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Abstract 

 

Theories which consider small scale effect have a great importance on analysis in micro and nano scale. In present 

paper, three kind of nanotubes (Carbon Nanotube (CNT), Boron Nitride Nanotube (BNNT), and Silicon Carbide 

Nanotube (SiCNT)) are analyzed in case of buckling on two parameters elastic foundation. Three different small 

scale theories (Nonlocal Elasticity Theory (NET), Surface Elasticity Theory (SET), and Nonlocal Surface Elasticity 

Theory (NET&SET)) are applied to calculate the buckling loads. Also Classical Euler-Bernoulli Beam Theory 

(CT) is used to see the effect of small scale effective theories. Comparative results are given for simply supported 

nanotubes in figures.   
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1. Introduction 

 

Nanotubes have a gigantic using area in nanotechnology based devices. Due to their superior 

mechanical properties, different kind of nanotubes are being used in many area such as space 

technology, nanosensors, nanoactuators, biotechnology etc . Carbon nanotube is the most used 

nanotube type since its discovery in 1991 by Iijima [1]. Carbon nanotubes consist of six Carbon 

(C) atoms bonded to each other in hexagonal shape. Carbon nanotubes attracted much attention 

due to its very high mechanical properties such as Young’s modulus which is equal to 1 TPa 

[2-5]. As technology always needs better material with better properties, scientists have 

developed a new type of nanotube which is much stronger than CNT called BNNT. BNNT’s 

material properties look better than CNT on paper with Young’s modulus equal to 1.8 TPa 

while the cost of BNNT is much higher than CNT [5-10]. Another kind of nanotube is boron 

nitride nanotube. Due to its superior mechanical strength, BNNT have been researched and used 

widely [8, 11, 12]. Their limited thermal resistance pushed researchers to develop a new 

nanomaterial. Silicon carbide nanotube can stay stable until 1000oC where Carbon nanotube 

and Boron Nitride nanotube can stay stable only until 600oC [13].  
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2. Nanotubes 

 

In present paper nanotubes are modeled as resting on double parameter foundation. To model 

double parameter foundation Winkler and Pasternak foundation models are used. Foundations 

parameter of Winkler and Pasternak foundations are kw and kp respectively. As it can be seen 

from Fig. 1, nanotubes are obtained, basically, by rolling over the long side of graphene or 

silicene sheets.   

 

 
 

 
 

  
 

Fig. 1. Obtaining nanotubes  

 

Nanotubes can be obtained in three form. These forms are determined by the rolling angle of 

graphene or silicene sheet. To illustrate, silicene sheet and three forms of nanotubes are 

demonstrated in Fig. 2. The red marked lines in silicene structure shows clearly the difference 

between rolling angles. As it can be seen from the top marked line in red at silicene, the 

armchair structure can be obtained by rolling the silicene sheet with zero degree. Likewise, 

zigzag nanotube structure can be obtained by a rolling of silicene sheet with 45o. Furthermore, 

any rolling with any other angle will be called as chiral. For example, SiCNT can be obtained 

in armchair, zigzag, and chiral form [14]. Each of these three types of SiCNT have different 

Young’s modulus. Three types of SiCNT’s are demonstrated in Fig. 2. Furthermore, as it can 

be seen, three types of nanotube structures look different from each other. 

 

 
 

Fig. 2. Armchair, zigzag, and chiral structure 
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Graphene is one of the most futuristic material founded in present century. Within its discovery 

in 2004 (13 years after the foundation of carbon nanotube) graphene sheets attracted huge 

attention with its superior material properties [4, 15-19]. Graphene sheets consist of six carbon 

atoms. These six atoms are bonded to each other in honeycomb (hexagonal) shape.  Graphene 

sheets can be produced in many methods. To illustrate two of most used methods are layer 

separation and chemical separation methods. Graphene sheets and graphene based nano-sized 

materials (carbon nanotubes, carbon nanowires) have limited thermal stability. Carbon based 

nanomaterials can stay stable only until 600oC in air [20, 21]. Due to this thermal limitation, 

these materials can only be used in limited applications area where these nano-sized materials 

will not be effected by an environment higher than 600 oC. On the other hand, scientists need 

to use strong nano-sized materials in environment much higher than 600oC like aerospace. For 

