
INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
O. Oksuz, Vol.13, No.1, pp.1-22
https://doi.org/10.55859/ijiss.1399189

A Smart Contract Based Secure Ride Sharing
System

Ozgur Oksuz1 

1Faculty of Engineering and Natural Sciences, Department of Software Engineering,
Konya Technical University, Konya, Turkey

Corresponding Author: ooksuz@ktun.edu.tr

Research Paper Received: 01.12.2023 Revised: 17.01.2024 Accepted: 26.01.2024

Abstract—A ride-sharing system provides many advantages. It reduces energy consumption. Moreover, it mitigates traffic

congestion. Furthermore, it provides benefits to drivers and passengers in that they share travel costs (gas, toll ticket). Ride-

sharing has been getting very popular since the COVID-19 pandemic. Since COVID-19 is very contagious and spread by infected

people via coughs, sneezes, or talking, people avoid using public transportation to get the disease. People prefer to travel with a

few people to protect their health. To prevent people from getting the disease and to have the advantages of a ride-sharing system,

we introduce a ride-sharing system in which a driver only travels with a passenger for each event. Traveling with only one person

provides advantages to both the driver and passenger. The driver (passenger) not only shares the cost of the trip but also reduces

the risk of getting or spreading the disease. This paper proposes a smart-contract-based ride-sharing system that uses a V ickrey

(second highest bid) auction mechanism during a pandemic to determine the passenger. The system provides a decentralized,

transparent, trackable, verifiable, and secure ride-sharing with the help of consortium blockchain. Using smart contracts in the

system allows users’ bids to be transparent and verifiable. Furthermore, the proposed system provides a secure and lightweight

mechanism to protect users’ (drivers and passengers) travel data (locations and cost of travel). Their travel data for each event is

going to be unlinkable. Since any information in transaction is not encrypted, transaction data (travel data) can be used for data

mining and machine learning to extract useful information such as determining the frequently used destinations.

Keywords—COVID-19, Privacy, Ride-sharing, Smart-contract, Unlinkability, Vickrey

1. Introduction

With the COVID-19 disease transmitted from one
person to another via cough, sneezing, and talking,
people avoid crowds and keep their distance from
others. People prefer to use their private cars rather
than use public vehicles to go from one place to an-
other to avoid being sick. However, there are some
disadvantages for each person to use their vehicle

for traveling: It increases the carbon footprint in the
environment. The cost of travel (gas, tolls, tickets) of
the person increases. Traffic congestion and traffic
jams happen so that the person’s duration of travel
increases. A ride-sharing system is a solution for all
of the above. The ride-sharing system helps decrease
total CO2 emissions. It also provides benefits to the
users (drivers, passengers). People share travel costs
using a ride-sharing system. Moreover, ride-sharing

1

https://doi.org/10.55859/ijiss.1399189
https://orcid.org/0000-0001-5568-6116

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
O. Oksuz, Vol.13, No.1, pp.1-22
https://doi.org/10.55859/ijiss.1399189

reduces traffic congestion.

However, ride-sharing has some problems to
solve. One of the problems is that a driver or
passengers do not want to travel with many peo-
ple since they worry about getting infected in a
pandemic (COVID-19). In other words, they want
to feel safe and comfortable when they travel.
Another problem of a ride-sharing system is that
users can misbehave. They can cheat each other.
The driver or the passenger may not show up at
the time of travel. If one of these parties gives up
traveling, the other party is badly affected (time and
budget). This results in time and budget-consuming
for the users. There should be a mechanism to
protect users’ time and their budgets. In the system,
there should be a punishment for fraudulent users.
Another problem in ride-sharing systems is that a
passenger wants to travel with a legitimate driver
and should be convinced that the driver’s car is
in good condition. The driver also needs to be
convinced that the passenger is legitimate. The ride-
sharing system should protect users’ data privacy
from any malicious entity. The travel data consists
of users’ locations (starting point, end point), their
identities, and the cost of the travel. If there is no
protection for the travel data, an untrusted party
easily tracks the users.

Ride sharing data can be useful. Using machine
learning and data mining techniques on travel data
extract information for some real-world applica-
tions. For example, detecting the frequently used
destinations. Determining such places can help to
build police stations to provide security, healthcare
services to deal with treatment of disease and restau-
rants to serve entities foods and drinks. Another
application can be extracting the travel time between
two places based on the starting and ending times
of the travel from the transaction data. This could
help re-adjusting travel costs.

To protect users’ privacy, a system can allow
entities to encrypt their sensitive information such as
identity, start and end locations, and cost of travel.
However, using encryption algorithms to hide sensi-
tive information affects the speed and efficiency of
data processing and analysis, and limit the visibility
and usability of data. However, it does not allow
entities to use data for data mining and machine
learning since the data is encrypted.

To have a secure system, the existence of a central
trusted party in the system can manage all of these
properties. However, the trusted party can be hacked
by a dishonest party. It results that the system has
single point of failure.

To address all the problems above, we propose
a blockchain and smart contract-based ride-sharing
system. Applying blockchain technology to ride-
sharing systems eliminates all these problems above.
It is a decentralized system that does not rely on a
single party. It has a ledger technology that consists
of verifiable, transparent user data and is available
to all users in the system.

The contributions of this paper is as follows:

• In the proposed system, drivers (or passengers)
want to travel with one person to protect their
health. The system uses V ickrey (second price)
auction to determine the passenger. The use of
V ickrey auction provides entities a transparent
and secure auction mechanism. It protects users’
data (bid) privacy.

• We use smart contracts to solve conflicts be-
tween drivers and passengers. Using smart con-
tracts forces users to obey the rules. If the driver
or passenger does not show up at the time of
the travel, the party who suffers should get a
bonus, and the other party who does not obey
the rules will be punished. Moreover, using
blockchain structure provides transparency in
the authentication of users (drivers, passengers),

2

https://doi.org/10.55859/ijiss.1399189

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
O. Oksuz, Vol.13, No.1, pp.1-22
https://doi.org/10.55859/ijiss.1399189

travel costs, and integrity of the ride-sharing
service. Furthermore, to tackle any dispute be-
tween users and protect users’ time and budget
in the ride-sharing system, each user pays a
collateral (deposit) to the smart contract. If any
fraudulent driver (passenger) exists, the other
party passenger (driver) gets the collateral.

• The V ickrey auction provides benefits to both
parties. The driver gets at least half of the travel
cost (gas, tool fares). The passenger should not
pay all travel costs. He pays at least half of the
travel cost.

• The proposed system does not implement heavy
cryptographic operations like encryption to pro-
tect users’ travel data privacy. The system uses
a secure randomization technique for their iden-
tities to protect users’ travel data privacy. This
method does not allow an untrusted party to link
users’ travel data.

• The proposed system allows entities to use
transaction data for machine learning and data
mining purposes to extract information to build
real-world applications.

