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QUANTIFYING THE IMPACT OF RISK FACTORS ON DIRECT 

COMPENSATION PROPERTY DAMAGE IN CANADIAN 

AUTOMOBILE INSURANCE 

 
Pervin Baylan1 and Neslihan Demirel2 

 

ABSTRACT  

This study presents a statistical analysis assessing the impact of various risk factors on direct 

compensation property damage (DCPD) claims in private passenger vehicle accidents. Using 

automobile insurance data in Ontario, Canada for the decade years period between 2003 and 

2012, a statistical model of property damage was explored via a generalized linear binary logit 

mixed model and considered the imbalance between the classes of insureds. The results 

indicate that several risk factors have a significant impact on the likelihood of DCPD claims, 

including usage, training, outstanding loss, and incurred loss. The effects of these risk factors 

were observed under the weights — the number of trials used to generate each success 

proportion — in the different classes of insureds. The generalized linear mixed models 

(GLMMs) analysis provides a powerful tool for quantifying the impact of risk factors on 

binary outcomes, which are called DCPD claims and property damage (PD) claims covered 

by third-party liability (TPL) insurance. These models can also inform insurance underwriting 

and policy design, focusing on identifying the most significant risk factors. The performance 

metrics calculated by considering the class imbalance in binary outcomes verify the resulting 

model’s ability to accurately predict classes. The F1 score, an evaluation metric to measure 

the performance of classification, was calculated as 0.934. In addition, PR AUC, which is the 
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area under the Precision-Recall (PR) curve, was computed as 0.953. These high scores 

indicate that the resulting model performs well in the classification. The other metrics also 

support the classification accuracy of this model. The findings of the analysis can help 

insurers better understand the underlying drivers of property damages and develop more 

accurate and effective strategies for risk mitigation. Furthermore, this study highlights the 

importance of developing class-specific risk assessment models to account for the imbalance 

across different classes.  

Keywords: Binary Logit Model, Direct Compensation Property Damage, Generalized Linear 

Mixed Model, Third-Party Liability Insurance, Unbalanced Panel Data. 

 

KANADA OTOMOBİL SİGORTASINDA RİSK 

FAKTÖRLERİNİN DOĞRUDAN TAZMİN EDİLEN MADDİ 

HASAR ÜZERİNDEKİ ETKİSİNİN DEĞERLENDİRİLMESİ 

ÖZ 

Bu çalışma, özel binek araç kazalarında çeşitli risk faktörlerinin doğrudan tazmin edilen 

maddi hasarlar (Direct Compensation Property Damage - DCPD) üzerindeki etkisini 

değerlendiren istatistiksel bir analiz sunmaktadır. 2003 ile 2012 yılları arasındaki on yıllık 

döneme ait Ontario, Kanada'daki otomobil sigortası verileri kullanılarak, genelleştirilmiş 

doğrusal ikili logit karma model aracılığıyla maddi hasarın istatistiksel bir modeli araştırılmış 

ve sigortalıların sınıfları arasındaki dengesizlik dikkate alınmıştır. Sonuçlar, kullanım amacı, 

sürücü eğitimi, muallak hasar ve gerçekleşen hasar dahil olmak üzere çeşitli risk faktörlerinin 

DCPD hasarlarının olasılığı üzerinde önemli bir etkiye sahip olduğunu göstermektedir. Bu 

risk faktörlerinin etkileri, farklı sigortalı sınıflarındaki ağırlıklar — her bir başarı oranını 

oluşturmak için kullanılan deneme sayısı — altında gözlemlenmiştir. Genelleştirilmiş 

doğrusal karma modeller (GLMMs) analizi, risk faktörlerinin üçüncü şahıs sorumluluk (TPL) 

sigortası kapsamındaki DCPD hasarları ve maddi hasarlar (PD) olarak adlandırılan ikili 

sonuçlar üzerindeki etkisinin değerlendirilmesinde güçlü bir araçtır. Bu modeller, en önemli 

risk faktörlerini belirlemeye odaklanarak sigorta risk değerlendirmesine ve poliçe tasarımına 

da bilgi sağlayabilir. İkili sonuçlardaki sınıf dengesizliği dikkate alınarak hesaplanan 

performans ölçümleri, elde edilen modelin sınıfları doğru tahmin etme yeteneğini 

doğrulamaktadır. Sınıflandırma performansını ölçmeye yönelik değerlendirme ölçümü olan 

F1 skoru 0,934 olarak hesaplanmıştır. Ayrıca, Kesinlik-Duyarlılık (Preceseon-Recall (PR)) 
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eğrisinin altında kalan alan olan PR AUC ise 0,953 olarak elde edilmiştir. Bu yüksek skorlar, 

elde edilen modelin sınıflandırmada iyi performans gösterdiğine işaret etmektedir. Diğer 

ölçümler de, bu modelin sınıflandırma doğruluğunu desteklemektedir. Analizin bulguları, 

sigortacıların maddi hasarların altında yatan nedenleri daha iyi anlamalarına ve risk azaltımı 

için daha doğru ve etkili stratejiler geliştirmelerine yardımcı olabilir. Ayrıca bu çalışma, farklı 

sınıflar arasındaki dengesizliği hesaba katmak için sınıfa özgü risk değerlendirme 

modellerinin geliştirilmesinin önemini vurgulamaktadır. 

