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ABSTRACT 
 

In this paper, the problem of determination of the edges of a convex polytope is considered. It is 
shown that this problem is equivalent to the standard linear programming problem and therefore can 
be solved by the simplex method. Further, for a special type of polytopes which are an affine trans-
formation of a box we show that extremal points determine edges. 
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BİR KONVEKS POLİTOPUN KENARLARININ BELİRLENMESİ 
 

ÖZ 
 

Bu çalışmada, konveks bir politopun kenarlarının belirlenmesi problemi ele alınmıştır. Bu 
problemin, simpleks yöntemiyle çözülebilen bir standart lineer programlama problemine denk olduğu 
gösterilmiştir. Ayrıca, bir kutunun afin dönüşüm altındaki görüntüsü olan özel politoplar için uç nok-
taların, politopun kenarlarını belirlediği gösterilmiştir. 
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1. INTRODUCTION 
 
The frame problem, i.e. the problem of determination of extremal points of a polytope has been 

studied in many works (see, for example Dulá et al. (1992), Dulá and Helgason (1996), Murty (2009), 
Rosen et al. (1992), Wallace and Wets (1967), Ziegler (2006)), while the problem of determination of 
edges has been paid little attention. 

 
The problem of determination of edges of a polytope has mathematical interest and also is im-

portant for applications. For example, consider the robust stability problem for a polynomial polytope. 
Since every polynomial can be interpreted as coefficient vector, polynomial polytope can be interpret-
ed as a polytope in a finite-dimensional space. Fundamental result in this theory is the Edge Theorem, 
which states that the polynomial polytope is (robustly) stable if all edges of the polytope are stable 
(Barmish (1994), Bartlett et al. (1988), Bhattacharyya et al. (1995)). Therefore, the recognition of the 
edges is important for this theory (Bhattacharyya et al. (1995), Pujara and Bollepalli (1994)). 

 
In this work we consider the problem of determination of all edges of a convex polytope. In Sec-

tion 2, we consider the general polytope, which is defined as convex hull of a finite number of points. 
We show that the line segment connecting two such points is an edge if and only if the optimal value 
of the corresponding linear programming problem is equal to 1 (Theorem 1). 
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In Section 3, we consider the special types of polytopes which are important for applications. 
These polytopes are defined as an affine transformation of a box and called zonotopes. Such polytopes 
arise, for example, in the robust stability theory of an affine polynomial family, when every coefficient 
of the polynomial is an affine function of uncertainty parameters nq qq ,,, 21   and the uncertainty 

vector T
nqqq ),,,( 21 q  varies in a box Q  (affine uncertainty structure). Here we show that the 

line segment joining the vertex points that are the images of an adjacent vertexes of the box Q  is an 
edge (Theorem 4). Thus in such polytopes extremal points determine edges. 

 
Now we recall some definitions from the convex analysis (Grünbaum (2003), Rockafellar (1970), 

Stoer and Witzgall (1970)). For the different elements n
R  y x,  the line segment ][ yx,  is the set 

]}1,0[  :)1{(  ttt yx , and the straight line through x  and y  is the set }  :)1{( R ttt yx . In 
these definitions the vector xy   is called the direction vector.  

 
Let the finite set of different points },,,{ 21 kaaa E  be given. Then the convex hull of E , i.e. 

the set 
 

EP  conv  
 

is called a polytope and the set E  is called the generator set of the polytopeP . 
 
A point Px  is called an extremal point (vertex) of P  if there does not exist P21 ,pp  with 

21 pp   and )1,0(  such that  21   )1( ppx   . 
 
Every extremal point of P  is contained in E  but non-every ia  from the set E  is an extreme 

points of P . The set of all ia  which are the extreme points of P  is called the minimal generating set 

(the frame) of P . A polytope is equal to the convex combination of its extreme points. 
 
Let the polytope P  be given. As usual, the edges of P  are its 1-dimensional faces. We will use 

the following equivalent definition of edges (see Barmish (1994) p. 133, Papadimitriou and Steiglitz 
(1998) p. 61). Let 1e  and 2e  ( 21 ee  ) be extreme points of P . The segment ],[ 21 eeE  is called an 

edge of P  if the following condition holds: Given any P21 ,pp  with ],[, 2121 eepp   it follows 

that  ],[],[ 2121 eepp . 
 