2. Related Work

There have been some studies that proposed ride-
sharing systems using blockchain. In [1] uses proxy
re-encryption mechanism to protect users’ privacy.
Moreover, it uses smart contracts to allow users
to interact with each other. Another work in [2]
also uses a proxy re-encryption scheme to share
data with other users and protect the privacy of
the users and uses anonymous signature to provide
anonymity. The same work also uses smart contracts
to provide interactions between users. In work [3]
proposed a ride-sharing system in which drivers are
also the miners in the system. This results in the
drivers doing the heavy work and means that the
drivers need to have strong computation capabilities.

Besides this, there is no data protection mechanism
for the drivers and passengers. The entities can be
easily trackable by any third-party entity. In work
[4], authors proposed an efficient ride-hailing sys-
tem based on the Ethereum blockchain. The sys-
tem is called PEBERS. The authors demonstrated
how a decentralized system based on a consortium
blockchain can be developed to keep track of ride
data. However, they did not focus on users’ data
privacy (travel data). The users’ identities were not
changed. Thus, any third party can keep track of
any specific user. The authors in [5] use a private
blockchain to provide a system that has a secure
ride-sharing service. The study in [6] proposed a
decentralized ride-sharing system. In their system,
passengers (riders) request their ride-sharing infor-
mation. Then, the drivers publish their offers. Then,
there is a matching phase that comes into play. Once
the matching step is over, the entities communicate
with each other. They assume that both parties
(driver and passenger) are honest. So, they did not
examine if the parties were dishonest. There is no
travel data privacy for the users. A malicious entity
can map each transaction to a specific driver or
rider. [7] proposed a ride-hailing system to know
optimal pricing and hygiene level decisions in an
outbreak. The authors focus on the safety of the
people, not the privacy. They leave it as a future
work in their paper. In [8], the authors proposed a
privacy-preserving ride-matching scheme. The sys-
tem provides matching between multiple riders and
drivers. The system uses Paillier encryption [9] to
protect user location privacy. However, their work
does not use a blockchain structure.

In another work in [10], the authors consider the
case in which the platform is risk-averse and serves
a market with both safety risk-averse and non-safety
risk-averse customers. However, they do not focus
on the data privacy of the users. Another work in

3

https://doi.org/10.55859/ijiss.1399189

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
O. Oksuz, Vol.13, No.1, pp.1-22
https://doi.org/10.55859/ijiss.1399189

Table 1.
Symbols and their descriptions.

Symbol Description Symbol Description

Rideid Identity of the Ride H,HC,HF,Hl Hash functions
CA Central Authority KG Key Generation Algorithm
addp Address Sign Signing Algorithm
f Pseudo Random Function V erify Verification Algorithm
ts Time Stamp RevT ime Bid Reveal Time
pk Public Key bid Bid
HB Hash Function StartLoc Start Location of User
dpst Deposit EndLoc End Location of User
ComTime Commitment Time sk Signature Secret Key
F Pseudo Random Generator StartT ime Start Time of Travel
HigBid Highest Bid SecHigBid Second Highest Bid
StartPoint Start Location of Travel EndPoint End Location of Travel

Winadd Address of Winner r Random number

[11] proposed a blockchain smart contract privacy-
preserving ride-sharing system that uses encryption
to protect users’ location privacy. The users (drivers
and passengers) encrypt their location information
and put it into the blockchain. Then, a ride-matching
algorithm is executed by the smart contract. Recent
work in [12] proposed a secure ride sharing based
on private smart contracts that users’ privacy is
obtained by using short group signatures and en-
cryption. Users encrypt their transactions and send
them to a local roadside unit (RSU). RSU then
decrypts the ciphertexts and matches riders and
drivers. Then, the rider and the driver communi-
cates via cell phones to negotiate a specific pick-
up location. Using an encryption algorithm results
in entities perform too much computation and the
transaction data is not suitable for machine learning
and data mining purposes. Another recent work in
[13] proposed a privacy-preserving ride-matching
scheme for ride-sharing services in a hot spot
area. In work [13] uses homomorphic encryption
(Paillier) to preserve location privacy. However,

their work is not based on blockchain and does not
consider ride-sharing in a pandemic.

In our system, the entities do not use any encryp-
tion algorithm to send transactions to RSU . Loca-
tion privacy is obtained by using an anonymiza-
tion technique over the public keys and addresses
of the users. Moreover, the system provides fast
authentication for the users. Thus, the proposed
protocol is more efficient than the other studies. The
matching algorithm is done by executing V ickrey

by the smart contract. Furthermore, the proposed
work focuses on ride-sharing in a pandemic.

Another work in [14] proposed a blockchain
based package delivery via ride-sharing system.
The authors proposed a hash oriented PBFT con-
sensus algorithm to reduce the confirmation de-
lay. Authors also examined the system’s resilience
against sybil and double spend attacks. However,
the work does not have any trust model and focus
on users’ (requesters) data privacy and anonymity
of the users (requesters). A requester generates a

4

https://doi.org/10.55859/ijiss.1399189

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
O. Oksuz, Vol.13, No.1, pp.1-22
https://doi.org/10.55859/ijiss.1399189

package delivery transaction message that includes
the origin of the packages delivery, the destina-
tion of the packages delivery. The transaction also
includes the signature of the requester. Since the
requester’s uses the same identity for each request,
their study does not satisfy unlinkability property.
The authors in [15] proposed an extension of their
previous work in [14] to elaborate the distributed
dynamic ride-sharing matching algorithm to further
complete the delivery system. In study [16], the
authors proposed proposes a blockchain-Enabled
Shared Mobility (BESM) architecture that involves
smart city authorities, vehicle owners, hospital man-
agement, and residents/tourists to decide on col-
laboratively utilizing a shareable vehicle in smart
cities. In BESM , even though a traveler books a
seat, the feasibility of accommodating the passenger
in the shareable vehicle is cross-checked by other
participants in the blockchain network, including
smart city officials, vehicle owners, and hospital
authorities. BESM collaboratively allocates seats
to travelers in a shareable vehicle depending on the
air quality and COV ID − 19 cases of traveling
destinations. The air quality of cities are predicted
by using some machine learning algorithms. The
authors uses a permissioned blockchain to pro-
vide immutability database and transferring route
plans across organizations. However, the study did
not give any information about threat model for
the system and data privacy for the entities and
unlinkability of the transactions. Authors in [17]
proposed a ride sharing system that the route of
the driver is updated once a new rider is added to
the route. In the beginning, the riders and drivers
submit their itineraries to the system. A smart
contract is utilized to match the driver with the
riders having compatible routes. The driver offers
a plan of its travel that includes the riders to pick
them up. Thus, once the driver picks a new rider, it
updates its travel. However, it their work, they did

not give any security model for the system. It did
not examine users’ (driver and rider) data privacy
and unlinkability of the transactions. In study [18]
proposed a blockchain-based framework for a ride-
sharing service. The authors then implemented their
prototype of the framework as a decentralized ap-
plication (DApp). The prototype is based on smart
contracts on Ethereum blockchain. The authors
also provided some algorithms to match riders with
drivers to decrease travel distance. However, in their
work, the users’ (drivers and riders) data privacy
(travel data), unlinkability of users’ multiple events
and security model of the system were not men-
tioned.