Anahtar Kelimeler: İkili Logit Model, Doğrudan Tazmin Edilen Maddi Hasar, 

Genelleştirilmiş Doğrusal Karma Model, Üçüncü Şahıs Sorumluluk Sigortası, Dengesiz Panel 

Veri 

 

1.    INTRODUCTION  

Direct compensation property damage (DCPD) is a type of automobile insurance 

coverage that is designed to provide compensation to policyholders for damages to their 

vehicles caused by another driver in an accident. Under DCPD coverage, the policyholders’ 

own insurer handles the claim and pays for the damages up to the limit of their coverage in 

cases where the accident was caused by another driver and was not their own fault; instead of 

seeking compensation from the other driver's insurance company. This coverage involves 

only property damage (PD) and not bodily injury claims occurring in a car accident; while 

enabling the repair of damage on the vehicle of the policyholders faster, without the delays 

and complications which might arise when dealing with another driver's insurer. Therefore, 

being an efficient and fair approach to insurance claims and vehicle repairs, DCPD coverage 

is available in several provinces in Canada, including Ontario, Quebec, Nova Scotia, New 

Brunswick and Prince Edward Island. If the policyholders are at fault for the accident, they 

will need to rely on other types of coverage, such as collision or liability insurance, to cover 

the cost of damages.  

One of the major problems facing actuaries in third-party liability (TPL) insurance is the 

building of an accurate mathematical model to calculate insurance premiums. This is because 

it is essential to strike a balance between charging premiums which are affordable for 

policyholders and generating enough revenue to cover the costs of potential claims and 

provide a profit for the insurer. To develop an accurate mathematical model, actuaries should 

consider various risk factors that might influence the likelihood and cost of claims. Accurate 
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assessment of risk factors is a complex process which involves analyzing historical claims 

data. The improper models built in the analysis of the historical claims data lead to the 

premiums being determined lower than they should be, and thus increase the risk of sector 

failure. Overall, the accurate assessment of risk factors and the development of predictive 

models that estimate the likelihood of an insured event are crucial components for insurers in 

the automobile insurance sector, in terms of effectively managing their risk and providing 

their policyholders with affordable coverage. Actuaries typically use statistical models to 

calculate insurance premiums; considering the estimated risk of an insured and the potential 

cost of a claim. By using statistical models to price insurance premiums that reflect the true 

risk of potential claims, actuaries can help insurers to provide affordable coverage to 

policyholders; while also ensuring the long-term stability and success of the insurance 

industry. 

Various problems in actuarial science rely on the creation of a mathematical model that 

can be used in premium pricing. The accurate calculation of premiums for compulsory TPL 

insurance is particularly important because this type of insurance has a significant impact on 

the non-life premium income of insurers. By improving the premium evaluation for this line 

of business, the potential financial losses of the insurance sector can be prevented. DCPD is a 

mandatory component of automobile insurance in Ontario and is included in all basic auto 

policies along with TPL insurance. Therefore, it has a considerable share of the yearly non-

life premium income. Quantifying the impact of risk factors on the likelihood of DCPD 

claims versus PD claims covered by TPL insurance can help insurers make more informed 

decisions about insurance underwriting and policy design. By taking these risk factors into 

account, the actuaries can calculate insurance premiums appropriate for the level of risk being 

assumed by the insurer, so that identifying the most significant risk factors leads to a more 

efficient and effective insurance market. 

The use of generalized linear mixed models (GLMMs) in actuarial science allows for the 

incorporation of risk factors into the premium pricing process, improving the accuracy of 

insurance premiums and reducing the risk of financial losses for insurers. Most actuarial 

pricing techniques in use today are based on the generalized linear model research of Nelder 

and Wedderburn (1972) and McCullagh and Nelder (1989). Over the last 30 years, 

generalized linear models (GLMs) have been one of the most commonly used statistical tools 

for modeling actuarial data in actuarial work. In an actuarial context, Haberman and Renshaw 

(1996) provide an overview of the applications of GLMs in actuarial science and show that 
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GLMs are not limited to models for automobile insurance premiums. Embrechts and 

Wüthrich (2022) in the case of non-life insurance demonstrate how combining traditional 

statistical methods, such as GLMs with neural networks, improves comprehension and 

interpretation of actuarial data. 

Many actuarial problems have a data structure that includes repeated measurements, 

especially panel data, which are characterized by a tendency to correlate repeated 

observations on a group of subjects over time. This correlation between observations on the 

same subject leads to extra difficulties during the analysis. Since the assumption of 

independence is not fulfilled in GLMs due to this correlation, GLMMs, which are extensions 

of GLMs, can be used for correlated data. Statistical techniques are considered for modeling 

panel data within the framework of GLMs in Antonio and Beirlant (2007). They also discuss 

the advantages of the GLM approach and represent the usage of GLMMs in actuarial 

mathematics. Miao (2018), using a hierarchical generalized linear model, shows that GLMMs 

can more effectively reflect the differences between distinct risk individuals as well as the 

heterogeneity and correlation of risk individual loss over multiple insurance periods. 

The GLMM approach has been frequently used to model actuarial data and provides a 

useful approach in the analysis of unbalanced panel data. This approach procures extra 

flexibility in estimating the model and helps eliminate the extra complexity resulting from the 

internal correlation of each subject. Yau et al. (2003) consider the application of the GLMM 

approach to the analysis of repeated claim frequency data in motor insurance. All of these 

mentioned features also make GLMMs a powerful tool for identifying risk factors. Antonio 

and Valdez (2012) present a risk classification based on GLMs in insurance. Garrido et al. 

