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Abstract. Suppose that (M,G) be a Riemannian manifold and f : M → R be a submersion. Then the vertical
lift of f , f v : T M → R defined by f v = f ◦ π is also a submersion. This interesting case, differently from [10],
leads us to investigation of the level hypersurfaces of f v in tangent bundle T M. In this paper we obtained some
differential geometric relations between level hypersurfaces of f and f v. In addition, we noticed that, unlike [13], a
level hypersurface of f v is always lightlike, i.e., it doesn’t depend on any additional condition.
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1. Introduction

We denote by ℑ0
0 (M) the algebra of smooth functions on M. We consider f ∈ ℑ0

0 (M) , the vertical lift of f to
tangent bundle T M is defined by f v = f ◦ π. From definition of f v we say that f v is induced by f . In this case some
geometrical relations can be found between the level hypersurfaces of f and f v. A similar study was conducted by M.
Yıldırım [13] in 2009 and some important relations are obtained.

We need some tools to do these investigations. These tools are vertical and complete lifts of differentiable elements
defined on M. The notion of vertical and complete lift was introduced by K. Yano and S. Kobayashi in [12]. By using
these lifts, in [10], M. Tani introduced the notion of prolongations of hypersurfaces to tangent bundle.

In [10], Tani showed that there exist some geometrical relations between the geometry of S in M and TS in T M
for a given hypersurface S . We should emphasize here that in Tani’s study [10], complete lift metric on T M was taken
into consideration. In [11], it is stated that this metric is a semi-Riemannian metric with n − index. In this case, the
geometry of the level hypersurfaces of f v is examined within the (T M,Gc) semi-Riemann structure. In this study, it
has been seen that all level surfaces of f v are lightlike hypersurfaces.

Lightlike hypersurfaces of semi-Riemannian manifolds have been studied by Many authors [2, 6–8] and others.
In this paper, we discuss the relationships between the geometry of level surfaces of a real-valued function and its

vertical lift. The importance of this paper is that, differently from [10], we find a class of hypersurfaces in tangent
bundle T M such that these are derived from hypersurfaces in M. Because, in [10] obtained submanifold in TM such
that it is tangent to original submanifold in M, but it isn’t so in this work.

In last section, we establish lightlike structure on a level hypersurface of vertical lift of f and see that fundamen-
tal notions of degenerate submanifold geometry were obtained by a natural way. That is, we needn’t to any strong
condition. This case shows that the problem, studied here, is completely suitable and interesting.
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In section 2, we shall give an introductory information. In section 3, we shall show that the vertical lift of a
submersion is also a submersion and its any level set is a hypersurface (denoted by S̄ ) in tangent bundle. In section 4,
we obtain Gauss and Weingarten formulas for S̄ . In addition, it is obtained that S̄ is a semi-Riemannian hypersurface
with index n − 1 with respect to Gc (G is a Riemannian metric on M). In section 5, we give a lightlike (null) structure
on S̄ . In addition, considering the lightlike structure on S̄ we obtain some geometrical relations between the level
hypersurfaces of f and S̄ as well.

2. Notations and Preliminaries

Let M be an n- dimensional differentiable manifold. We denote by T M its tangent bundle with the projection
πM : T M −→ M and by Tp(M) its tangent space at a point p of M. ℑr

s (M) is the space of tensor fields of class C∞ and
of type (r, s). An element of ℑ0

0 (M) is a C∞ function defined on M. V be a coordinate neighborhood in M and (xi) ,
1 ≤ i ≤ n, are certain local coordinates defined in V . We introduce a system of coordinates (xi, yi) in π−1

M (V) such that
(yi) are cartesian coordinates in each tangent space Tp(M), p being an arbitrary point of V , with respect to the natural
frame ( ∂

∂xi ) of local coordinates (xi). We call (xi, yi) the coordinates induced in π−1
M (V) from (xi). We suppose that all

the used maps belong to the class C∞ and we shall adopt the Einstein summation convention through this paper.
Now, we must recall the definition of vertical and complete lifts of differentiable elements defined on M. Let f , X,w,

G, F and ∇̂ be a function, a vector field, a 1-form, a tensor field of type (0, 2), (1, 1)- tensor and a linear connection,
respectively. We denote by f v, Xv,wv , Gv and Fv the vertical lifts and by f c, Xc,wc, Gc , Fc and ∇̂c the complete lifts,
respectively. For a function f on M, we have

f v = f ◦ πM ,

f c = yi ∂ f
∂xi ,

with respect to induced coordinates. Moreover, these lifts have those properties:

( f X)v = f vXv, FcXc = (FX)c,
( f X)c = f vXc + f cXv, FcXv = (FX)v,
Xv f v = 0, FvXc = (FX)v,
Xc f c = (X f )c, FvXv = 0,
[X,Y]c = [Xc,Yc], Gc(Xv,Yv) = 0,
[Xv,Yv] = 0, Gc(Xc,Yc) = (G(X,Y))c,

wc(Xc) = (w(X))c, ∇̂c
Xc Yc = (∇̂XY)c,

wv(Xv) = 0, ∇̂c
Xv Yv = 0,


(2.1)