For every edge E  of the polytope },,,{ conv 21 kaaa P  there exist },,2,1{, 00 kji   

)( 00 ji   such that ],[
00 jiE aa , but not every segment ],[ ji aa  is an edge of P . 

 
Definition 1. Let Rii  ,  be given and ii    ),,2,1( ni  . The set 

 
  },,2,1  ,  :),,,({ i21 niqqqqQ ii

T
n   q            (1) 

 
is called a box (parallelepiped) in n

R . 
 
The box (1) has 12 nn  edges. For each edge of the box (1) there exists an index },,2,1{ nm   

such that this edge has the form: 
 

1 2 i{ ( , , , ) :    or   for ,  and }.T n
n i i i m m mq q q q q i m q         q  R  
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The family of edges of Q  can be partitioned into n  subfamilies nEEE ,,, 21  , where all segments 

in iE  ),,2,1( ni   are parallel and has the same length. The subfamily iE  consists of all edges of the 

box Q  of the form 
 

1 2 i{ ( , , , ) :   [ , ],   or  for }T
n i i j j j jq q q q q q j i       q   

 

and all segments in iE  have the same direction vector .)0,,0,,0,,0( T
ii     For simplicity we 

will consider only the first subfamily 1E . By definition 1E  consists of the segments 
 

1 2 1 1 1{ ( , , , ) :    and   or   ( 2,3,..., )}.T
n i i i iq q q q q q i n        q 

 

 
Assume that 1E  consists of the line segments rlll  ..., , , 21  (where 12  nr ). Since the set 

rlll  21  contains all extremal points of Q  (Fig. 1.) then 
 

}{ conv 21 rlllQ   . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The first subfamily },,,{ 43211 llllE  of Q  )3( n . 
 
Let A  be an m  by n  matrix and d  be an m -vector. Consider the polytope 

 
}   :{Π QAAQ  qdqd . 

 
Every extreme point in Π  is the image of some extreme point of Q  and every edge point in Π  is 

the image of some edge point of Q  (Ziegler (2006) p. 196). 
 
As pointed out above this manuscript addresses two points: 

 
1) Determination of the edges of the polytope },,,{ conv 21 kaaa P . It is shown that this problem 

is equivalent to the standard linear programming problem (Theorem 1). 
 
2) Determination of the edges of the polytope d AQΠ  (where Q  is a box, A  is a given matrix, 

d  is a given vector). We show that if ],[ 21 eel  is an edge of Q  and the images of 1e  and 2e  are 

extreme points of Π  then the image of ],[ 21 ee  is an edge of Π  (Theorem 4). Here we also give a 
simple sufficient condition on the matrix A  (Theorem 5) which guarantees that all edges of the 
polytope Π  are covered by Theorem 4. 

 
At the end of the sections we give illustrative examples. 

1l

2l

4l

3l

1L

3L

2L

4L
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2. EDGES OF THE POLYTOPE P  
 
Consider the polytope },,,{ conv 21 kaaa P . In this section we determine the edges of P . 
 
The problem of efficiently determination of extremal points of a polytope has been studied in 

many works (see Dulá et al. (1992), Dulá and Helgason (1996), Murty (2009), Rosen et al. (1992), 
Wallace and Wets (1995), Wets and Witzgall (1967) and references therein). As far as the edges are 
concerned the following result is obtained in Murty (2009): 

 
Let each points ia  ),...,2,1( ki   be an extreme point of P . Then the line segment ],[ 21 aa  is an 

edge of P  iff there exists a T
nccc ),...,,( 21c  satisfying 

 

.    to3   allfor    0)(

0)(

1

21

kii
T

T





aac

aac
 

 
In this section we show that the problem when ],[ 21 aa  is an edge ofP  is equivalent to a standard 

linear programming problem of the type bx A , 0x , min cdT . 
 
On the other hand in Theorem 1 there is no requirement that all ia  are extreme points. 
 
Let three vectors x , y , n

Rz  be given. It is easy to check whether the point x  belongs to the 
straight line passing from y  and z  or not. Indeed, consider the vectors xy   and xz  . Then x  be-
longs to the straight line passing from y  and z  if and only if the vectors xy   and xz   are propor-
tional. 