(2016) explore how the assumption that claim counts and amounts are independent in non-life 

insurance can be relaxed via GLMs while incorporating rating factors into the model.  

The motivation of this study is to create a statistical model within the framework of 

GLMs that identifies the impact of the most important risk factors on DCPD claims in private 

passenger vehicle accidents. For this purpose, the paper is structured as follows. Section 2 

describes the methodological framework used in this study. Each subsection of this part 

mentions the basic concepts of GLMMs, the structure of automobile insurance data provided 

by a Canadian insurance company, statistical analysis of binary outcomes such as DCPD 

claims and PD claims covered by TPL insurance, and how risk factors are identified. In 

addition, the performance metrics used in this study are explained in detail. Section 3 presents 

the results of the model developed for estimating the likelihood of DCPD claims. Section 4 
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introduces the main conclusions of this study. The acronyms used in this study are listed in 

Table 1.   

Table 1. A list of acronyms and definitions used throughout the paper 

Acronym Definition 

DCPD  
PD 
TPL 
GLMM 
GLM 
AIC 
BIC 
LRT 
SN 
SP 
P 
ACC 
BA 
AUC 
TP 
TN 
FP 
FN 
ROC 
PR 
PR AUC 

Direct Compensation Property Damage 
Property Damage 
Third-Party Liability 
Generalized Linear Mixed Model 
Generalized Linear Model 
Akaike Information Criterion  
Bayesian Information Criterion  
Likelihood Ratio Test  
Sensitivity 
Specificity 
Precision 
Accuracy 
Balanced Accuracy 
Area Under the ROC Curve 
True Positive 
True Negative 
False Positive 
False Negative 
Receiver Operating Characteristic 
Precision-Recall 
Area Under the PR Curve 

 

2.    MATERIAL AND METHODS 

2.1. Generalized Linear Mixed Models 

A logistic regression model that can be viewed as a GLM is generally used to model bi-

nary or more than two categories under the assumption of independence. However, in many 

actuarial problems, observations on the same subject over time are often correlated. In these 

circumstances, the logistic GLM might not be appropriate to model repeated observations due 

to the structure of correlation between observations of the same subject. GLMs are extended 

to GLMMs by including random effects in the linear estimator that determine the inherent 
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correlation between observations on the same subject. Thus, the random effect also accounts 

for unobserved heterogeneity between subjects due to unobserved characteristics. 

GLMM provides a more flexible approach in terms of normality and homoscedasticity 

assumptions since it is extended to distributions from the exponential family. In addition, in 

GLMM, the additive effect of independent variables is modeled on a transformation of the 

mean (Antonio and Beirlant, 2007). 

Here, the model is extended to include random effects since the focus will be on 

longitudinal design, which is repeated observations on a group of subjects over time. We 

consider a model where the conditional distribution of y, a vector of the outcome variable 𝑦!", 

given the random effects, follows a binomial distribution such that the property damage type 

of the ith subject in time j. A GLMM for binary data with logit-link, which is the link function 

𝑔(𝜇!") determining how the mean is related to the independent variables x, is written in the 

form: 

𝑔(𝜇!") = logit(𝜇!") = 𝒙!"′ 𝜷 + 𝒛!"′ 𝒃! ,			𝑖 = 1,… , 𝑛,		𝑗 = 1,… , 𝑡!                                                   

(1) 

where 𝜷	(𝑝	x	1) is a vector of fixed effect parameters; 𝒃! 	(𝑞	x	1) is a vector of random effects 

which represent the influence of subject i on its repeated observations, having dimension n; 

𝒙!" 	(𝑝	x	1) is a vector of independent variables associated with the ijth observation; and 

𝒛!" 	(𝑞	x	1) is a vector of variables having random effects (Antonio and Beirlant, 2007). 

GLMM utilizes the logit-link for the analysis of dichotomous data, namely 

𝑔(𝜇!") = logit(𝜇!") = 𝑙𝑜𝑔 # >
$!"

%&$!"
?                                                   

   (2) 

where 𝜇!" is the probability of an event on subject i in time j. Here, the conditional expecta-

tion equals the conditional probability of a response given the random effects and covariate 

values, i.e.,  

𝜇!" = 𝐸(𝑦!"|𝒃! , 𝒙!") = 𝑃(𝑦!" = 1|𝒃! , 𝒙!")                     

(3) 

(Hedeker, 2005). Assuming that the random effects are mutually independent and identically 

distributed completes the specification of the GLMM. Furthermore, the correlation between 



Nicel Bilimler Dergisi / Cilt: 6, Sayı: 1, Haziran 2024 
Journal of Quantitative Sciences / Volume: 6, Issue: 1, June 2024 

 

 
  

110 

observations on the same subject occurs since they share the same random effects 𝒃! (Antonio 

and Beirlant, 2007). 

For more information on the theory and application of GLMs, see McCullagh and Nelder 

(1989), De Jong and Heller (2008), Kaas et al. (2008), Frees (2010), and Ohlsson and Johans-

son (2010). 

2.2. Other Traditional Methods 

The random parameter approach has been the most widely used to account for 

unobserved heterogeneity.	 Alternative approaches for addressing heterogeneity and panel 

effects include grouped random parameter (Fountas et al., 2019; Pantangi et al., 2019), 

correlated random parameter (Balusu et al., 2018; Fountas et al., 2019; Tran et al., 2015), 

bivariate/multivariate random parameter (Barua et al., 2015, 2016; Dong et al., 2014; Gong et 

al., 2022; Pantangi et al., 2019), and mixed generalized models (Anarkooli et al., 2017; 

Balusu et al., 2018; Chen et al., 2018; Eluru et al., 2008). The random parameter model, under 

the concept of hierarchical modeling, is also the most widely used technique (Bakhshi and 

Ahmed, 2021; Fountas and Anastasopoulos, 2017; Kim et al., 2017; Lord and Mannering, 

2010). Mannering et al. (2016) summarize the methodological approaches accounting for 

unobserved heterogeneity. 