Xv f c = Xc f v = (X f )v,
wv(Xc) = wcXv = (w(X))v,
[X,Y]v = [Xv,Yc] = [Xc,Yv],
Gc(Xv,Yc) = Gc(Xc,Yv) = (G(X,Y))v,

∇̂c
Xv Yc = ∇̂c

Xc Yv = (∇̂XY)v


(2.2)

(cf. [11]). Hence, it is easily seen that if G is a Riemannian metric on M, then Gc is a semi Riemannian metric
on T M and index of G is equal to dimension of M. Thus, if (M,G) is a Riemannian manifold then (T M,Gc) is a
semi Riemannian manifold with index n. Let ∇̂ be a metrical connection on M with respect to G. In this case, by
considering equalities in (2.1) we can say that ∇̂c is a metrical connection on T M with respect to Gc. Through this
paper, as a semi-Riemannian structure on T M we shall consider (T M,Gc, ∇̂c).

Let f : M → R be a submersion. In this case for each t ∈ range f , f −1(t) = S is a level hypersurfaces in M , i.e. S t

is (n−1)− dimensional submanifold of M [4]. We know that a vector field on M is tangent to S if and only if X( f ) = 0.
According to this

ℑ1
0(S ) = {X ∈ ℑ1

0 (M) : X( f ) = 0}.

Let us consider a vector field on M, say X. If for each p ∈ Dom(X) ∩ S Xp ∈ TpS , then we say that X is a tangent
vector field to S . We denote by ℑ1

0(S )T the module of vector fields on M being tangent to S .
If (M,G) is a Riemannian manifold, then we write ℑ1

0(S )⊥ = S pan{grad f }, where grad f is gradient vector field of
f . We also state that X ∈ ℑ1

0(S )T if and only if G(X, grad f ) = 0.
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Let us consider locally orthonormal basis of ℑ1
0 (M) ,

∆ = {X1, ..., Xn−1, ξ} (2.3)

in a neighbourhood U of a point p in S , such that for each q ∈ U and i = 1, 2, ..., n − 1, Xi(q) is an element of TqS and
ξ =

grad f
|grad f |

is a unit normal field of the hypersurface S . We call the set ∆ a local basis of M adapted to S . We get the

components of ∇̂ with respect to this adapted basis in following equalities.

∇̂Xi X j = Γk
i jXk +G(HX,Y)ξ,

∇̂Xiξ = −HXi = −hi jX j,

∇̂ξXi = ωi jX j + σiξ,

∇̂ξξ = −σiXk,

 (2.4)

where, Γk
i j, ωi j, σi ∈ ℑ

0
0 (M) and H = [hi j] is shape operator of S .

We denote by ℑ1
0(TS )⊺ the vector fields on T M being tangent to the TS , from [10] and [11],

ℑ1
0(TS )⊺ = S pan{Xc

1, ..., X
c
n−1, X

v
1, ..., X

v
n−1, ξ

v}, (2.5)

and
ℑ1

0(T M) |TS= ℑ
1
0(TS )⊺ ⊕ ℑ1

0(TS )⊥. (2.6)

From (2.1), (2.2), (2.5) and (2.6) as a local basis for ℑ1
0 (T M) along TS , we get

Ψ = {Xc
1, ..., X

c
n−1, X

v
1, ..., X

v
n−1, ξ

v, ξc}.

Lemma 2.1. If the basis ∆ has same orientation with the natural basis { ∂
∂x1 , ...,

∂
∂xn }, then Ψ has also same orientation

with the induced basis { ∂
∂x1 , ...,

∂
∂xn ,

∂
∂y1 , ...,

∂
∂yn }.

In semi- Riemannian geometry, this basis Ψ is known as a quasi orthonormal basis of ℑ1
0 (M) .

3. Level Hypersurfaces of f v

In this section, we will interest a special level hypersurface of f v. If f is an element of ℑ0
0 (M) and Dom( f ) = U is

an open subset of M, then the vertical lift of f is defined on TU.
If f : M → R is a submersion, then f v is also. Indeed, let f : M → R is a submersion, then f has rank one for each

p in U . This means that, for at least i, (1 ≤ i ≤ n), ∂ f
∂xi |p, 0, p ∈ U. Furthermore, we can write the jacobien matrix of

f v as follows,

J( f v) |vp=
[
∂ f
∂xi |p 0

]
1×2n

for a point vp ∈ TU. It follows that f v has rank one.
From definition of f v, it is easily seen that

S̄ = ( f v)−1(t)

= S × Rn,

= T M |S

=
⋃
p∈S

TpM.