The given Table 2 shows the comparison of our
system and other studies. in the table, Unlinkability
property represents if multiple events of the same
passenger or driver are not linkable, Machine

Learning property represents if the transaction data
in the corresponding work can be applied to ma-
chine learning and data mining. Privacy property
shows if the users’ data is protected, Method prop-
erty is for if the study uses a protection mechanism
of the users’ data. If data of the users are not
protected in the system, we label the corresponding
study’s cell as No Method. Blockchain shows the
used blockchain type in the corresponding study.

3. Definitions

In this section, we give some definitions used in
this paper.

3.1. Ride Sharing

A carpooling system focuses on reducing traffic
jams and the amount of energy like gas and elec-
tricity. It also provides benefits for drivers and pas-
sengers. Drivers and passengers share travel costs.
The passengers have comfortable and fast travel.

5

https://doi.org/10.55859/ijiss.1399189

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
O. Oksuz, Vol.13, No.1, pp.1-22
https://doi.org/10.55859/ijiss.1399189

Table 2.
Comparison of the proposed system and other studies (blockchain-based).

Unlinkability Machine Learning Privacy Method Blockchain

[1] No No Yes Encryption Consortium
[2] Yes No Yes Encryption Private
[4] No Yes No No Method Private
[6] No Yes No No Method Public
[12] No No Yes Encryption Private
[14] No Yes No No Method Public

[16] No Yes No No Method Permissioned

[17] No Yes No No Method Public

[18] No Yes No No Method Public

Our Work Yes Yes Yes PR Consortium

3.2. Blockchain

Blockchain is a decentralized and peer-to-peer
data storage that eliminates a central party. In the
network, each node stores a copy of a ledger.
This ledger consists of all the transactions between
the nodes. Once the transactions are put into a
block, they are immutable. There are three types
of blockchain: Public, Private and Permissioned.
In a public blockchain, any participant can join
(leave) (from) the network as a node without having
any permission from any entity. Bitcoin [19] and
Ethereum [20] are examples of public blockchain.
Any participant node can issue a transaction and
read from the block. The blockchain is open to ev-
eryone. All transactions are verified using a consen-
sus mechanism. If a transaction is valid, it is added
to the block by the honest nodes. The private chain
is used inside the enterprise. This type of chain
provides a minimum degree of decentralization. A
permissioned or consortium blockchain is in be-
tween public and private blockchains. In consortium
blockchain, some of the authorized participants can
issue transactions. Moreover, the other authorized

entities can freely read and view the transactions.
If entities are known in advance, a consortium
blockchain is used.

In consortium blockchain, a formed block con-
sisting of transactions needs to be checked and
verified by other nodes before it is added to the
blockchain. This verification mechanism in the sys-
tem is called consensus. There have been several
consensus algorithms proposed and used: Proof of
Work (PoW), Byzantine Fault Tolerant (BFT),
Practical Byzantine Fault Tolerant (pBFT), Voting
based PBFT (vPBFT), and so on.

3.3. Smart Contracts

A smart contract is an automated and determin-
istic computer program consisting of functions and
parameters. These functions are executed once the
predefined requirements are satisfied. When a smart
contract is deployed, it is stored in the blockchain.
The function outputs the corresponding result. Once
a smart contract is executed, it results in a state
change or a new transaction in the blockchain.

6

https://doi.org/10.55859/ijiss.1399189

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
O. Oksuz, Vol.13, No.1, pp.1-22
https://doi.org/10.55859/ijiss.1399189

Ethereum [20] is the most used platform for de-
veloping smart contracts.

3.4. Vickrey Auction

V ickrey auction is also known as the second
price auction mechanism. V ickrey auction consists
of two phases: commit and reveal. In the commit
phase, users (passengers) submit their bids in a
predefined period. However, the users’ bids are pro-
tected so that anyone can not see other users’ bids.
In the reveal phase, each user in a predefined period
exposes their bids. The algorithm then outputs the
winner with the highest bid and the second highest
bid. The second highest bid is the price that the
winner pays. Vickey auction is known to determine
fair market prices and is used in many research areas
like energy trading [21] and wireless networks [22].

3.5. Digital Signature

A digital signature protocol consists of 3 algo-
rithms: Key Generation (KG), Sign, and V erify.
KG algorithm takes a security parameter, out-
puts a key pair for user d: Signature public
key/verification key (pkd) and Signature secret key
(skd). Sign algorithm takes a message Message

and signature secret key (skd), it outputs a sig-
nature Signature = Sigskd(Message). Verify al-
gorithm takes signature public key pkd, signature
Signature, and message Message, outputs 1 if
V erify(Message, Signature, pkd) == 1. This
means that the signature is generated by user d

under message Message. If V erify(M,S, pkd) ==

0, the signature under message Message is not
generated by user d.

A secure signature scheme needs to satisfy two
properties: authenticity and integrity. Authenticity
says that the owner of the signature convinces a
verifier that the owner of the signature generates

the signature using the message. Integrity provides
that signed data cannot be altered by any entity.

There are several digital signature algorithms are
used in blockchain: Schnorr signature [23], RSA

signature [24], ECDSA [25].

3.6. Hash Function

A hash function (H) is a deterministic algorithm
that takes a value (x) of any size and outputs a fixed
size value (y). This process is shown as H(x) =

y. Moreover, this algorithm is efficiently computed.
It has the one-way property that it is infeasible to
compute x from given y. Another property is that
It is infeasible to find two different inputs such that
x, z that satisfy H(x) = H(z) = y. This property
is known as collision resistance.

3.7. Bloom Filter

A Bloom filter is data structure that represents
a set of Data = {a1, . . . , aβ} of β elements and
its represented by an array of ξ bits initially set
to 0. The filter uses ℓ independent hash functions
{H1, . . . , Hℓ}, where Hi : {0, 1}∗ → [1, ξ] for i ∈
[1, ℓ]. For each item ai in A, where i ∈ {1, . . . , β},
the array bits at positions H1(ai), . . . , Hℓ(ai) are set
to 1. If any location can be set to 1 multiple times,
only the first is noted. There is, however, some
probability of a false positive, in which ai appears
to be in Data but actually is not. False positives
occur because each location may have also been set
by some element other than ai.