Because the data structure consisting of unbalanced repeated measures and panel data can 

be problematic to analyze, GLMMs are suitable for this purpose. In the GLMM context, in 

addition to determining the structure of correlation between observations on the same subject, 

the random effects also consider heterogeneity among subjects due to unobserved features 

(Antonio and Beirlant, 2007). Since the mixed-effects logistic regression model is the most 

popular GLMM, the data are analyzed by means of the logistic GLMM in this study 

(Hedeker, 2005). In order to model the risk factors having a major impact on the likelihood of 

DCPD claims and to account for unobserved heterogeneity when addressing these risk factors, 

a random parameter approach is used in the framework of GLMMs in this study. This model 

is used to analyze binary data from TPL insurance, specifically DCPD and PD, by assuming 

the same random parameter mean and variance for all observations. In addition, a GLMM 

with independent, homoscedastic residual errors is specified for the likelihood of DCPD 

claims from the Canadian automobile insurance dataset in this study. 

 

 

https://www.sciencedirect.com/science/article/pii/S2213665720300063#b0040
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2.3. Data Description 

Data about only private passenger automobiles are provided from the automobile 

portfolio of an active insurance company in Canada. The dataset includes insurance 

information about a total of 1,946 observations for 1,397 policies that have been in the 

portfolio for ten complete years, each of which consists of the claim experience for several 

rating factors and a given calendar year. The data do not contain insurance details for the 

policy year in which no claim was filed.  

Table 2. Variables in the dataset 

Variable Definition 

Age  Age of policyholder at the time of claim 

Territory 
Residential area  
0 (Urban), 1(Rural) 

Usage 
Vehicle usage  
0 (Work/Business), 1 (Pleasure) 

Time 
Accident year  
j = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, corresponding to values of 2003, 2004, 2005, 2006, 2007, 
2008, 2009, 2010, 2011 and 2012, respectively 

Class 

Code of class 
0 (Vehicle used for pleasure or having vehicle usage restrictions for commuting to work 
one way, and driver is 25 years of age or over), 1 (Vehicle used for pleasure and business 
or not having vehicle usage restrictions for commuting to work one way, and driver is 25 
years of age or over), 2 (Vehicle not having vehicle usage restrictions, and driver is under 
21 years of age), 3 (Vehicle not having vehicle usage restrictions, and driver is under 25 
years of age, but not under 21 years of age) 

Driver record 
Number of claims-free years for each policy (in the last 6 years) 
0 (No claims-free years), 1 (One claims-free year), 2, 3, 4, 5, 6 

Claims history 
Number of claims the risk has had in the last 6 years before the policy was rated 
0 (Number of chargeable claims is zero), 1, 2 (Number of chargeable claims is two or 
more) 

Claims-free years 
Number of years since the risk had a claim 
0 (Zero year), 1, 2, 3, 4, 5, 6, 7, 8, 9 (Nine or more years) 

Experience 
Number of years the driver has been licensed 
0 (Zero year), 1, 2, 3, 4, 5, 6, 7, 8, 9 (Nine or more years) 

Training 
Driving education provided to all candidates 
0 (Drivers have taken the course in Ontario), 1 (Drivers have taken the course, but maybe 
a different jurisdictionally specific one), 2 (Drivers have not taken the course)  

Gender 0 (Female), 1 (Male) 

Outstanding loss Loss reported to the insurer but is still in the process of settlement 

Incurred loss Amount actually paid in loss during a specified time 



Nicel Bilimler Dergisi / Cilt: 6, Sayı: 1, Haziran 2024 
Journal of Quantitative Sciences / Volume: 6, Issue: 1, June 2024 

 

 
  

112 

The analysis is performed to the company’s liability insurance claim experience for 

2003–2012. The data comprise outstanding loss (x(12)), which only includes zero and positive 

claim amounts, incurred loss (x(13)), which only includes positive claim amounts, and several 

rating factors for each policy that consist of age (x(1)), territory (x(2)), usage (x(3)), time (x(4)), 

class (x(5)), driver record (x(6)), claims history (x(7)), claims-free years (x(8)), experience (x(9)), 

training (x(10)), and gender (x(11)). Table 2 gives detailed information about the rating factors 

of the policy.      

In the following analysis, territory (x(2)), usage (x(3)), class (x(5)), training (x(10)), and 

gender (x(11)) are treated as factor covariates while age (x(1)), time (x(4)), driver record (x(6)), 

claims history (x(7)), claims-free years (x(8)), experience (x(9)), outstanding loss (x(12)), and 

incurred loss (x(13)) are treated as continuous covariates in the model. 

Driver characteristics also involve the date of birth of the policyholders, while the claim 

profiles include information on the type of coverage regarding property damage, such as 0 

(PD covered by liability insurance) and 1 (DCPD), policy effective and expiry date, claim 

identification number, and accident date. 