 
Theorem 1. Let the polytope n

k R },,,{ conv 21 aaa P  be given. Consider the line segment 

],[ 21 aa  and its midpoint 
2

21 aa
b


 . Assume that for every },...,4,3{ ki  the point ia  does not 

belong to the straight line passing from the points 1a  and 2a . Consider the following standard linear 

programming problem (LP) on variables k  ..., , , 21 : 
 

            

min 

 ),,2,1(   0

1
:)(

21

21

2211























ki
LP

i

k

kk





 baaa

         (2) 

 
Then the segment ],[ 21 aa  is an edge of P  if and only if the optimal value of the problem (LP) is equal 
to 1. 

 
Proof. :)  Let ],[ 21 aa  be an edge of the polytope P . Assume that the optimal value of the problem 
(LP) is strictly less than 1 (by (2) this value is not greater than 1). Then there exist k  ..., , , 21  such 
that 

 



Anadolu University Journal of Science and Technology - B 1 (2) 
Theoretical Sciences 

 

121

   

).,...,2,1(   0

,1

,1

2211

21

21

kii

kk

k













aaab 


                 (3)  

 
From this it follows that at least one of k  ..., , , 43  is positive. For simplicity assume that 03  . 

Obviously 13   (otherwise 3ab  , which contradicts the assumption). 
 

Consider the vector b
~

 on the straight line passing from 3a  and b : 
 

  )(
~

33 abab  t                     (4)  
 

Where 
31

1
1


 t . Then by (3) we have 

 

kk

kk

ttttt
t

aaaaa

aaaaab











44332211

322113

)]1(1[

)(
~

          (5) 

 

The coefficients of the right-hand side of (5) sum to 1 and are non-negative. Therefore Pb
~

. By as-

sumption ].,[ 213 aaa   From assumption also follows that ].,[
~

21 aab  Indeed, if ],[
~

21 aab  then 

there exists ]1,0[  such that 21 )1( 
~

aab   . From this and (4) we have 
 

213 )1(2

22

)1(2

2
aaa

t
t

t
t











 

 
which gives that the point 3a  lies on the straight line passing from the points 1a  and 2a . This contra-
dicts the assumption. 

 

Consequently the segment ]
~

,[ 3 ba  belongs to P  and has a common point b  with the segment 
],[ 21 aa . This contradicts the assumption that the segment ],[ 21 aa  is an edge of P . 

 
:)  Let the optimal value of the problem (LP) be 1. Denote the admissible set of the problem (LP), i.e. 

the set of all kT
k R ),...,,( 21 λ  satisfying (2) by G . By (2) and (3) for all Gλ , 

043  k  , 121    and 2211 aab   . By definition of b  we have 
 

.
2

1

2

1
212211 aaaa    

 

This equality together with 121    gives 
2

1
21   . Consequently if the optimal value of (LP) 

is equal to 1 then the set G  contains the unique element T)0,...,0,
2

1
,

2

1
(λ  (In other words, the rep-

resentation 
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21 2

1

2

1
aab                      (6) 

 
is the unique representation of b  by kaaa  , , , 21  ). 

 
By contrary, assume that the segment ],[ 21 aa  is not an edge of P . Then there exist P21 ,pp , 

],[ 211 aap  , ],[ 212 aap   and ],[ 21 aac  such that ].,[ 21 ppc  Then },,{ conv 211 ppab  or 
},,{ conv 212 ppab . Without loss of generality assume that },,{ conv 211 ppab . Then there ex-

ist  ,   and   such that 
 

 
0.  ,0  ,0   ,1

   211





 ppab

               (7)  

 
Since P21 ,pp , 1p  and 2p  can be written as a convex combination of kaaa  , , , 21  : 

 

  
.0   ,0   ,1

       , 

1 1
i

1 1
21

 

 

 

 





k

i

k

i
iii

k

i

k

i
iiii



 apap
                (8)  

 
Then by (7) 

 

kkk aaab )()()( 222111             (9) 
 

Comparing (6) and (9) we have 
 

.0

0

2/1

2/1

33

22

11







kk 







                 (10)  

 
(10) implies 

 
.0    33  kk                (11)  

 
Second equation of (10) implies 0  or 0 . For simplicity assume that 0 . Then by (11) 

 
.03  k                    (12) 

 
From (8), (12) we have 22111 aap    ( 121   , 01  , 02  ) which contradicts to 

],[ 211 aap  .  
 