example NASA will launch a spacecraft named Parker Solar Probe to the sun where the 

spacecraft will be in an environment around 1400oC in 2018 summer [22]. To overcome this 

issue, scientists have produced a new nanomaterial, silicene, which can stay stable until 1200oC 

without any damage [13]. Silicene is a layer of silicon atoms which are hexagonally arranged 

similarly to carbon atoms in graphene sheets. However, the mechanical properties of silicene 

are weaker than graphene. To explain, Si-Si bond length in silicene is 2.29 Å where the C-C 

bond length is 1.42 Å in graphene, so that silicene performs higher chemical reactivity than 

graphene. This bond length makes silicene weaker than graphene.  To address this issue silicene 

and graphene are composed and a new more powerful, thermal resistant nanomaterial has been 

developed ‘silicon carbide sheet’.  

 

 

 
 

Fig. 3. The structure of CNT, BNNT, and SiCNT 

 

NASA Glenn Research Center has collaborated with Rensselaer Polytechnic Institute in order 

to obtain silicon carbide sheets. Researches from the collaboration have developed several 

methods to obtain silicon carbide sheet. Some of these methods are chemical conversion of 

carbon nanotubes (nanotubes which have been obtained by rolling graphene sheet) to silicon 

carbide nanotube (nanotube which have been obtained by rolling silicon carbide sheet), direct 
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SiCNT growth on catalyst, and template-derived SiCNTs. Finally, scientist have produced the 

material, silicon carbide sheet, which is capable to stay stable under 1000oC and stronger than 

silicene in case of mechanical stability. On the other hand, boron nitride nanotubes are another 

kind of nanotube which consist of boron “B” and nitrogen “N” atoms bonded to each other. The 

bond length between B and N atoms is 2.503 Å [11]. Although the bond length in BNNT is 

longer than CNT and SiCNT, BNNT is the strongest material in case of mechanical stability 

with Young’s modulus equal to 1.8 TPa where CNT and SiCNT have Young’s modules equal 

to 1 TPa and 0.62 TPa respectively [10, 13]. Three types of nanotubes are demonstrated in Fig. 

3. Carbon atoms, boron atoms, nitrogen atoms, and silicon atoms are demonstrated with red, 

blue, green, and yellow balls in Fig. 3 (carbon atoms are demonstrated in darker color in SiCNT 

structure).  

Nanotubes have been modeled as plate, shell, rod, and beam in literature [23-30] to make 

bending [31, 32], buckling [33] , vibration [34] analyses possible theoretically. In this paper, 

nanotubes are modeled as cylindrical beam by using Euler-Bernoulli beam model. In the model, 

L is the length, r is the average radius, D is the average diameter, t is the thickness of nanotube. 

 

3. Formulation for Buckling Problem of Nanotubes  

Buckling equation with surface effect can be obtained by using the following nonlocal Euler-

Bernoulli beam model. Nonlocal Euler-Bernoulli model of nanobeams can be expressed as 

follows [35, 36] 
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In Eq. (1), w(x) is the deflection at any x point, P and q are the axial compressive load and the 

transverse distributed force respectively. The moment of inertia of a nanotube can be calculated 

by using classical moment of inertia for circular cross sections as follows 

 

𝐼 = 𝜋𝑟3𝑡                                                                              (2) 

  

Where ‘r’ is the radius of nanotube and ‘t’ is the thickness. In order to take the surface elasticity 

effect into consideration, the classical flexural rigidity ‘EI’ need to be replaced with ‘ EI ’. EI

is the effective flexural rigidity, for a nanotube with a circular section EI  can be calculated as 

68] 
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As it can be seen in Eq. (3), there are two different Young’s modulus parameter for one material. 