The model is fitted using the claims for the years 2003–2008, and its predictive ability is 

evaluated using the claims from 2009–2012. The data for 2003–2008 consist of 1,169 

observations on 942 policies for 179 brokers, and each observation includes the claim 

experience at the individual policy level. Of the 1,169 observations, 88 (7.5%) have PD 

covered by liability insurance and 1,081 (92.5%) have DCPD. These observations are 

summarized as shown in Table 3.  

Table 3. Summary statistics of the data 

Variable  Mean Std.Dev. Minimum Maximum 

Age 45.05 13.33 18.42 85.10 

Time 3.78 1.54 1.00 6.00 

Driver record 5.54 1.33 0.00 6.00 

Claims history 0.08 0.28 0.00 2.00 

Claims-free years 7.69 2.60 0.00 9.00 

Experience 8.37 1.78 0.00 9.00 

Outstanding loss 620.5 1356.19 0.00 5550.00 

Incurred loss 3625.20 4129.49 26.84 43539.90 
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The analysis herein focuses on estimating the model using the property damages that 

occurred during each individual year to examine the likelihood of DCPD claims versus PD 

claims covered by TPL insurance. Table 4 presents the mean of the outstanding and incurred 

losses used in the forthcoming estimations for each of the six years.  

Table 4. Mean of outstanding and incurred loss distribution by years 

Year  Outstanding Loss Incurred Loss 

2003  1172.18 2502.82 

2004 307.43 3498.63 

2005 603.57 3612.98 

2006 431.30 3735.09 

2007 814.31 3695.84 

2008 778.56 3966.12 

To optimize the merits of the variables in the model, a transformation is applied to both 

outstanding and incurred losses. The Yeo-Johnson transformation handles both positive and 

negative values, whereas the Box-Cox transformation only handles positive values. Because 

outstanding loss only includes zero and positive claim amounts, the Yeo-Johnson 

transformation is made for outstanding loss. Incurred loss, on the other hand, only includes 

positive claim amounts. Therefore, the Box-Cox transformation is applied for incurred loss. 

In the insurance portfolio, these observations are handled as separate classes. The 

frequency table of the classes is given in Table 5.  

Table 5. Frequency table of the class 

Variable  Group Number of Observations Percent (%) 

Class 0 1,002 85.71 

 1 126 10.78 

 2 31 2.65 

 3 10 0.86 

Total  1,169 100.00 

Of the 1,169 observations, 1,002 (85.71%) include the drivers who are 25 years of age or 

over and use their vehicle for pleasure or have vehicle usage restrictions for commuting to 

work one way, 126 (10.78%) consist of drivers who are 25 years of age or over and use their 

vehicle for pleasure and business or not have vehicle usage restrictions for commuting to 
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work one way, 31 (2.65%) contain drivers who are under 21 years of age and not have vehicle 

usage restrictions, and 10 (0.86%) comprise drivers who are under 25 years of age, but not 

under 21 years of age and not have vehicle usage restrictions. Because the observations in the 

data are not distributed in a balanced way among the categories of class (x(5)) from the factor 

covariates, the weights on class (x(5)), which are the number of trials, are used to generate each 

success proportion. As a result, since the dataset is unbalanced, using weights allows us to 

consider the relative importance of various possible target values and to better fit the model.    

Among the rating variables in the dataset, claims-free years (x(8)) and experience (x(9)) are 

highly correlated. The models are built considering the correlation between these variables 

and then compared to one another to determine the best model. In the following analysis, the 

best fitted model is presented. Table 6 shows the correlation between the independent 

variables in this fitted model. 

Table 6. Correlation matrix of independent variables in the model 

         x(3)     x(4)       x(10)            x(11)       x(12)        x(13) 

x(3)          1.000       – 0.012c       0.007a  0.033b       0.016c    – 0.027c 

x(4) – 0.012c      1.000  0.059c* – 0.018c       0.064d       0.106d 

x(10)  0.007a    0.059c*      1.000  0.037a – 0.058c* 0.030c* 

x(11)  0.033b     – 0.018c       0.037a         1.000       0.016c    – 0.014c 

x(12)  0.016c        0.064d  – 0.058c*  0.016c      1.000       0.051d 

x(13) – 0.027c        0.106d 0.030c* – 0.014c       0.051d      1.000 

* The greatest correlation between the discrete or continuous variable and all possible pairs of  

   levels of the nominal variable 

a Goodman and Kruskal’s Lambda 

b Phi coefficient 

c Point-biserial correlation coefficient 

d Spearman correlation coefficient 

(Khamis, 2008) 

As a result, the model presented below does not exhibit any multicollinearity issue. 

Within this model, 650 (55.6%) of the 1,169 observations use the vehicle for work and 

business, while 519 (44.4%) use it for pleasure. 20 (1.7%) of the observations include the 

drivers who have taken the course in Ontario, whereas 1,130 (96.7%) consist of those who 

have taken it in another jurisdiction. 19 (1.6%) of the observations also comprise the drivers 
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who have not taken the course. Female drivers make up 524 (44.8%) of the observations, 

while male drivers add up to 645 (55.2%).   

2.4. Fitted Model 

A random intercept effect model is a type of GLMM that allows for the inclusion of indi-

vidual-specific random effects in addition to more general risk factors. This model can help to 

account for unobserved heterogeneity in the data, which can have a significant impact on the 

likelihood of claims. By incorporating random intercepts into the model, the effect of unob-

served heterogeneity can be accounted for, resulting in more accurate estimates of risk and 

more appropriate insurance premiums. 

This study aims to determine how the most significant risk factors affect DCPD claims 

under TPL insurance. Two categories are addressed to model the property damage coverage 

type following a traffic accident: DCPD or PD covered by liability insurance. The GLMM 

described in Section 2.1 is fitted using the glmer function in R with logit-link. 