Remark. Theorem 1 establishes the extreme points also, since the set of extreme points is equal to the 
set of end points of edges. 

 
Example 1. Consider the polytope 4

RP   
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},,,,,{ conv 654321 aaaaaaP  
 

Where T)5,2,2,1(1 a , T)7,1,2,2(2 a , T)7,2,2,1(3 a , T)5,1,2,2(4 a , 
T)2,2,1,2(5 a , T)2,2,1,2(6 a . The total number of possible segments ],[ ji aa  is 15. Appli-

cation of Theorem 1 and the Simplex Method to each of the segment ],[ ji aa  gives that from these 

segments only 6 segments 
 

],[ 41 aa , ],[ 51 aa , ],[ 32 aa , ],[ 52 aa , ],[ 63 aa , ],[ 64 aa  
 

are the edges of the polytope P . 
 

3. EDGES OF A ZONOTOPE 
 
As noted above the edges of a polytope automatically determine all extreme points. In this section 

for a zonotope (which are important for applications) we show that the extreme points determine the 
edges. As mentioned above these polytopes have the form 

 
d AQΠ . 

 
Here nQ R  is the box (1), A  is an m by n matrix, d  is an m-vector. If a polytope is shifted by the 
vector d  then every edge is also shifted by the vectord . Therefore without loss of generality we may 
assume that 0d  : 

 
AQΠ . 

 
While zonotopes are well-studied class of polytopes (Fukuda (2004), Grünbaum (2003), Stoer and 
Witzgall (1970), Ziegler (2006)) the problem of determination of edges has been paid little attention. 

 
It is obvious that } ..., , ,{convΠ 21 kAAA aaa , where ia  is extreme point of Q  (i=1, 2, ..., k). From 
now on, we assume that all column vectors of the matrix A are nonzero vectors (otherwise we would 
consider )1( n  dimensional box instead of the n dimensional box (1)). 

 
Let rlll  , , , 21   (where 12  nr ) be edges of the first subfamily 1E  (see Section 1) and let sL  be the 

image of sl  under transformation A ( rs  , ,2 ,1  ): 
 

ss AlL  . 
 

The segments sL  are parallel and has the same length (Fig. 1). It can be easily seen that 
 

}   :{ 11   ttL ss ba                 (13)  

where nonzero a  is the first column vector of the matrix A, sb  is a linear combination of remaining 

columns (i.e. th ..., 3th, nd,2 n  columns) of A and the coefficients in these linear combinations are i  

or i  ( 1i ). 
 

Lemma 2.  }L {convΠ r21  LL . 

Proof. Let y  be any extremal point of Π . Then there exists an extremal point x  of Q such that 

slx  and ss LAlA  xy  for some } , ,2 ,1{ rs  . Thus every extremal point of Π  is con-

tained in r21 L  LL . 
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Lemma 3. B AΠ  where } :{ 11   ttaA , }, , ,conv{ 21 rB bbb  . 

Proof. .} :{ 11 BttL sss  AA bba   Then 

BLL  Ar21 L   
 

and 
BLL  A}L {convΠ r21  . 

 
Conversely, if BAx  then there exist ],[ 11* t , Bs b , 0s  ( rs  , ,2 ,1  ) such that 

121  r   and 

).()( *1*1

11*

rr

rr

tt
t

baba

bbax










 

 
Since 

rss LLLLt  21* ba  
 
then 
 

.Π}{conv 21  rLLL x   
 

Theorem 4.  Let ],[ 21 eel  be an edge of Q (i.e. 1e  and 2e  are adjacent extreme points of Q). Let 

1eA  and 2eA  be extreme points of Π .  Then the segment }   :{ lAAlL  xx  is an edge of Π . 
 