3.8. Pseudo Random Generator

A pseudo-random generator (PRG) outputs
strings that are computationally indistinguishable
from random strings. More precisely, we say that

7

https://doi.org/10.55859/ijiss.1399189

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
O. Oksuz, Vol.13, No.1, pp.1-22
https://doi.org/10.55859/ijiss.1399189

a function G : {0, 1}κ → {0, 1}ξ, where ξ > κ is a
(t, ϵ)-pseudo-random generator if

1. G is efficiently computable by a deterministic
algorithm,

2. for all t time probabilistic algorithm A,
|Pr[A(G(s)) = 0|s ← {0, 1}κ] − Pr[A(r) =

0|r ← {0, 1}ξ]| ≤ ϵ

3.9. Pseudo Random Function

A pseudo-random function (PRF) is computa-
tionally indistinguishable from a random function -
given pairs (x1, fs(x1)), . . . , (xm, fs(xm)), an adver-
sary cannot predict fs(xm+1) for any xm+1. More
precisely, we say that a function f : {0, 1}κ ×
{0, 1}κ → {0, 1}κ is a (t, ϵ, q)-pseudo-random func-
tion if

1. f(s, x) = fs(x) can be computed efficiently
from input x ∈ {0, 1}κ and key s ∈ {0, 1}κ.

2. for any t time oracle algorithm A that makes at
most q adaptive queries,
|Pr[Afs(.) = 0|s ← {0, 1}κ] − Pr[Ag = 0|g ←
F : {0, 1}κ → {0, 1}κ]| ≤ ϵ

4. Threat Model

In our system, CA is a trusted entity. It registers
users to the system. However, drivers, passengers,
and roadside units are not trusted. Passengers can
provide a fake bid or bids to manipulate auctions.
Moreover, passengers (drivers) send false data or
requests to gain an advantage in the system. Further-
more, they can issue fake transactions to provide re-
play attacks. Replay attacks prevent the system from
working and manipulate the ride-sharing system.

Drivers can also send fake data and misbehave.
Moreover, they can send fake transactions to do
replay attacks.

RSUs can issue fake transactions to manipulate
the ride-sharing system. RSUs also initiate replay
attacks that sniff some transactions and change some
parts of the transaction to degrade the system.

The privacy of offers needs to be taken care of.
The system should protect users’ offers not to be
seen by any other bidders since the transactions
and offers are stored in the blockchain. The offers
can easily be seen by other bidders. Other bidders
can use this information to gain advantage. Travel
information of the users should not be leaked to
public.

In the system, entities can freely read and view
all transactions. Any untrusted party can be able to
track drivers and passengers. The untrusted entity
tracks a specific user (driver or passenger) to figure
out where it is going and how much money it
spends/earns for each ride.

A secure ride-sharing system should provide the
following guarantees for the entities:

1. The system should protect users’ bids from
being viewed by other bidders to prevent other
bidders from gaining an advantage.

2. The system should be resistant to replay attacks.
3. The system should provide a transparent and

secure mechanism for entities that they can not
refuse or deny if they have a ride-sharing ser-
vice. If a driver (passenger) tries to misbehave,
there should be a punishment for fraudulent
users.

4. The entities’ transactions should be unlinkable
in the system to protect their privacy.

5. Proposed System

In this section, we present a smart contract-based
ride-sharing system that is utilized with V ickrey to
determine passengers. The proposed system consists
of 4 actors: Certificate Authority (CA), Driver,

8

https://doi.org/10.55859/ijiss.1399189

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
O. Oksuz, Vol.13, No.1, pp.1-22
https://doi.org/10.55859/ijiss.1399189

Passenger, and Road Side Unit (RSU). CA is
responsible for registering entities’ public keys to
the system. Once the entities are authorized, they
can issue transactions. RSUs are only entities that
have strong computation capabilities to form blocks.
They initiate a consensus protocol to agree on the
block of transactions that can be added to the
blockchain. Drivers provide ride-sharing services
to passengers to share their travel costs. Drivers
are the only entities that create smart contracts.
Passengers want to have comfortable and fast ride-
sharing services. Drivers and passengers use their
phone applications to provide travel information
like starting point, destination point, and schedule.
All users choose their public and secret keys and
register their public keys to a certificate authority.
This authority is trusted and can be the government
(Ministry of Transport). CA also generates system
parameters for the signature scheme, hash function,
and pseudo-random generator. Drivers create smart
contracts and put them into the blockchain with
the help of RSUs that initiate consensus. Then,
passengers view these contracts. If there is a match
between a driver’s and passenger’s travel informa-
tion (start and end locations), the passenger submits
its bid to the contract.

Then, a V ickrey auction comes into play.
V ickrey auction outputs the winner (passenger).
The winner pays the second-highest bid. To ensure
that the travel indeed happens. The driver and
winner send start and end locations (destination)
to the smart contract as transactions. The smart
contract is executed if the transactions satisfy the
conditions. Then, the smart contract finalizes the
event by paying the entities.

Since the entities are known in the system in
advance, we use a permissioned blockchain.

The workflow of the system as follows:

1. Each entity (passenger, driver, RSU) chooses a

public/secret key pair and register their public
key to Certificate Authority (CA).

2. A driver creates a smart contract (initialize
smart contract parameters and create functions)
and send it to a local RSU .

3. The contract is added to blockchain after a
consensus protocol.

4. Passengers retrieve smart contract from the
blockchain.

5. Passengers submit their bids to an RSU . Trans-
action is added to the blockchain as that in
step-3. V ickrey auction is then executed by the
smart contract. Winner and the two highest bids
are determined.

6. Winner is advertised.
7. The winner pays the full price as transaction.

After a consensus it is added to the blockchain
(step-3).

8. The driver and the passenger send their loca-
tions (start and end) to the smart contract.

9. The driver gets paid by the smart contract.

Figure 1 shows the architecture of the system and
work-flow. Now, we give the details of the our ride
sharing system. The system consists of two phases:
Setup and Smart Contract .

5.1. Setup

In this phase, each node (passenger and driver),
chooses a uniformly random secret key and pub-
lic key. A driver chooses skd as its secret key
and pkd as its public key. A passenger does the
same process to have its skp, and pkp. Then, the
driver and the passenger registers their public keys
to the certificate authority. Thus, each registered
user is authorized for creating smart contracts and
putting them into the blockchain, issuing transac-
tions to the blockchain and viewing transactions
from blockchain. The addresses/identities of the
users are the hash of their public keys, add =

9

https://doi.org/10.55859/ijiss.1399189

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
O. Oksuz, Vol.13, No.1, pp.1-22
https://doi.org/10.55859/ijiss.1399189

Certificate Authority

Driver Passenger

Consensus

Road Side Unit

Blockchain

2

1

1

1

1

3 3

1

5
8 7

9 4
6

8

6

Figure 1. Architecture and workflow of the proposed system.

