewpoint of Sasakian 3-Manifolds and we find necessary and sufficient conditions for them.

Proposition 5.1. Let α : I ⊂ R →M be a Frenet curve parametrized by arc length in a Sasakian 3-manifold M with
extended Frenet apparatus {T,N,B,κ, τ,H} then

α′(s) = T (s),

α
′′
(s) = ∇TT (s) = κ(s)N(s),

α
′′′
(s) = ∇T∇TT (s) = −κ2(s)T (s) + κ′(s)N(s) +

(
κ2(s)H(s) + κ(s)

)
B(s),

α
ıv

(s) = ∇T∇T∇TT (s)
= −3κ(s)κ′(s)T (s) +

{
κ′′(s)− κ3(s)− κ3(s)H2(s)− 2κ2(s)H(s)− κ(s)

}
N(s)

+

(
3κ(s)κ′(s)H(s) + κ2(s)H′(s) + 2κ′(s)

)
B(s).

(5.1)

As a notion, we can easily obtain that

N1(s) =
(
α

′′
(s)
)⊥

= κ(s)N(s),

N2(s) =
(
α

′′′
(s)
)⊥

= κ′(s)N(s) +

(
κ2(s)H(s) + κ(s)

)
B(s),

N3(s) =
(
α

ıv

(s)
)⊥

=

(
κ′′(s)− κ3(s)− κ3(s)H2(s)− 2κ2(s)H(s)− κ(s)

)
N(s)

+

(
3κ(s)κ′(s)H(s) + κ2(s)H′(s) + 2κ′(s)

)
B(s).

(5.2)
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Definition 5.1. [4] Let α : I ⊂ R →M be an arclenghted Frenet curve of order 3. Then

(i) The curve α is of type AW (1) if it satisfies

N3(s) = 0, (5.3)

(ii) The curve α is of type AW (2) if it satisfies

∥N2(s)∥2 N3(s) = ⟨N3(s),N2(s)⟩N2(s), (5.4)

(iii) The curve α is of type AW (3) if it satisfies

∥N1(s)∥2 N3(s) = ⟨N3(s),N1(s)⟩N1(s). (5.5)

Proposition 5.2. [4] Let α : I ⊂ R →M be a Frenet curve parametrized by arc length in a Sasakian 3-manifold M. By
using Definition 5.1, we obtain

(i) The curve α is of type AW (1) if and only if

κ′′(s)− κ3(s)− κ(s)τ2(s) = 0, (5.6)

τ(s) =
c0

κ2(s)
, c0 ∈ R

(ii) The curve α is of type AW (2) if and only if

2(κ′(s))2τ(s) + κ(s)κ′(s)τ ′(s) = κ(s)κ′′(s)τ(s)− κ4(s)τ(s)− κ2(s)τ3(s), (5.7)

(iii) The curve α is of type AW (3) if and only if

2κ′(s)τ(s) + κ(s)τ ′(s) = 0, (5.8)

and the solution of this differential equation is τ(s) =
c0

κ2(s)
, c0 ∈ R.

Theorem 5.1. Let α be a non-geodesic N -slant curve in a Sasakian 3-manifold M . Then the curve α is of type AW (1) if
and only if its curvature κ satisfies the following differential equation

κ′(s)

(
κ2(s)− 3c0

)
= d0

(
κ2(s) +

(
c0 − κ2(s)

)2
κ4(s)

) 3
2

, (5.9)

where c0, d0 are real constants.

Proof. Assume that α is a non-geodesic N -slant curve which is of type AW (1). The equations (3.7) and (5.6)
give us

κ(s)(1 +H2)
3
2

Hp = tan θ = d0, (5.10)

τ =
c0

κ2(s)
. (5.11)

Then differentianting last equality, we get

τ ′(s) =
−2c0κ′(s)

κ3(s)
. (5.12)

Plugging (5.11) and (5.12) into (5.10), we obtain

κ′(s)
(
κ2(s)− 3c0

)
= d0

(
κ2(s) +

(
τ(s)− 1

)2) 3
2

. (5.13)

Consequently, if we consider the equations (5.11) in (5.13), we get the (5.9) where c0, d0 ∈ R.
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Theorem 5.2. Let α be a non-geodesic N -slant curve in a Sasakian 3-manifold M . Then the curve α is of type AW (2) if
and only if its curvature κ satisfies the following differential equation

3
(
κ′(s)

)2
τ(s)−

(
κ′(s)

)2 − d0κ′(s)

(
κ2(s) +

(
τ(s)− 1

)2) 3
2

= κ(s)κ′′(s)τ(s)− κ4(s)τ(s)− κ2(s)τ3(s),

where d0 ∈ R.

Proof. Assume that α be a non-geodesic N -slant curve which is of type AW (2). We have

τ
′
(s) =

κ′(s)(τ(s)− 1)− d0(κ2(s) + (τ(s)− 1)
2

)
3
2

κ(s) . (5.14)

Consequently, using the equations (5.7) and (5.14), we obtain

3
(
κ′(s)

)2
τ(s)−

(
κ′(s)

)2 − d0κ′(s)

(
κ2(s) +

(
τ(s)− 1

)2) 3
2

= κ(s)κ′′(s)τ(s)− κ4(s)τ(s)− κ2(s)τ3(s)

.

Theorem 5.3. Let α be a non-geodesic N -slant curve in a Sasakian 3-manifold M . Then the curve α is of type AW (3) if
and only if its curvature κ satisfies the following differential equation(

κ2(s)− 3c0
)
κ′(s)

κ2(s)
= d0

(
κ2(s) +

(
c0 − κ2(s)

)2
κ4(s)

) 3
2

, (5.15)

where c0, d0 ∈ R

Proof. Assume that α is a non-geodesic N -slant curve is of type AW (3). From (5.8) we know that, 2κ′(s)τ(s) +

κ(s)τ ′
(s) = 0 and τ =

c0
κ2(s)

. Consequently, substituting the last equations into (5.14), we obtain (5.15).
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