Let (V, φ) be a coordinate neighbourhood in M. Then, (V̂ = π−1(V), dφ) is a coordinate neighbourhood in T M. Let
us construct the differentiable structure of S̄ :

S̄ ∩ V̂ = V̄

=
{
(p, v) ∈ V̂ : p ∈ S , vp ∈ TpM

}



M. Yıldırım, A. Özkan, Turk. J. Math. Comput. Sci., 16(1)(2024), 272–284 275

Thus, a local coordinate system on V̄ is written as to be φ̄ = (ua, yi), (1 ≤ a ≤ n − 1) and we take {V̄α, φ̄α}α∈I as a
differentiable structure on S̄ . In addition we can also say that (S̄ , π̄,M,Rn) has a vector bundle structure with rank n
and by this structure it is a vector subbundle of T M, where π̄ is restriction of πM to S̄ .

Let ı̄ : S̄ → T M be natural injection in terms of local coordinates (xi, yi), ı̄ has following local expressions

xi = xi(ua), yi = yi.

Definition 3.1 ( [1]). Let (M,G = (gi j)) be a semi- Riemannian manifold and f : M → R be a differentiable function.
The following vector field is called gradient of f ,

grad f |p= gi j(p)
∂ f
∂x j (p)

∂

∂xi |p,

where p ∈ dom( f ), {x1, x2, ..., xn} is a localy coordinate system on M around p and the matrix [gi j] is invers of [gi j],

Lemma 3.2. The gradient vector field of f v with respect to semi Riemannian metric Gc is the vertical lift of grad f , i.e

grad f v = (grad f )v .

Proof. If G has matrix expression
[
gi j

]
then the matrix expression of Gc is as follows:[

(gi j)c (gi j)v

(gi j)v 0

]
,

[11]. We can find inverse of this matrix as in following form,[
0 (gi j)v

(gi j)v (gi j)c

]
.

From definition of gradient vector field, we get the following equality,

grad f v = 0.
∂ f v

∂x j

∂

∂xi + (gi j)v ∂ f v

∂x j

∂

∂yi + (gi j)v ∂ f v

∂y j

∂

∂xi + (gi j)c ∂ f v

∂y j

∂

∂yi

= (gi j)v ∂ f v

∂x j

∂

∂yi

=
(
grad f

)v .
The proof is complete. □

Since the vector field
(
grad f

)v is orthogonal to the submanifold S̄ and thus the vector field (grad f )v

|(grad f )v|
=

(
(grad f )
|(grad f )|

)v
= ξv

is a unit normal vector field of S̄ .

Theorem 3.3. If X ∈ ℑ1
0(M) is a tangent vector field to S , then the complete and vertical lifts of X are tangent to S̄ .

Proof. Since X is tangent to S , for each p ∈ Dom(X) ∩ S , Xp ∈ TpS . On the other hand,

(d f v)u(Xv
u) = Xc

u( f v)

= (X( f ))v(u)
= (X( f ))(p)
= Xp( f )
= 0,

where u = up ∈ S̄ . In addition, we know from formulas of lifts in ( 2.1) that

(d f v)u(Xv
u) = Xv

u( f v)

= (Xv( f v))(u)
= 0,

see (2.1). Thus, Xc and Xv are tangent vector fields to S̄ . □
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4. Lightlike Geometry of S̄

In this section, we investigate the lightlike submanifold structure of S̄ in semi-Riemannian manifold (T M,Gc). For
this purpose we need to some informations about the lightlike submanifold geometry.

Firstly, we note that the notation and fundamental formulas used in this study are the same as [5], following Chap.
4. Let M̄ be a (m + 2)-dimensional semi-Riemannian manifold with index q ∈ {1, ...,m + 1}. Let M be a hypersurface
of M̄. Denote by g the induced tensor field by ḡ on M. M is called a lightlike hypersurface if g is of constant rank m.
Consider the vector bundles T M⊥ and Rad(T M) whose fibres are defined by

TxM⊥ = {Yx ∈ TX M| gx(Yx, Xx) = 0,∀Xx ∈ TxM}

and
Rad(TxM) = TxM ∩ TxM⊥,

for any x ∈ M, respectively. Thus, a hypersurface M of M̄ is lightlike if and only if Rad(TxM) , {0} for all x ∈ M.
If M is a lightlike hypersurface, then we consider the complementary distribution S (T M) of T M⊥in T M which is

called a screen distribution. From [2], we know that it is nondegenerate. Thus, we have direct orthogonal sum

T M = S (T M) ⊥ T M⊥. (4.1)

Since S (T M) is non-degenerate with respect to ḡ, we have

T M̄ = S (T M) ⊥ S (T M)⊥,

where S (T M)⊥ is the orthogonal complementary vector bundle to S (T M) in T M̄|M .
Now, we will give an important theorem about lightlike hypersurfaces which enables us to set fundamental equations

of M.

Remark 4.1. From now on we denote by Γ(E) the module of cross sections of a vector bundle E.

Theorem 4.2 ( [5]). Let (M, g, S (T M)) be a lightlike hypersurface of M̄. Then, there exists a unique vector bundle
tr(T M) of rank 1 over M such that for any non-zero section ξ of T M⊥ on a coordinate neighborhood U ⊂ M, there
exist a unique section N of tr(T M) on U satisfying

ḡ(N, ξ) = 1

and
ḡ(N,N) = ḡ(N,W) = 0,∀W ∈ Γ(S (T M)|U).