HF (pk). The users can interact with the blockchain
using their username and password combinations.
CA then publish the public keys of the entities. CA

also sets system’s public parameters: specification
of signature scheme (KG,Sign, V erify), pseudo
random generator F , hash functions for Bloom filter
{Hi}li=1, HF : G → {0, 1}λ, HB : {0, 1}∗ →
{0, 1}λ1 and HC : {0, 1}κ → [1, n− 1], where G is
a group element. The symbols and their descriptions
are given in Table 1.

5.2. Smart Contract

Smart-contract phase consists of Create,
CommitBid , RevealBid , PayPrice,
StartTravelPassenger , StartTravelDriver ,
EndTravelPassenger , EndTravelDriver , and
Final functions. With these functions users are
able to interact with the contracts. Moreover,
V ickrey auction is implemented with the smart
contract. Figure 2 shows the entity relationship
diagram.

Create : This is for creating a smart con-

tract. The driver first initializes some parameters
for the contract. These are address and public
key of the driver (addd, pkd) who creates the
contract, a unique identity Rideid, starting point
(StartPoint) where the travel should begin, end
point (EndPoint) where the travel should end,
starting time (StartT ime) when the travel should
start, highest bid (HigBid), second highest bid
(SecHigBid), deposit (dpst) is collateral to pre-
vent dishonest users from a fraudulent behavior,
km is the length of the travel, BidCommitT ime

is a time period for users to commit their bids,
BidRevealT ime is a time period for users to reveal
their bids, Winaddp is the address of the winner.
Then, the driver sets values to these parameters.
Here, dpst has to be paid by the driver and the
passenger to eliminate any fraudulent behavior. dpst
is calculated by the following formula:

dpst = (km.GasPrice+
∑k

i=1 TollPricei))/2

, where km is the travel length, GasPrice is the
price of the gas (diesel or unloaded), and TollPrice

is the price of tolls used during the travel. dpst is

10

https://doi.org/10.55859/ijiss.1399189

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
O. Oksuz, Vol.13, No.1, pp.1-22
https://doi.org/10.55859/ijiss.1399189

DRIVER

• Driver Address
• Driver Public Key

• Identity Number of Travel
• Deposit

• Length of Journey
• Start Point
• End Point
• Start Time
• Highest Bid

• Second Highest Bid
• Winner Address
• Start Time
• Start Location
• End Location

• Create()
• StartTravelDriver()
• EndTravelDriver()

• Final()

PASSENGER

• Passenger Address
• Passenger Public Key

• Identity Number of Travel
• Deposit
• Hash of Bid
• Nonce

• Commit Time
• Reveal Time
• Time stamp
• Start Location
• End Location
• Start Time

• CommitBid()
• RevealBid()
• PayPrice()

• StartTravelPassenger()
• EndTravelPassenger()

SMART CONTRACT

Parameters

Functions

Figure 2. Entity interactions with smart contract.

calculated by the system’s application automatically.
Once the contract is created, it is deployed to the
blockchain. Create function returns address of the
smart contract which is going to be used by the
parties in the system.

CommitBid : This takes

(Rideid, addp, pkp, dpstp, hp, ComTime, Sigskp(A))
as input, it outputs bids[addp] = (hp). The input
transaction is issued by he passenger. In the
transaction, hp = HB(bidp, rp), bidp is the bid of
the passenger, rp is the uniformly chosen random
number, and HB is the collision resistant hash
function, ComTime is the transaction’ time stamp,

A = H(Rideid, addp, dpstp, hp, ComTime). The
passenger sends this transaction to the smart con-
tract.

RevealBid : This takes
(Rideid, addp, pkp, bidp, rp, RevT ime, Sigskp(B)),

where B = H(Rideid, addp, bidp, rp, RevT ime),
from the passenger, RevT ime is the timestamp of
the transaction, and outputs the identity of winner

and top two highest bids. To determine the winner
and the two highest bids, a V ickrey auction is
executed by the smart contract.

PayPrice : This function takes

(Rideid, addp, pkp, ts, (price − dpst)p, Sigskp(C)),
and outputs 1 if the remaining price is paid by the
winner. Otherwise, it outputs 0.

C = H(Rideid, addp, ts, (price− dpst)p), where ts

is the time stamp of the transaction. If the remaining
price is not paid by the winner, 2dpst (dpstd+dpstp)
is sent to the driver.

StartTravelPassenger : This function takes

(Rideid, addp′ , pkp′ , StartLocp′ , StartT imep′ ,

Sigskp′ (D)), where D =

H(Rideid, addp′ , StartLocp′ , StartT imep′) from
the passenger. Here, the smart contract verifies if
addp == Winaddp, verifies if the location of the
passenger (StartPoint), time of the passenger that
sends this transaction matches with StartT ime. In
this phase, before the travel is started, the driver
and the passenger send their real time locations

11

https://doi.org/10.55859/ijiss.1399189

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
O. Oksuz, Vol.13, No.1, pp.1-22
https://doi.org/10.55859/ijiss.1399189

and the time that these transactions are issued to
the smart contract.

StartTravelDriver : This function takes
(Rideid, addd′ , pkd′ , StartLocd′ , StartT imed′ ,

Sigskd′ (E)) from the driver, where E =

H(Rideid, addd′ , StartLocd′ , StartT imed′). Here,
the smart contract verifies if the address of the
driver equals to the address of the creator of the
smart contract (addd == addd′), verifies if the
location of the driver is StartPoint, checks if the
driver’s transaction time is the same as StartT ime.
In this phase, before the travel is started, the driver
sends their real time locations and the time that
these transactions are issued to the smart contract.

EndTravelPassenger : This function takes
Rideid, addp′ , pkp′ , EndLocp′ , EndT imep′ ,

Sigskp′ (H(Rideid, addp′ , EndLocp′ , EndT imep′))

from the passenger, where EndLocp′ is destination
location of the passenger. Once the travel is over,
the passenger sends his real-time location using
the system’s location service as a transaction to
the smart contract. This function also checks if the
passenger is the winner.

EndTravelDriver : This function takes Rideid,
addd′ , pkd′ , EndLocd′ , EndT imed′ ,

Sigskd′ (H(Rideid, addd′ , EndLocd′ , EndT imed′))

from the passenger, where EndLocd′ is destination
location of the driver. Once the travel is completed,
the driver sends its real-time location using the
system’s location service as a transaction to the
smart contract. This function first checks if the
driver is the creator of the smart contract.