Using GLMM analysis for the subject-specific random intercept effect model, the best-

fitting random intercept effect model is specified as follows: 

𝑔(𝜇!"') = 𝛽( 	+ 𝛽%𝑥!"'
(*) +	𝛽,𝑥!"'

(-) + 𝛽*𝑥!"'
(%() +	𝛽-𝑥!"'

(%%) + 𝛽.𝑥!"'
(%,) + 𝛽/𝑥!"'

(%*) + 𝑏(' ,					

																																																																																																					𝑖 = 1,… , 𝑛,		𝑗 = 1,… , 𝑡! ,			𝑘 =

1,… ,𝑚			           (4) 

where n is the total number of different policies; m is the total number of different brokers; ti 

is the number of repeated observations in policy i. ti is the same for all policies in balanced 

panel data, but conversely, the panel data structure here is unbalanced. In addition, 𝜇!"' is the 

probability of a claim on policy 𝑖		(𝑖 = 1,… ,942) at time 𝑗		(𝑗 = 1,… ,6) for broker 𝑘		(𝑘 =

1,… ,179).  

In the fixed-effects part of the model, the parameters 𝛽(, 𝛽%, and 𝛽, define an overall 

intercept, the change in the expected log odds of DCPD claims for vehicle usage, and the 

change caused by a one-year change in time, for a given the random intercept, respectively. 

The change in the expected log odds of DCPD claims for driving education and gender are 

expressed in parameters 𝛽* and 𝛽-, for a given the random intercept, respectively. 

Additionally, 𝛽. and 𝛽/ describe how the expected log odds of DCPD claims have changed 

due to a unit increase in both outstanding loss and incurred loss for a given the random 

intercept.    
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In the random-effects part of the model, the term 𝑏(' in Equation (4) denotes a broker-

specific random intercept. The random intercept 𝑏(' is a subject-specific deviation from the 

fixed intercept 𝛽(. The results of the panel data generalized linear binary logit mixed model 

are summarized in Table 7.  

Table 7. Generalized linear binary logit mixed model estimation results 

Parameter Variable    Estimated 
Coefficients Std. Error z-value Pr(>|z|)  Exp(𝛽) 

𝛽# Intercept - 4.691 0.694 - 6.761     < 0.001 *** 0.009 

𝛽$ Usage1 - 1.083 0.268 - 4.038     < 0.001 *** 0.339 

𝛽% Time   0.157 0.085   1.844        0.065 · 1.170 

𝛽& Training1   1.215 0.464   2.621        0.009 ** 3.372 

 Training2   3.411 1.235   2.763        0.006 ** 30.279 

𝛽' Gender1 - 0.463 0.275 - 1.680        0.093 · 0.629 

𝛽( Outstanding loss   0.187 0.063   2.948        0.003 ** 1.205 

𝛽) Incurred loss   0.946 0.075   12.665     < 0.001 *** 2.576 

       

𝑏#* Random parameter      

 Std. dev. of broker   0.632     

 - 2 Log-likelihood   462.0     

 AIC   480.1     

 BIC   525.7     

 Significance codes: 0   ‘***’   0.001   ‘**’   0.01   ‘*’   0.05   ‘·’   0.1   ‘ ’   1 

 

2.5. Performance Metrics 

In this study, the GLMM approach is applied to unbalanced panel data to determine 

which factors have a significant impact on the likelihood of DCPD claims that policyholders 

will make next year. To inform model selection, the Akaike information criterion (AIC) and 

likelihood ratio test (LRT) are used. If the number of observations (N) is large enough, 𝑘 <

(𝑁/40), AIC is defined as  

𝐴𝐼𝐶 = −2 𝑙𝑛U𝐿WX + 2𝑘        (5)                                                            
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where k represents the number of estimated parameters in the fitted model and 𝑙𝑛U𝐿WX is the 

maximum log-likelihood value (Portet, 2020). In this study, Equation (5) is used to calculate 

the AIC value since 𝑘 = 9 is smaller than 𝑁/40 = 29.225 for 𝑁 = 1169, and the model with 

a lower AIC value is preferred.  

The reference model, which includes weights (the number of trials used to generate each 

success proportion) in the different classes of insureds, is compared to the nested model, 

which is reduced to a model without weights, using likelihood ratio tests to determine which 

is statistically preferable. The likelihood ratio test is shown in Equation (6). 

𝐿𝑅𝑇 = 2{logLik(reference) − logLik(nested)}                                      (6) 

where logLik (reference) and logLik (nested) are the log-likelihood of the generalized linear 

mixed model with weights (under the alternative hypothesis) and the generalized linear mixed 

model without weights (under the null hypothesis) for the same dataset, respectively. With 

degrees of freedom equal to the difference in the number of parameters between the two mod-

els, the test statistic is a chi-square distribution (Pai and Walch, 2020). The chi-square value 

of the test is 64.058 with one degree of freedom. The corresponding p-value is(0.5) 𝑃𝑟(𝜒%, >

64.058). From the chi-square table, we can conclude that 𝑃𝑟(𝜒%, > 7.88) = 0.005 and hence 

the p-value is significantly lower than 0.0025. The model under the alternative hypothesis is 

chosen since the p-value is much less than 0.05. In other words, the random-effects model 

with weights is preferred because it significantly differs from the random-effects model with-

out weights.     