Proof. Without loss of generality assume that the segment l belongs to the first subfamily 1E  see Sec-

tion 1). By contrary assume that L is not an edge of Π . Then there exist Π , 21 pp , L1p , 

L2p  such that 
 

.] ,[ 21  Lpp                   (14)  
 

Since l belongs to the first subfamily 1E  the segment L is one of 1L , 2L , …, rL  and by (13) 
 

}    :{ 11   ttL ba  
 

where the nonzero vector a  is the first column vector of the matrix A and }., , ,{ 21 rbbbb   From 

(14) it follows that there exist ],[~ ,~ ,~
11321 ttt  and  B

~
 ,

~
21 bb  such that 

]
~~,

~~[],[~
2312211 babappba  ttt  

 
or there exists ]1,0[  such that 

 

).
~~~~(

~~~
1223121 bbaababa  tttt               (15)  

 
Denote .~~)1(~

3210 tttt    Then 
 

)].(),([ 11110  t  
 

The equality (15) can be written as 
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.
~~

)1( 210 bbab   t                 (16)  
 

Consider three cases: 
 
Case 1. .00 t  
 
Using (16) the following identity can be written: 

 

0 1 1
1 1 1 1 1 2

0 1 1 0 1 1

( ) [(1 )( ) ( )].
( ) ( )

t
t t

      
   


       

   
a b a b a b a b   

 

By assumption, the point 21

~
ba  , which is one of the end points of the segment L, is an extreme 

point of Π . By Lemma 3, Π
~

11  ba  and .ba Π
~

21   Therefore 
 

Π.)
~

()
~

)(1( 2111  baba   
 

From assumptions it follows that 
 

),
~

()
~

)(1()( 21111 bababa    
 

otherwise 0a  )]([ 110 t  and since 0a   then 0110  t  and this contradicts to the 

assumption .00 t  Thus the extreme point ba 1  is expressed as a convex combination of two dif-

ferent points from Π  (recall that 0
)( 110

0 
 t

t
). This contradicts to the definition of an extreme 

point. 
 

Case 2. .00 t  
 
Using the identity 

0 1 1
1 1 1 1 1 2

1 1 0 1 1 0

( )
( ) [(1 )( ) ( )]

( ) ( )

t
t t

      
   

 
       

   
a b a b a b a b   

 
we obtain a contradiction as in the Case 1. 
 
Case 3. .00 t  
 

By (16) .
~~

)1( 21 bbb    Then ).1,0(  Indeed if 0  then 1

~
bb   and from (15) and 

0a   it follows that .~~
21 tt   Therefore 

 