Es is the surface Young’s modulus and E the material’s Young’s modulus. “D” is the average 
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diameter which can be calculated by calculating the difference between outer and inner 

diameter of nanotube. The residual surface stress doesn’t have any effect on the bulk in case of 

the deflection equal to zero. On the other hand, in case of any deflection, the residual surface 

tension generates a distributed transverse loading q(x) along the longitudinal direction. The 

Laplace-Young equation predicts that 
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Where H is a constant which depends on the residual surface tension and the cross-sectional 

shape and can be calculated with the following equation [37, 38] 

 

DH 02  (5) 

  

 In Eq. (5) ‘ 0 ’ is the residual surface tension. By substituting Eqs. (3-5) in Eq. (1) we can 

obtain the equilibrium equation of a nanowire embedded in Winkler and Pasternak foundation 

as [39] 
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Where   is the nonlocal parameter and equal to  2
0
ae . kw and kp are the Winkler and Pasternak 

foundation parameters, respectively. In case of choosing kw and kp equal to zero, the equation 

will be the nanowire equilibrium without any foundation effect. Hence by choosing H and   

equal to zero, the equation will be the nanowire equilibrium embedded in double parameter 

foundation without nonlocal and surface effect. To calculate the buckling loads of nanowire, 

boundary conditions must be used in Eq. (6). In case of simply supported nanobeams, boundary 

conditions can be expresses as [40, 41] 

 

w=0  and   M=0      at      x=0 and x=L
 

(7) 

 

To use Navier’s Solution Procedure, generalized displacement series needs to be employed as 

follows 

 

𝑤(𝑥) = ∑ 𝑊𝑛

∞
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)                                                               (8) 
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In Eq. (56), 𝑊𝑛 is the undetermined Fourier coefficient. This means that Eq. (8) must satisfy 

the associated boundary conditions. Use of Eq. (8) in Eq. (6) yields the following relation for 

buckling loads of a nanowire which are embedded in double parameter foundation including 

size effect as;  

For nonlocal elasticity theory (NET) 
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For surface elasticity theory (SET) 
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For nonlocal surface elasticity theory (NET & SET) (NSET) 
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4. Numerical Examples 

 

In present paper the buckling analyzes of three types of nanotubes have been made by using two 

different size effective theories. The length of each nanotube have been chosen equal to 50 nm. 

Furthermore, the diameter for each nanotube are also have been chosen equal to 1 nm to plot Fig. 

5. To model the double parameter foundation, Winkler and Pasternak foundation models have 

been used. Foundation parameters have been chosen as kw=1500 and kp=50. To take the size effect 

into consideration, nonlocal elasticity theory, surface elasticity theory, and nonlocal surface 

elasticity theory is used. In Fig. 4, the buckling loads of CNT, BNNT, SiCNT have been plotted 

for various radius for first three modes. Buckling loads of BNNT, CNT, and SiCNT have been 

plotted in green, red, and blue colored lines respectively.  
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Fig. 4. Buckling loads of nanotubes for various radius 

 

As it can be clearly seen from Fig. 4 with the increase in radius, as expected, the buckling load 

of CNT, BNNT, SiCNT follows an increasing trend. To compare size effective theories, surface 

elasticity theory always gives higher results than classical theory while nonlocal elasticity 

theory always gives lower results. On the other hand, nonlocal surface elasticity theory gives 

higher results than classical theory in first modes, but lower results in higher modes for BNNT. 

Furthermore, the effect of nonlocal surface elasticity theory has been observed to perform alike 

trend for CNT and SiCNT. As expected the buckling loads of BNNT is the highest while SiCNT 

is the lowest. 
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Fig. 5. Buckling loads for different mode numbers 

In Fig. 5, the buckling load of BNNT, CNT, and SiCNT have been plotted for different mode 

numbers and size effective theories. To see the differences between results, the length of 

nanotubes is chosen equal to 100 nm. As it can be seen from Fig. 5, as expected, BNNT is the 

strongest nanotube in case of stability where SiCNT is the weakest. On the other hand, with the 

effect of double parameter foundation, the buckling loads doesn’t always give higher buckling 

loads for higher mode numbers. To illustrate, for all nanotubes, when surface elasticity theory 

and classical theory is employed the buckling loads perform increasing trend after second mode 

number. However, when nonlocal elasticity theory and nonlocal surface elasticity theory is used 

the buckling loads perform decreasing trend with the increase in mode numbers.  

 

 4. Concluding Remarks 

As it can be seen from Fig. 3 and Fig. 4 the buckling loads of all nanotubes increase with the 

increase in radius and mode numbers. As expected, boron nitride nanotubes have the strongest 

resistance to buckling where silicon carbide nanotubes have the lowest. Furthermore, surface 

elasticity theory gives highest buckling loads while nonlocal elasticity theory gives lowest and 

nonlocal surface elasticity theory’s results are between two results. 
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