From Theorem 4.2 , we have

T M̄|M = S (T M) ⊥ (T M⊥ ⊕ tr(T M)) = T M ⊕ tr(T M). (4.2)

tr(T M) is called the null transversal vector bundle of M with respect to S (T M). Let ∇̄ be Levi-Civita connection on
M̄. We have

∇̄XY =
∗

∇XY + h(X,Y), X,Y ∈ Γ(T M) (4.3)
and

∇̄XV = −AV X + ∇t
XV, X ∈ Γ(T M),V ∈ Γ(tr(T M)), (4.4)

where
∗

∇XY, AV X ∈ ℑ1
0(T M) and h(X,Y), ∇t

XV ∈ Γ(tr(T M)). ∇ is a symmetric linear connection on M which is called
an induced linear connection, ∇t is a linear connection on the vector bundle tr(T M), h is a Γ(tr(T M))-valued symmetric
bilinear form and AV is the shape operator of M concerning V .

Locally, suppose {ξ,N} is a pair of sections on U ⊂ M in Theorem 4.2. Then, define a symmetric ℑ0
0 (U)−bilinear

form B and a 1-form τ on U by
B(X,Y) = ḡ(h(X,Y), ξ),∀X,Y ∈ (T M|U)

and
τ(X) = ḡ(∇t

XN, ξ).
Thus, (4.3) and (4.4) locally become

∇̄XY =
∗

∇XY + B(X,Y)N (4.5)
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and
∇̄XN = −AN X + τ(X)N, (4.6)

respectively.
Let denote P as the projection of T M on S (T M). We consider decomposition

∗

∇XPY = ∇XPY +C(X, PY)ξ

and
∗

∇Xξ = −A∗ξX − τ(X)ξ,
where ∇XPY and A∗ξX belong to S (T M) and C is a 1−form on U. Note that ∇ is not metric connection [3]. We have
the following equations,

g(AN X, PY) = C(X, PY), ḡ(AN X,N) = 0,
g(A∗ξX, PY) = B(X, PY), ḡ(A∗ξX,N) = 0,

for any X,Y ∈ Γ(T M).
Now, we will apply the above theory to the hypersurface S̄ .

Theorem 4.3. S̄ is a lightlike hypersurface of T M.

Proof. We know that a vector field X̄ ∈ ℑ1
0(S̄ ) if and only if

d f v(X̄) = X̄( f v) = 0.

From (2.1) for all X ∈ ℑ1
0(S̄ )

d f v(Xc) = 0,

d f v(Xv) = 0,

d f v(ξv) = 0.

In addition, Gc(Xc, ξv) = Gc(Xv, ξv) = Gc(ξv, ξv) = 0. This means that the restriction of Gc to ℑ1
0(S̄ ) is 1- degenerate

and
Rad(TuS̄ ) = S p{ξvu},∀u ∈ S̄ .

□

To describe a screen subspace of TS̄ , we must write following decomposition from (4.1),

TuS̄ = S (TuS̄ ) ⊥ Rad(TuS̄ ), u ∈ S̄ .

Since {X1, ..., Xn−1, ξ} is a frame of M adapted to S , from [11], [10] and Theorem 4.3, the following set

{Xc
1, ..., X

c
n−1, X

v
1, ..., X

v
n−1, ξ

v} (4.7)

is also basis for S̄ adapted to TS .
In this case we get

ℑ1
0(S̄ ) = S pan{Xc

1, ..., X
c
n−1, X

v
1, ..., X

v
n−1} ⊥ S pan{ξv}.

On the other hand, from (4.2), we have the following decomposition for ℑ1
0(T M),

ℑ1
0(T M)|S̄ = (Γ(S (TS̄ )) ⊥ Γ(Rad(TS̄ ))) ⊕ tr(TS̄ ))

= (S pan{Xc
1, ..., X

c
n−1, X

v
1, ..., X

v
n−1} ⊥ S pan{ξv}) ⊕ tr(TS̄ ).

By using (2.1) and (2.2), we have those equalities,

Gc(ξc, ξc) = 0, Gc(ξv, ξc) = 1
and

Gc(ξc, X̄) = 0 ∀X̄ ∈ Γ(S (TS̄ ) |Ū)
on a coordinate neighbourhood Ū ⊂ S̄ . Thus, from Theorem 4.2, the lightlike transversal bundle of S̄ is as follows,

tr(TS̄ |Ū) =
⋃
u∈Ū

S pan{ξc |u}
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with respect to S (TS̄ ). By means of (4.1) and (4.2) for X̂ ∈ ℑ1
0(T M) we can write the following decomposition,

X̂ |Ū= X̃ + λξv + µξc ,

where X̃ ∈ ℑ1
0(S̄ ) tangent to TS and λ, µ ∈ ℑ0

0(S̄ ) on a neighbourhood Ū.