The evaluation metrics used in this analysis include measures of sensitivity (recall) (SN), 

specificity (SP), precision (P), accuracy (ACC), balanced accuracy (BA), F1 score, and area 

under the curve (AUC) to assess the performance of each model and to determine which mo-

del is most effective for predicting the likelihood of DCPD claims. These measures are defi-

ned based on a confusion matrix, as shown in Table 8 (Hossin and Sulaiman, 2015). 

Table 8. Confusion matrix for the binary classification 

            Prediction  

Actual DCPD PD 

DCPD    TP  FN  

PD    FP  TN  
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In this confusion matrix, TP (true positive) and TN (true negative) denote the number of 

positive (classifying the claim as DCPD) and negative (classifying the claim as PD covered 

by liability insurance) claims that are correctly classified, respectively. Additionally, FP (false 

positive) and FN (false negative) represent the number of positive and negative claims that are 

incorrectly classified, respectively. In other words, TP and TN indicate DCPD claims 

correctly identified as DCPD and PD claims correctly identified as PD, respectively. FP 

stands for PD claims incorrectly identified as DCPD, whereas FN implies DCPD claims 

incorrectly identified as PD. The performance evaluation metrics used in this analysis are 

generated as shown in Equations (7) – (12).       

𝑆𝑁 = 01
01234

                                                                                 (7) 

𝑆𝑃 = 04
04231

                                                                                  (8) 

𝑃 = 01
01231

                                                                              (9) 

𝐴𝐶𝐶 = 01204
01231204234

                                                       (10) 

𝐵𝐴 = 54251
,

                                                                                           (11) 

𝐹1		score = ,01
,01231234

                                                                              (12) 

Precision and recall are employed as the evaluation metrics in this study since the 

developed model aims to predict 1 as accurately as feasible and to identify as many actual 1 as 

possible. In classification issues, accuracy is one of the most frequently used evaluation 

metrics. It is helpful when the target class is well-balanced but not a suitable option when the 

classes are unbalanced. This study assesses the target classes that are to be applied to a 

severely unbalanced dataset in which positives greatly outnumber negatives. Balanced 

accuracy is chosen as a performance measure in this analysis because it is a better metric 

when dealing with imbalanced data, and it also accounts for both positive and negative classes 

and avoids data imbalances that could be misleading. Additionally, the F1 score is a 

commonly employed evaluation metric to measure the performance of binary classification 

and outperforms accuracy in enhancing the target classes for binary classification problems. 

Therefore, it is used in this analysis as a performance measure rather than an accuracy 

measure.  
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Another evaluation metric is the Receiver Operating Characteristic (ROC) curve, which 

assesses the predictive performance of the fitted model. The ROC curve is a plot of the true 

positive rate (SN) versus the false positive rate (1-SP), which shows how the number of cor-

rectly classified positive instances varies with the number of incorrectly classified negatives 

when evaluating binary decision problems. The ROC curve captures the trade-off between 

these performance measure parameters for different possible thresholds. The resulting score 

known as AUC is the area under the ROC curve and illustrates the model’s ability to accura-

tely predict classes. A higher score indicates a higher probability of making correct predicti-

ons and can be viewed as a measure of accuracy (Davis and Goadrich, 2006).  

A Precision-Recall (PR) curve, on the other hand, evaluates the fraction of true positives 

among positive predictions. By offering valuable insights into the effectiveness of the 

classification model in capturing and correctly labeling minority class instances, the PR curve 

can provide an accurate prediction of future classification performance. The PR curve 

outperforms the ROC curve in terms of both information and power when dealing with binary 

classes on unbalanced datasets (Saito and Rehmsmeier, 2015). Due to class imbalance in this 

analysis, presenting results by considering only the ROC curve could be misleading about the 

reliability of classification performance. In this study, as well as the ROC curve, the PR curve 

is also considered to evaluate the classification performance because the PR curve can 

explicitly reveal claim differences in imbalanced cases. The resulting score known as PR 

AUC is the area under the PR curve and emphasizes the performance of the model for 

predicting the positive class. A high PR AUC means that the model performs better in 

predicting the positive class. These performance assessment measures are acquired as 

presented in Table 9.  

Table 9. Performance evaluation metrics 

Sensitivity Specificity Precision Accuracy 

0.906 0.647 0.964 0.883 

    

Balanced 
Accuracy F1 Score AUC PR AUC 

0.776 0.934 0.776 0.953 
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The fitted model's F1 score of 0.934, which is regarded as a very good value, indicates 

that it can both capture positive classes and accurately predict the classes it does capture. 

Regarding the balanced accuracy, it has a value of 0.776, indicating that the fitted model 

performs well at predicting whether policyholders will make DCPD claims. Due to the 

imbalanced classes in this analysis, the balanced accuracy gives us a more realistic picture of 

how well the model classifies both groups correctly. To evaluate the predictive performance 

of the fitted model, the ROC and PR curves are plotted as shown in Figure 1. 

 

                                       (a)                                                                  (b) 

Figure 1. Predictive performance of the fitted model: (a) the ROC curve and (b) the PR curve 

 

For the fitted model using different probability thresholds, the ROC curve highlights the 

trade-off between the true positive rate and the false positive rate. The fitted model provides a 

good fit to the data according to the computed AUC of 0.776. For the fitted model employing 

different probability thresholds, the PR curve highlights the trade-off between the true positi-

ve rate and the positive predictive value. Compared to the ROC curve, the PR curve is prefe-

rable to the ROC curve for imbalanced datasets. Due to the class imbalance in this analysis, 

PR AUC, calculated as 0.953, describes that the fitted model performed very well in predic-

ting the positive class. 