Final : This algorithm sets second highest
bid as the price that the passenger should pay.
Moreover, it returns back the deposits of the other
passengers that their bids are not the highest.
Once the users’ start and end locations are
verified, and these are the same, the smart contract

sends ((price − dpst)p + dpstp + dpstd) to the
driver’s address. If the driver does not show up
(StartTravelDriver ==⊥) by the starting time of
the travel or does not send its location to the contract
and the passenger shows up in the starting point and
on time, the contract sends 2dpst (dpstp+dpstd) to
the passenger’s address. Moreover, if the passenger
does not show up (StartT imeDriver ==⊥) or
does not send its location by the starting time
of the travel and the passenger does not send
its location to the contract, but the driver sends
its location which is the starting point of the
travel, the contract sends 2dpst (dpstp + dpstd)
to the driver’s address and sends (price − dpst)p
to the passenger’s address. If two parties do
not show up (StartT imePassenger ==⊥)
and (StartT imeDriver ==⊥) or
(EndTimePassenger ==⊥) and

(EndTimeDriver ==⊥) the contract sends dpstd
to addd and send dpstp to addp. Table 3 shows
the details of smart contract functions and their
properties.

Step− 34 in Table 3 shows that if the driver and
the passenger do send their destination locations,
but they do not match with the destination location
(EndPoint) of the ravel, the contract sends (dpstp+
dpstd) to the address of the passenger.

A note that in this paper we do not examine trans-
action fees that entities need to pay once they issue
transactions and send them to the smart contract.
Since for each transaction the smart contract’s state
changes, the entities need to pay some transaction
fees.

5.2.1 Consensus

In the proposed system, each transaction is sent
to a RSU by entities (drivers, passengers). Once the
RSU gets a transaction, it checks if the transaction

12

https://doi.org/10.55859/ijiss.1399189

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
O. Oksuz, Vol.13, No.1, pp.1-22
https://doi.org/10.55859/ijiss.1399189

Table 3.
Smart contract algorithm of ride-sharing.

Initialize

List = [], HigBid = 0, SecHigBid = 0, km = 0, StartPoint = 0, EndPoint = 0,
BidCommitT ime = 0, BidRevealT ime = 0, dpst = 0, Winaddp = 0, StartT ime = 0.
Create(Rideid, addd, pkd, dpstd, kmid, StartT imeid, StartPointid, EndPointid, BidT imeRangeid).
1. checks if dpst(km.GasPrice+

∑k
i=1 TollPricei))/2) == dpstd

2. checks if addd ∈ DriverSet and addd is built from pkd
3. if all checks are verified return ContractAddress

CommitBid(Rideid, addp, pkp, dpstp, hp, ComTime,Sigskp(H(Rideid, addp, dpstp, hp, ComTime))).

4. checks if ((dpstp == dpst) ∧ (ComTime ≤ BidCommitT ime))

5. checks if addp ∈ PassengerSet and checks the signature if it is valid
6. checks if addp /∈ List and checks if addp is built from pkp
7. If all checks are true set List[addp] = (hp)

RevealBid(Rideid, addp, pkp, bidp, rp, RevT ime, Sigskp(H(Rideid, addp, bidp, rp, RevT ime))).

8. checks if ((hp == HB(bidp, rp)) ∧ (RevT ime ≤ BidRevealT ime))

9. checks if bidp > dpst and check the signature if it is valid
10. checks if ts ∈ BidT imeRange and checks if addp is built from pkp
11. if all checks are correct then Vickrey auction starts
12. (Winaddp, HigBid, SecHigBid)← V ickrey(addp, bidp).
PayPrice(Rideid, addp′ , pkp′ , (price− dpst)p′), ts, Sigskp′ (H(Rideid, addp′ , (price− dpst)p′ , ts))

13. checks if addp′ == Winaddp and checks if addp′ is built from pkp′

14. checks if (price− dpst) == (price− dpst)p′) and checks the signature if it is valid
15. if step-14 is not verified, sends dpstd + dpstp′ to addd.
16. if all checks are verified, it outputs 1.
StartTravelPassenger(Rideid, addp′ , pkp′ , StartLocp′ , StartT imep′ , Sigskp′ (H(Rideid, addp′ , StartLocp′ , StartT imep′)).

17. checks if Winaddp == addp′ , checks if addp′ is built from pkp′ , checks the signature if it is valid
18. checks if StartPoint == StartLocp′ ∧ StartT ime == StartT imep′

19. if all checks are verified, it outputs 1.
StartTravelDriver(Rideid, addd′ , pkd′ , StartLocd′ , StartT imed′ , Sigskd′ (H(Rideid, addd′ , StartLocd′ , StartT imed′)).

20. checks if addd == addd′ , checks if addd′ is built from pkd′ , checks the signature if it is valid
21. checks if StartPoint == StartLocd′ ∧ StartT ime == StartT imed′

22. if all checks are verified, it outputs 1.
EndTravelPassenger(Rideid, addp′ , pkp′ , EndLocp′ , EndT imep′ , Sigskp′ (H(Rideid, addp′ , EndLocp′ , EndT imep′)).

23. checks if addp == addp′ and check if addp′ is built from pkp′ .
24. checks if EndPoint == EndtLocp′ and checks the signature if it is valid.
25. if all checks are verified, it outputs 1.
EndTravelDriver(Rideid, addd′ , pkd′ , EndLocd′ , EndT imed′ , Sigskd′ (H(Rideid, addd′ , EndLocd′ , EndT imed′)).

26. checks if addd == addd′ and checks if addd′ is built from pkd′ .
27. checks if EndPoint == EndtLocd′ and checks if the signature is valid.
28. if all checks are verified, it outputs 1.
Final()

29. set price = SecHigBid

30. sends (addj , dpstj) for every j such that (addj ∈ List ∧ addj ̸= Winaddp),
31. (if step-19 is satisfied ∧ step-21 is not satisfied) ∨ (if step-19 is satisfied ∧ StartTravelDriver ==⊥),
sends dpstd + dpstp to addp
32. (if step-22 is satisfied ∧ step-18 is not satisfied) ∨ (if step-22 is satisfied ∧ StartTravelPassenger ==⊥),
sends dpstd + dpstp to addd and send price− dpst)p to addp
33. (if StartTravelPassenger ==⊥ ∧ StartTravelDriver ==⊥),
sends dpstd to addd and send dpstp to addp
34. if the steps-19, 22 are satisfied but EndPoint ̸= EndLocp (EndPoint ̸= EndLocd),
sends dpstd + dpstp to addp.
35. if the steps-19, 22, 25, 28 are satisfied,
sends ((price− dpst)p + dpstp + dpstd) to addd.

13

https://doi.org/10.55859/ijiss.1399189

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
O. Oksuz, Vol.13, No.1, pp.1-22
https://doi.org/10.55859/ijiss.1399189

is valid and puts it into a pool. Depending on the
consensus (PBFT), a master node is chosen to
form a block. If enough transactions are presented in
the pool, the master node (leader) builds a block and
sends it to the other nodes. Other nodes check the
transactions and return a message if the transactions
are valid. If the master node gets enough number
positive confirmations, the master node puts the
block into the blockchain.

5.3. Un-Linkable Carpooling System

In this section, we provide a secure ride-sharing
system.