5. The Induced Geometrical Objects

In this section, we investigate the lightlike submanifold geometry of S̄ . Because of we shall investigate the level
sets of f and f v, first of all we write fundamental equalities of S .

Let (M,G) be Riemannian manifold, S be a hypersurface in M and g be induced metric on S from G, then by
definition we have

g(X,Y) = G(X,Y) for X,Y ∈ ℑ1
0(S ).

We know that with this induced metric g, S is a Riemannian submanifold of M. The Gauss and Weingarten formulae
of S as in following, respectively,

∇̂XY = ∇XY + g(HX,Y)ξ, (5.1)

∇̂Xξ = −HX,

where ∇̂ and ∇ are Riemannian covariant differentiations determined by G and g, respectively. In addition H and
g(HX,Y) are shape operator and second fundamental form of S , respectively.

By using (4.3) and (4.4) we get,

∇̂c
X̄Ȳ = ∇̄X̄Ȳ + h̄(X̄, Ȳ) (5.2)

and

∇̂c
X̄V = −ĀV X̄ + ∇t

X̄V (5.3)

for any X̄, Ȳ ∈ ℑ1
0(S̄ ) and V ∈ Γ(trT S̄ ). Here, ∇̄ and ∇t are induced connections on S̄ and tr(TS̄ ) respectively. h̄ and

AV are second fundamental form and shape operator of S̄ , respectively. The equalities (5.2) and (5.3) are the Gauss
and Weingarten formulae, respectively [5].

Define a symetric bilinear form B̄ and a 1-form τ on Ū ⊂ S̄ by

B̄(X̄, Ȳ) = Gc(h̄(X̄, Ȳ), ξc), ∀X̄, Ȳ ∈ ℑ1
0(S̄ ),

τ(X̄) = Gc(∇t
X̄ξ

c, ξc), ∀X̄ ∈ ℑ1
0(S̄ ).

It follows that
h̄(X̄, Ȳ) = B̄(X̄, Ȳ)ξc

and

∇t
X̄ξ

c = τ(X̄)ξc.
Hence, on Ū, (4.5) and (4.6) become

∇̂c
X̄Ȳ = ∇̄X̄Ȳ + B̄(X̄, Ȳ)ξc

and
∇̂c

X̄ξ
c = −Aξc X̄ + τ(X̄)ξc,

respectively.
On the other hand, if P denotes the projection of ℑ1

0(S̄ ) to ℑ1
0(TS ) with respect to the decomposition

TuS̄ = S (TuS̄ ) ⊥ Rad(TuS̄ )

we obtain the local Gauss and Weingarten formulas on S (TS̄ )

∇̄X̄PȲ = ∇̃X̄PȲ + C̃(X̄, PȲ)ξv, (5.4)

∇̄X̄ξ
v = −Ãξv X̄ − τ̃(X̄)ξv, (5.5)

where X̄ ∈ ℑ1
0(S̄ ), Ȳ ∈ ℑ1

0(S̄ ), C̃, Ãξc and ∇̃ are the local second fundamental form, the local shape operator and the
linear connection on S (TS̄ ). In [10], we see that the vertical and complete lifts of differentiable elements defined on M
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can be described the other differentiable elements defined on T M. For example, let us consider X̂, Ŷ ∈ ℑ1
0(T M), then

X̂ = Ŷ if and only
X̂( f c) = Ŷ( f c)

for all f ∈ ℑ0
0(M). In addition, take two 1- forms ω̂,ρ̂ ∈ ℑ0

1(T M), then ω̂ = ρ̂ if and only if

ω̂(Xc) = ρ̂(Xc),

for all X ∈ ℑ1
0(T M). Because of this, instead of taking any vector field, we take the complete and vertical lifts of vector

fields tangent and orthogonal to S .
Using theorem 4.3 and the information above, it is sufficient for us to use the vertical and complete lift of the vector

fields tangent and normal to S .
Now, we shall write the Gauss and Weingarten formulae of S̄ and screen distribution. Let X and Y be vector fields

in ℑ1
0(M) tangent to S . By taking into account (2.1), (2.2), (5.1) and (2.4), we have the following aqualities,

∇̂c
Xc Yc =

(
∇̂XY
)c

= ∇c
Xc Yc +Gc (HcXc,Yc) ξv

+Gc (HvXc,Yc) ξc,
∇̂c

Xc Yv =
(
∇̂XY
)v

= ∇c
Xc Yv +Gc (HvXc,Yc) ξv

= ∇̂c
Xv Yc,

∇̂c
ξv Y

c =
(
∇̂ξY
)v

= (ωi(Y)Xi + σ(Y)ξ)v ,
= (ωi(Y))vXv

i + σ
v(Yc)ξv,

∇̂c
Xcξv =

(
∇̂Xξ
)v
= HvXc,

∇̂c
Xv Yv = ∇̂ξv Yv = ∇̂ξvξ

v = ∇̂Xvξv = 0,



(5.6)

where σ is a 1− form and ωi ’ s are ℑ0
0(M)− valued functions such that , for i, j = 1, 2, ..., n − 1