Ltt  babap 1121
~~~  

 
and this is a contradiction. Similarly it can be shown that .1  Therefore ).1,0(  
 
Consider the identity 

).
~

()
~

)(1( 21111 bababa    
 

From the assumption L1p  it follows that .
~~

2111 baba    Thus the extreme point ba 1  
of Π  is expressed as a convex combination of the two different points from Π  and this contradicts to 
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the definition of an extreme point. 
 
The proof of Theorem 4 is complete. 
 

Now we proceed to the question when all edges of the image AQΠ  are covered by Theorem 
4. It is well-known from convex analysis that every edge point of the image AQ  is the image of some 
edge point of Q. On the other hand the end points of edges are extreme points. From these observa-
tions we conclude that for the segment ],[ 21 yy  to be an edge of Π  a necessary condition is that 

21  , yy  are extreme points and there exist edges  , , ,
021 sEEE   of the box Q such that 

 

).(] ,[
0

1
21 i

s

i
AE


 yy                   (17)  

 
If 10 s  in (17), then by Theorem 4 the segment ],[ 21 yy  is an edge of Π . The following theorem 

shows that under a simple condition on the matrix A the equality (17) is possible only when 10 s . 
 

Theorem 5. If no two column vectors of the matrix A are proportional then the equality (17) is possi-
bly only when 10 s . 
 
Proof. Let ia  be ith column vector of the matrix A. Then for an edge il E , where iE  is ith subfamily 

of edges of Q (see Section 1) the segment Al  has direction vector i
ii a)(   . 

 

Therefore for } ,2 ,1{ , ,nji  , ji   and il E , jl E
~

 the segments Al  and lA~
 are not par-

allel since the vector ia  is not proportional to the vector ja . 
Consequently the equality (17) is possible only when 10 s . 
 

Corollary.  If no two column vectors of A are proportional then all edges of the image AQΠ  are 
covered by Theorem 4. 
 
Example 2.  Consider the unit box 5

RQ  

 )},5,...,1(   ,10   :},...,{ 51  iqqqQ i  
and let the matrix A be defined as 

 

.

12321

01234

43210
















A  

 
The box Q has 3225   extreme points and only the images of 18 extreme points of Q are extreme 
points of the image AQΠ  (In Fig. 2, non-extremal points of AQ  each of which is image of some 
extremal point of Q are illustrated by cross-symbols. The number of such points is .141832  ). 
These extreme points of Q are the following points: 
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(0,0,0,00) (0,0,0) ,  (0,0,0,0,1) (4,0,1) ,(0,0,0,1,1) (7,1,3) ,

(0,0,1,0,0) (2,2,3) ,(0,0,1,1,0) (5,3,5) ,  (0,0,1,1,1) (9,3,6) ,

(0,1,1,0,0) (3,5,5) ,  (0,1,1,1,0) (6,6,7) ,(0,1,1,1,1) (10,6,8)

T T T T T T

T T T T T T

T T T T T T

  

  

   ,

(1,0,0,0,0) (0,4,1) ,(1,0,0,0,1) (4,4,2) ,  (1,0,0,1,1) (7,5,4) ,

(1,1,0,0,0) (1,7,3) ,  (1,1,0,0,1) (5,7,4) ,(1,1,0,1,1) (8,8,6) ,

(1,1,1,0,0) (3,9,6) ,(1,1,1,1,0) (6,10,8) ,  (1,1,1,1,1) (10,10

T T T T T T

T T T T T T

T T T T T

  

  

   ,9) .

 

T

 

 
The matrix A has no proportional columns and consequently by Theorem 4 and Theorem 5 the 

following segments are the edges of AQΠ  and there is no other edge: 
 

[(0,0,0) ,(4,0,1) ],    [(6,6,7) ,(6,10,8) ],[(4,0,1) ,(7,1,3) ],    [(0,4,1) ,(1,7,3) ],

[(7,1,3) ,(7,5,4) ],    [(7,5,4) ,(8,8,6) ],[(5,3,5) ,(9,3,6) ],    [(5,7,4) ,(8,8,6) ],

[(3,5,5) ,(6,6,7) ],    [(6,

T T T T T T T T

T T T T T T T T

T T 10,8) ,(10,10,9) ],[(6,6,7) ,(10,6,8) ],    [(0,0,0) ,(0,4,1) ],

[(0,4,1) ,(4,4,2) ],    [(7,1,3) ,(9,3,6) ],[(4,4,2) ,(5,7,4) ],    [(2,2,3) ,(3,5,5) ],

[(1,7,3) ,(3,9,6) ],    [(9,3,6) ,(10,6,8) ],[(3,9,6

T T T T T T

T T T T T T T T

T T T T ) ,(6,10,8) ],    [(0,0,0) ,(2,2,3) ],

[(10,6,8) ,(10,10,9) ],    [(4,0,1) ,(4,4,2) ],[(4,4,2) ,(7,5,4) ],    [(2,2,3) ,(5,3,5) ],

[(1,7,3) ,(5,7,4) ],    [(5,3,5) ,(6,6,7) ],[(8,8,6) ,(10,10,9) ],    [(3,3,

T T T T

T T T T T T T T

T T T T T T 5) ,(3,9,6) ].T T

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The image of Q under the transformation A. 
 
The case 20 s  in (17) is possible only when a), b) and c) below hold simultaneously: 

 
a) At least two column vectors of the matrix A are proportional. 
b) At least two segments from the different families iAE  and jAE  ( ji  ) generate a new segment. 

c) End points of this new segment are extreme points of AQΠ . 

x

z

y
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This shows that the case 20 s  in (17) is a very extreme case. Nevertheless if this case occurs then 
Theorem 1 can be applied. 

 

4. CONCLUSION 
 
In this paper, general polytope which is defined as the convex hull of a finite number of points is 

considered. It is shown that the line segment connecting two such points is an edge if and only if the 
optimal value of the corresponding linear programming problem is equal to 1. 

 
For a zonotope, it is shown that the line segment joining the vertex points that are the images of 

an adjacent vertex of the box Q is an edge of the zonotope. 
 
These results are useful in the application of the Edge Theorem to test stability of a polynomial 

polytope. 
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