The proposed system in Section 5 does not con-
sider drivers’ and passengers’ data privacy. Since
each party uses the same address for each event,
any dishonest entity can easily track the party. An
untrusted (malicious) party can easily track users’
(passengers, drivers) locations. Moreover, an un-
trusted party can easily view how much money a
specific driver (passenger) earns (spend). The users
use different secret and public keys (addresses) to
protect their privacy. Thus, they use different ad-
dresses to achieve un-linkability. The user generates
a fresh random secret and public keys for each
event. Moreover, it generates an address by hashing
the public key. However, it is troublesome for the
users to store these keys. Moreover, these public
keys should be registered by a trusted authority
for authorization. This results in many interactions
between each user and the trusted authority (CA).
If there are m public keys, there are m interactions.
So, the complexity is linear in the number of keys.
To tackle these problems, we use Pseudo Random
Generator (PRG). To generate the Elliptic Curve
Digital Signature Algorithm (ECDSA) secret keys
and corresponding public keys, each user chooses a
random seed k. Then, it uses a PRG function F and
computes F (k) = k1||k2|| . . . ||km, where ki = fk(i)

is ith secret key, where fk is a pseudo random func-
tion. Its corresponding public key is ki.G, where
G is the group generator on a curve. The user
then shares this secret seed (k) with the Certificate
Authority (CA) via a secure channel. Thus, the
communication complexity will be O(1) instead
of O(m) between CA and driver (passenger). CA

then generates these keys using F and registers the
corresponding public keys to the system. CA then
needs to publish these authorized keys in the system.
If CA uses this method, each RSU needs to store
mn keys, where n is the number of users in the
system. Each RSU searches a specific public key
(address) to check if it is authorized in O(mn) time.
To have an efficient search, We use the technique in
[26] to have fast authorization. It only takes O(1)

time instead of O(mn) to verify whether a user
is authorized to issue a transaction, create a smart
contract, and bid for ride-sharing.

The unlinkable construction requires to modify
Setup and Consensus phases in Section 5. More-
over, in the contract, each user (passenger and
driver) uses a different public key and address for
each ride.

NewSetup : In this phase, each node (passenger
and driver) chooses a uniformly random secret key
and public key for a signature algorithm such as
ECDSA [25]. A driver picks skd as its secret key
and pkd as its public key (verification key). The
hash of its public key is the address of this user. A
passenger does the same process to have its skp and
pkp. Moreover, each user chooses a secret random
seed kd for a driver (kp is for the passenger) and
sends it to CA using a secure channel.

Then, CA chooses l independent hash functions:
H1, . . . , Hl, where Hi : G → [1, ξ] and does the
followings:

1. for each user (passenger and driver), it com-
putes F (kd) for driver (F (kp) for passenger)

14

https://doi.org/10.55859/ijiss.1399189

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
O. Oksuz, Vol.13, No.1, pp.1-22
https://doi.org/10.55859/ijiss.1399189

to derive all secret keys. Then, it computes all
public keys kd,1.G, . . ., kd,m.G.

2. it uses each public key kd,i.G, where
i ∈ {1, . . . ,m} to compute H1(kd,i.G),
. . . , Hl(kd,i.G).

3. it sets a 1 in each location of the hash result in
the array.

4. it repeats steps-1,2,3 for each driver and pas-
senger.

5. it then sends the Bloom filter to the each RSU .

NewConsensus : Each RSU does a couple of
checks in the new consensus. Each user uses a
different public key and address for each event. In
other words, each RSU rejects the new transaction
if the new transaction consists of the previously
used public key to eliminate replay attacks. A replay
attack happens when an unauthorized user uses a
previous transaction issued by an authorized user as
their transaction to fool the RSU . If the new public
key has not been used previously, it evaluates it on ℓ

hash functions to check its authenticity by verifying
if all positions are 1s in the Bloom filter. Then, it
controls whether the new address is formed from the
public key by computing its hash. Then, it checks
the validity of the signature. This check is to prevent
replay attacks.

All checks and the consensus process are as
follows:

• RSU checks if the public key used in the
current transaction was previously used in the
blockchain.

– if it was used, RSU discards the transac-
tion.

• if the public key was not used before it evaluates
the public key in ℓ hash functions. Then, it
verifies if all positions are 1s in the Bloom

filter.
– it not, the RSU discards the transaction.

• if all positions consist of 1s in the Bloom filter,

RSU checks the address if it is obtained from
the public key.

– if the address is not formed by the public
key, the RSU discards the transaction.

• if the address is formed from the public key, it
checks if the signature is valid.

– if the signature is not valid, the RSU dis-
cards the transaction.

• if the signature is valid, the RSU then puts the
transaction to the pool.

The remaining process is followed as that in
Section 5.2.1.

6. Complexity Analysis

In this section we analyze the the proposed pro-
tocol’s complexity. Our analysis is based on m

number of events (smart contracts) that a passen-
ger/driver would like to participate.

For a passenger, each passenger executes each
smart contract two times: CommitBid ,RevealBid .
However, if the passenger is the winner,
then it executes five times: CommitBid ,
RevealBid , PayPrice, StartTravelPassenger ,
EndTravelPassenger .

For a driver, the driver executes each smart
contract four times: Create, StartTravelDriver ,
EndTravelDriver , and Final . The Final function
does not take any inputs.

To analyze the complexity of our system, we as-
sume that a user (passenger, driver) gets involved in
m events (ride-sharing). Table 4 and 5 show the re-
quired storage, communication, and computational
complexities for each user. Driver and passenger
passes some parameters based on the function to the
smart contract to execute. We assume that ECDSA

secret key (sk) is represented as 256 bits, public
key (pk) 512 bits, signature 512 bits, identity of a

15

https://doi.org/10.55859/ijiss.1399189

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
O. Oksuz, Vol.13, No.1, pp.1-22
https://doi.org/10.55859/ijiss.1399189

ride (Rideid) 128 bits, deposit (dpst) 128 bits, each
timestamp (ComTime, RevT ime, ts, StartT ime,
EndTime) 128 bits, address (add) 160 bits (output
of HF), each location (StartLoc, EndLoc) 128
bits, bid 128 bits, random value r 128 bits, output
of HB hash function is 128 bits.

If a passenger wins all m events, it requires 8096
· O(m) bits to interact with the smart contracts. For
a driver, it requires 3136 · O(m) bits to interact with
the smart contracts.

In Table 5, CB stands for CommitBid ,
RB stands for RevealBid , PP stands for
PayPrice, STP stands for StartTravelPassenger ,
STD stands for StartTravelDriver , ETP

stands for EndTravelPassenger , ETD stands
for EndTravelDriver , F stands for Final

functions, and P ↔ D stands for the
communication complexity between passenger
and driver, and CA ↔ D(P) stands for
the communication complexity between CA

and driver (passenger). In Table 4, subscript
F : {0, 1}κ → {0, 1}2κ, HF : G → {0, 1}160,
exp is denoted as the exponentiation operation
in G, H : {0, 1}∗ → {0, 1}256, Signature is
the signature, SMC is denoted as smart contract
creation, HB : {0, 1}256 → {0, 1}128.