σ(Xi) = σi,

ωi(X j) = ωi j = −ω ji,

with respect to adapted basis (4.7). On the other hand, from (5.6) Weingarten formulas of S̄ are as in follows,

∇̂c
Xcξc =

(
∇̂Xξ
)c
= HcXc,

∇̂c
Xvξc =

(
∇̂Xξ
)v
= HcXv,

∇̂c
ξvξ

c =
(
∇̂ξξ
)v
= −σv

i Xv
i

where Xi ’s are elements of adapted basis given (2.3).
From (5.2), (5.6) and [10] the second fundamental form of S̄ is as in following,

B̄(Xc,Yc) = Gc (HvXc,Yc) ,
B̄(Xc,Yv) = B̄(Xc, ξv) = 0,
B̄(Xv,Yc) = B̄(Xv,Yv) = 0,
B̄(ξv,Yc) = B̄(ξv,Yv) = 0,
B̄(ξv, ξv) = B̄(Xv, ξv) = 0.

By virtue of (4.7), we have following Theorem.

Theorem 5.1. S is a totally geodesic hypersurface in M if and only if S̄ is a totally geodesic lightlike hypersurface in
T M.

From (5.3), (5.6) and [10], the shape operator of S̄ is as in following,

Aξc Xc = −HcXc,
Aξc Xv = −HcXv,
Aξcξv = −σv

i Xv
i .
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The marix representation of the shape operator Aξc of S̄ with respect to adapted basis can be represented in matrix form
as in follows;

Aξc =


hi j 0 0
hc

i j hi j −σ
v
i

0 0 0

 ,
where hi j ’s are the components of the shape operator H of S according to basis {X1, X2, ..., Xn−1} . By considering [9],
Def. 3.2, we give following Theorem.

Theorem 5.2. If S is a minimal hypersurface in M if and only if S̄ is also minimal in T M.

From equalities (5.6) we have,

∇t
Xcξc = ∇t

Xvξc = ∇t
ξvξ

c = 0.

Hence, it is clear that τ = 0.
From (5.6), the induced connection on S̄ is as in follows,

∇̄Xc Yc = ∇c
Xc Yc +Gc (HcXc,Yc) ξv,

∇̄Xc Yv = ∇̄Xv Yc,
= ∇c

Xc Yv +Gc (HvXc,Yc) ξv,
∇̄ξv Yc = (ωi(Y))vXv

i + σ
v(Yc)ξv,

∇̄Xcξv = −HvXc,
∇̄Xv Yv = ∇̄Xvξv = 0,
∇̄ξvξ

v = ∇̄ξv Yv = 0.


(5.7)

From Theorem 3.3, the vertical and complete lifts of vector fields tangent to S are also tangent to S̄ . In addition,

Gc(Xc, ξv) = Gc(Xv, ξv) = 0.

It means that Xv, Xv ∈ Γ(S (TS̄ )) and as a cosequence of this we have

PXc = Xc and PXv = Xv.

From these equalities in (5.7) we obtain
Ãξv Xc = −HvXc,
Ãξv Xv = Ãξvξv = 0.

Hence, by considering (5.5), the shape operator Ãξv of screen bundle can be represented in matrix form, with respect to
adapted basis (4.7), as in the follows.

Ãξv =

 hi j 0 0
0 0 0
0 0 0

 .
By (5.4) and (5.7), we have the second fundamental form of S (TS̄ ) is as in follows,

C̃(Xc,Yc) = Gc (HcXc,Yc) ,
C̃(Xc,Yv) = C̃(Xv,Yc),

= Gc (HvXc,Yc) ,
C̃(Xv,Yv) = 0,
C̃(ξv,Yc) = σv(Yc),
C̃(ξv,Yv) = 0.


(5.8)

Thus, by considering (5.8) we have,

Theorem 5.3. The screen distribution S (TS̄ ) is totally geodesic if and only if the followings are satisfied
i) S is totally geodesic
ii) σ is identically zero on S , i.e. for all p ∈ S , TpS = kerσp.
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Corollary 5.4. The induced linear connection on S (TS̄ ),

∇̃Xc Yc = ∇c
Xc Yc,

∇̃Xc Yv = ∇̃Xv Yc = ∇c
Xc Yv,

∇̃Xv Yv = ∇̃Xvξv

= ∇̃ξvξ
v = ∇̃ξv Xv = 0,

∇̃ξv Xc = (ωi(X))vXv
i .

Now, we will demonstrate the structure described above with an example.

Example 5.5. Let us consider 3− dimensional Euclidean space E3 with standard inner product G as a Riemannian
metric and a function f : E3 → R. Let f be defined as in following,

f : E3 → R

f (x, y, z) = x2 + y2 + z2.