 

3.    RESULTS  

This paper describes a generalized linear binary logit mixed model considering the im-

balance between the classes of policyholders using automobile insurance data. This model 
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assesses the impact of various risk factors on DCPD claims in private passenger vehicle acci-

dents. The risk factors having a significant impact on the likelihood of DCPD claims are the 

independent variables named “usage”, “time”, “training”, “gender”, “outstanding loss”, and 

“incurred loss” estimated in unbalanced longitudinal data.  

Gender and time are included in the model even if they are thought to be ineffective. 

However, these two variables are significant at the 0.10 level, as shown in Table 7. The re-

sults of these variables indicate that female drivers are 1.59 times more likely to make a 

DCPD claim than male drivers, and that the risk of a DCPD claim occurring is 1.17 times 

higher when time increases by 1 year.      

As for other significant variables, usage, training, outstanding loss, and incurred loss have 

a significant effect on the likelihood of DCPD claims. For policyholders who use their vehi-

cles for work or business, the risk of making a DCPD claim is 2.95 times greater than for 

those who use them for pleasure. Since drivers who commute to work or use the vehicle for 

business are far more likely to be in traffic than those who drive for pleasure, this result is 

meaningful and the vehicle usage has a quite significant effect on DCPD claims. 

Driver training is of vital importance in preventing traffic accidents. Even if most drivers 

in Ontario have taken courses, some have not taken any training. Given that Ontario is one of 

the provinces with the highest number of immigrants, many drivers have taken driver training 

in various jurisdictions, whereas some have taken it in Ontario. According to the results of the 

training variable in the model, policyholders who have taken the driver training in a separate 

jurisdiction are 3.37 times more likely to make a DCPD claim than those who have taken it in 

Ontario; whereas policyholders who have not taken courses are 30.28 times more likely to 

make a DCPD claim than those with driver training in Ontario. These results indicate that 

drivers who have taken courses in a different jurisdiction or have not taken any training pose a 

risk in traffic and support the importance of driver training in preventing traffic accidents.    

For insurers to manage their claims liabilities, determine appropriate premium rates, and 

evaluate their overall financial circumstances, outstanding loss and incurred loss are crucial. 

The claim reported to the insurance company but has not yet been paid is known as an out-

standing loss. This claim is an estimate of the insurer's future financial obligations. Incurred 

loss, also called paid loss, is the actual loss that the insurance company has paid or became 

obligated to pay during a specific period. The results of these two variables in the model 

demonstrate that the risk of a DCPD claim occurring is 1.21 times higher when the outstand-
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ing loss increases by $1 and that the risk of a DCPD claim occurring is 2.58 times greater 

when the incurred loss increases by $1. 

DCPD claims are one of the most common types of damage insurance companies incur. 

DCPD coverage under TPL insurance provides compensation to policyholders for damages by 

the policyholders’ own insurer in cases where the accident was caused by another driver and 

was not their own fault. It can indeed be advantageous to consider these rating factors which 

significantly affect the likelihood of DCPD claims for evaluating insurance premiums and en-

hancing the financial stability of an insurance company. By incorporating these factors into 

the premium evaluation process, insurers can more accurately estimate the risk associated 

with each policyholder and price premiums accordingly. 

It is recommended that the above rating factors having a significant impact on the likeli-

hood of DCPD claims be considered in the premium evaluation since it is believed to help the 

financial stability of the insurance company. The financial stability of the company could po-

tentially be affected if the insurance company pays more compensation than it collects in 

premiums.  

 

4.    CONCLUSIONS 

The purpose of this study is to develop a statistical model that identifies the impact of the 

most important risk factors on DCPD claims under TPL insurance in private passenger vehi-

cle accidents in Ontario, Canada. GLMMs are approaches that are constantly used to model 

actuarial data and provide an advantage in the analysis of unbalanced panel data. This ap-

proach eliminates the extra complexity resulting from the internal correlation of each policy. 

Therefore, the developed model in this study analyzes the likelihood of DCPD claims in the 

context of a generalized linear binary logit mixed model by dealing with unbalanced panel 

data, and also, the imbalance between the classes of insureds is considered in this model.  

As a type of data application, the data in this study include many factors associated with 

the driver and claim characteristics found critical to the likelihood of DCPD claims. The esti-

mation results from the model demonstrate that the broker, which is a time-varying factor, has 

a significant influence on the likelihood of DCPD claims as a random parameter. In addition, 

rating factors such as usage patterns, driver training, outstanding loss and incurred loss have 

been found to correlate with the likelihood of DCPD claims as fixed effects. Observing the 

effects of these risk factors under the weights in the different classes of policyholders high-
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lights the importance of developing class-specific risk assessment models. Moreover, by con-

sidering the performance evaluation metrics in detail, this study ensures a comprehensive as-

sessment that accounts for the potential challenges posed by imbalanced datasets and provides 

a more reliable interpretation of the results.            

Taking these factors into account during premium evaluation helps insurers maintain fi-

nancial stability by ensuring that premiums are adequately priced based on the associated 

risks. This, in turn, helps the company avoid potential financial instability caused by under-

pricing policies or facing a higher volume of claims than anticipated. 

Ultimately, incorporating rating factors that have a significant impact on the likelihood of 

DCPD claims in premium evaluation promotes a fair and sustainable insurance pricing strate-

gy, benefiting both the insurance company and its policyholders. 
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