Suppose that t0 be a positive real number.We can easily see that t0 a regular value of f . Then, f −1(t0) = S = S 2
t0 is a

hypersurface in R3, i.e 2- Sphere with t0 radius..We get the gradient vector field of f as follows

grad f = x∂x + y∂y + z∂z,

where ∂x =
∂
∂x , ∂y =

∂
∂y and ∂z =

∂
∂z .

The normal vector field of S can be obtained as

ξ = x∂x + y∂y + z∂z.

Now, take two vector fields in ℑ1
0(E3) are tangent to S .

X =
σ

α
(zx∂x + zy − (x2 + y2)),

Y =
1
α

(−y∂x + x∂y),

where σ =
1√

x2 + y2 + z2
and α =

√
x2 + y2.

Thus, we obtained a basis for ℑ1
0(E3) adapted to S . Indeed,

X( f ) =
σ

α
(2zx2 + 2zy2 − (x2 + y2)z) = 0.

Similarly,
Y( f ) = 0.

These mean that for every p ∈ S , Xp and Yp are tangent to S . Moreover, the set {X,Y, ξ} is locally basis of ℑ1
0(E3)

adapted to S .
Now, we obtain local epression of ∇̂ according to basis {X,Y, ξ} :

∇̂XX = −σξ, ∇̂Y X = zσ
α

Y,
∇̂XY = 0, ∇̂YY = −zσ

α
X − σξ,

∇̂Xξ = σX, ∇̂Yξ = σY,
∇̂ξX = 0, ∇̂ξY = 0,
∇̂ξξ = 0.


(5.9)

From (5.9), we have Gauss and Weingarten formulaes of S as in following,

∇̂XX = −σξ, ∇̂Y X = zσ
α

Y,
∇̂XY = 0, ∇̂YY = −zσ

α
X − σξ,

}
(5.10)

∇̂Xξ = σX, ∇̂Yξ = σY. (5.11)
From (5.11), it is easily seen that matrix representation ofthe shape operator is as in follows,

H =
[
σ 0
0 σ

]
.
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For example, if we take t0 = r > 0, S will be S 2
r and thus we obtain,

H =
[ 1

r 0
0 1

r

]
.

Let us find level hypersurface of the vertical lift of f , f v

( f v)−1(t0) = {(p, u) ∈ TR3 | f (p) = t0, u ∈ R3}

= S̄ .

If a locally coordinate system on S is {u, v}, then the natural inclusion of S̄ is given locally in the form

x = x ◦ π = x(u, v),
y = y ◦ π = y(u, v),
z = z ◦ π = z(u, v),
x̄ = x̄,
ȳ = ȳ,
z̄ = z̄,

where {x, y, z, x̄, ȳ, z̄} the locally coordinate functions induced by {x, y, z} on TE3, x ◦ π, y ◦ π and z ◦ π on TE3 are
identified with x, y and z, respectively.

Being a local basis of ℑ1
0(TR3) adapted to S̄ , we can choose the ordered set Φ = {Xc,Yc, Xv,Yv, ξv, ξc}. By consid-

ering (5.9), (5.10) and the basis Φ we have following equalities,

∇̂c
Xc Xc = −σcξv − σvξc, ∇̂c

Xv Xc = σvξv,

∇̂c
Xc Xv = −σvξv, ∇̂c

Yv Xc = (zσ
α

)vYv,

∇̂Xcξv = σvXv, ∇̂c
Xv Yc = ∇̂c

Xv Xv = 0,
∇̂c

Yc Xc = (zσ
α

)cYv + (zσ
α

)vYc, ∇̂c
Xv Yv = ∇̂c

Yv Yv = 0,
∇̂c

Yc Xv = (zσ
α

)vYv, ∇̂Xvξv = ∇̂c
Yv Xv = 0,

∇̂c
Yc Yv = (−zσ

α
)vXv − σvξv, ∇̂Yvξv = ∇̂ξv Yc = 0,

∇̂c
Ycξv = σvYv, ∇̂c

ξv Xc = ∇̂ξv Xv = 0,
∇̂c

Yc Yc = −(zσ
α

)vXc − (zσ
α

)cXv ∇̂c
Xc Yv = ∇̂c

Xc Yc = 0,
= −σcξv − σvξc, ∇̂ξv Yv = ∇̂ξvξ

v = 0,
∇̂c

Yv Yc = (−zσ
α

)vXv − σvξv,



(5.12)

∇̂c
Xcξc = σvXc + σcXv,

∇̂c
Ycξc = σvYc + σvYc,

∇̂c
Xvξc = σvXv,

∇̂c
Yvξc = σvYv,

∇̂c
ξvξ

c = 0.


(5.13)

Here, (5.12) and (5.13) are Gauss and Weingarten formulaes of S̄ , respectively.
By using (5.12) we have the followings,

∇̄Xc Xc = −σcξv, ∇̄c
Xv Xc = −σvξv,

∇̄Xc Xv = −σvξv, ∇̄c
Xv Yc = ∇̄c

Xv Xv = 0,
∇̄Xcξv = σvXv, ∇̄Xvξv = ∇̄c

Yv Xv = 0,
∇̄c

Yc Xc = (zσ
α

)vYc + (zσ
α

)cYv, ∇̄Yvξv = ∇̄ξv Yc = 0,
∇̄c

Yc Yc = −(zσ
α

)vXc − (zσ
α

)cXv ∇̄c
Yv Yc = (−zσ

α
)vXv

= −σcξv, = −σvξv,
∇̄c

Yc Xv = (zσ
α

)vYv, ∇̄c
Yv Xc = (zσ

α
)vYv,

∇̄c
Yc Yv = (−zσ

α
)vXv − σvξv, ∇̄c

ξv Xc = ∇̂ξv Xv = 0,
∇̄c

Ycξv = σvYv, ∇̄c
Xc Yc = ∇̄c

Xc Yv = 0,
∇̄c

Xv Yv = ∇̄c
Yv Yv = 0, ∇̄ξv Yv = ∇̂ξvξ

v = 0.



(5.14)
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These equalities in (5.14) describe the induced connection ∇̄ on S̄ . By using (5.12) we have second fundamental form
of S̄ ,

h̄(Xc, Xc) = −σvξc, h̄(Yc,Yc) = −σvξc,
h̄(Xc,Yc) = h̄(Xc, Xv) = 0, h̄(Yc, Xv) = h̄(Yc,Yv) = 0,
h̄(Xc, ξv) = h̄(ξv, Xc) = 0, h̄(ξv,Yc) = h̄(ξv,Yv) = 0,
h̄(ξv, ξv) = h̄(Xc,Yv) = 0, h̄(ξv, Xv) = h̄(Yc, ξv) = 0,
h̄(Yc, Xv) = 0.

From (5.13) shape operator of S̄ can be written as follows,

Āξc (Xc) = σvXc + σcXv, Āξc (Xv) = σvXv,
Āξc (Yc) = σvYc + σcYv, Āξc (Yv) = σvYv,
Āξc (ξv) = 0.

 (5.15)

According to (5.15) the shape operator of S̄ in TR3can be represented as in follows,

Āξc =


σv 0 0 0 0
0 σv 0 0 0
σc 0 σv 0 0
0 σc 0 σv 0
0 0 0 0 0


5×5

.

In addition, according to (5.14)

∇̃Xc Xc = 0, ∇̃c
Xv Xc = 0,

∇̃c
Xc Yc = 0, ∇̃c

Xv Yc = 0,
∇̃Xc Xv = 0, ∇̃c

Xv Xv = 0,
∇̃c

Xc Yv = 0, ∇̃c
Xv Yv = 0,

∇̃c
Yc Xc = (zσ

α
)vYc + (zσ

α
)cYv, ∇̃c

Yv Xc = (zσ
α

)vYv,

∇̃c
Yc Yc = −(zσ

α
)vXc − (zσ

α
)cXv, ∇̃c

Yv Yc = (−zσ
α

)vXv,

∇̃c
Yc Xv = (zσ

α
)vYv, ∇̃c

Yv Xv = 0,
∇̃c

Yc Yv = (−zσ
α

)vXv, ∇̃c
Yv Yv = 0,

∇̃c
ξv Xc = 0, ∇̃ξv Yc = 0,
∇̃ξv Xv = 0, ∇̃ξv Yv = 0,

and
∇̂c

Xcξv = σvXv,

∇̂c
Xvξv = 0,
∇̂c

Ycξv = σvYv,

∇̂Yvξv = 0.

The shape operator of screen bundle Ãξv is given in following,

Ãξv (Xc) = σvXv,
Ãξv (Yc) = σvYc,
Ãξv (Xv) = 0,
Ãξv (Yv) = 0.

Hence, the matrix representation of Ãξv is as in follows,

Ãξv =


0 0 0 0
0 σv 0 0
σv 0 0 0
0 0 0 0


4×4

,

with respect to ordered basis {Xc,Yc, Xv,Yv, ξv}. Thus, the second fundamental form of screen bundle is in the follow-
ing,
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C̃(Xc, Xc) = −σc, C̃(Yc, Xv) = 0,
C̃(Xc,Yc) = 0, C̃(Yc,Yv) = −σv,
C̃(Xc, Xv) = −σv, C̃(ξv, Xc) = 0,
C̃(Xc,Yv) = 0, C̃(ξv,Yc) = 0,
C̃(Yc, Xc) = 0, C̃(ξv, Xv) = 0,
C̃(Yc,Yc) = −σc, C̃(ξv,Yv) = 0.

6. Conclusion

In this paper, we saw that some differential geometrical properties of level hypersurfaces of the function f are
preserved in this discussion. In addition to Tani’s work [10], within the framework of this complete lift of Rimannian
metrical structure, the other way of prolongation of hypersurfaces is described. Again, in this article, we noticed that,
unlike [13], a level hypersurface of f v is always lightlike, i.e it doesn’t depend on any additional condition.
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