7. Security Analysis

In this section, we examine the proposed scheme’s
security analysis. The proposed system satisfies all
requirements in Section 4.

1. This step is satisfied that bidders commit their
bids and then reveal them. In the commit phase,
nobody sees others’ bids. Thus, nobody gains an
advantage over others. However, to determine
the winner, everyone reveals their bids.

2. The replay attacks are prevented in the system
since each RSU verifies the public keys and

addresses of the entities, time stamps of the
transactions, and signatures. However, some of
the RSUs can be fraudulent that they can issue
fake transactions. Thus, the fake transaction
can be accepted by them. In the definition of
consensus, these RSUs are the minority in
the system. The majority can not accept any
fake transaction. Thus, this condition is also
satisfied. In PBFT consensus, at most 1/3 of
the total RSUs can be malicious. Others should
be honest.

3. A passenger can get the ride-sharing service.
However, it can deny that it did not get the
ride-sharing service to get the driver’s col-
lateral. A driver might also refuse that the
passenger is fraudulent and did not show
up at the start time and starting point to
gain the passenger’s collateral. To figure out
if anyone is lying, the proposed system
(smart contract) checks the transactions is-
sued by both parties to execute functions:
StartTravelDriver, StartTravelPassenger,
EndTravelDriver, and
EndTravelPassenger. The smart contract ver-
ifies the locations and time stamps of the trans-
actions of the entities. Thus, this condition is
satisfied.

4. Unlinkability of the entities’ transactions are
obtained by using different public key and ad-
dresses of the entities for different ride-sharing
events. Any dishonest entity in the system can
not track any specific driver (passenger).
Unlinkability property is satisfied by using well-
known cryptographic primitive which is pseudo
random generator (PRG). If F is a PRG with
secret seed k then F (k) = fk(1)|| . . . ||fk(n),
where f is a pseudo random function. If the
users’ secret keys are generated by using a
PRF f than the adversary can not distinguish
the outputs of the PRF function from a random

16

https://doi.org/10.55859/ijiss.1399189

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
O. Oksuz, Vol.13, No.1, pp.1-22
https://doi.org/10.55859/ijiss.1399189

Table 4.
Storage and computational complexity analysis of the proposed system.

CC CB RB PP STP STD ETP ETD F P ↔ D CA ↔ D (P)

Passenger - xO(m) xO(m) yO(m) yO(m) - yO(m) - - - O(1)
Driver |CC|O(m) - - - - yO(m) - yO(m) 128O(m) - O(1)

Table 5.
Communication complexity analysis of the proposed system (x = 1696, y = 1568).

Storage Computation

Passenger O(1) O(mκ)F + O(m)HF + O(m)HB + O(m)Exp + O(m)H + O(m)Sign + O(m)Subs

Driver O(1) O(m)SMC + O(mκ)F + O(m)HF + O(m)Exp + O(m)Signature

function with non-negligible probability.

Theorem 1 If F (k) = k1||k2|| . . . ||kn is a pseudo
random generator, where ki = fk(i) and fk is a
pseudo random function f : {0, 1}κ × {0, 1}κ →
{0, 1}κ is a pseudo random function, then the adver-
sary A can not link the passengers’ multiple events
with non-negligible probability.

Constructing a PRF from a PRG as above by
using well-known cryptographic primitive GGM −
PRF [27]. In [27], a length doubling pseudo ran-
dom generator F : {0, 1}κ → {0, 1}2κ is sequen-
tially applied on a random string in the root node
of the tree to build a binary tree. The leaf nodes
in the tree are represented as the evaluations of the
PRF function. The root node value is a uniformly
random string chosen from {0, 1}κ. The process is
illustrated in Figure 3.

Before we prove the theorem, we define a game
between an attacker A (event attacker), a challenger
B (PRF attacker) and a PRG attacker C. We define
each smart contract as an event. Thus, a passenger

or a driver can involve multiple events so it uses
multiple smart contracts. For an event/smart contract
ei, the entity (a passenger or a driver) uses the
same identity/address when it executes the smart
contract’s functions. For event ei+1, each entity uses
different identity/address for the transactions used
in event ei. Each event consists of transactions that
include following values:

• ride identity Rideid,
• address of passenger addp,
• address of driver addd,
• public key of passenger pkp,
• public key of driver pkd,
• hash of a bid of the passenger hp,
• deposit value dpst,
• bid commit Time ComTime,
• bid reveal Time RevT ime,
• bid of passenger bidp,
• random value of passenger rp,
• time stamp ts,
• starting location of the travel StartLoc,
• destination location of the travel EndLoc,

17

https://doi.org/10.55859/ijiss.1399189

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
O. Oksuz, Vol.13, No.1, pp.1-22
https://doi.org/10.55859/ijiss.1399189

s

0 1

111

1

1

0

0000

0

1

𝑓" 010 = 𝐺'(𝐺)(𝐺'(𝑠))) 𝑓" 100 = 𝐺'(𝐺'(𝐺)(𝑠)))

Figure 3. 3-Level GGM tree.

• starting time of the travel StartT ime,
• signature of passenger,
• signature of driver.

We prove this theorem using its contrapositive.
Assuming that an attacker A attacks our unlink-
able protocol with a non-negligible probability, B
uses A as a subroutine to distinguish a pseudo
random function from a random function with non-
negligible probability. Then, a PRG adversary C
uses B to distinguish pseudo random strings from
random strings. The second part of the proof follows
from GGM based PRF proof in 3. C is given a set
of strings that their length 2κ chooses an index i

then answers polynomial number of queries of B
based on the index. The proof follows using hybrid
games: there are κ level games. We assume that A
breaks the unlinkability property in our construc-
tion, B distinguish pseudo random function fs from
a random function with non-negligible property.
Then, C uses B to distinguish two hybrid games H0

and Hκ−1 with non-negligible probability, where H0

is the real protocol using PRG and PRF values (on

leaf nodes) for the identities/addresses of the enti-
ties while Hκ−1 is the random strings and random
function values are used for the identities/addresses
of the entities.

Setup: B sets system public parameters and
sends them to A. A creates a smart contract and
puts it into blockchain. Moreover, A outputs event
ei0,j0 (entity (passenger) i0’s j0th event) and ei1,j1
(entity i1’s j1th event) to be challenged upon.

Query: A adaptively makes q-event queries. For
event eiα,jβ ((0 ̸= β) and (1 ̸= β)), where 1 ≤ β ≤
q
2

and α ∈ {0, 1}, C gives the corresponding leaf
value on leaf jβ of passenger iα to B, then B forms
transactions based on the received value and sends
them to A.

Challenge: B flips a coin b forms the transac-
tions based on ei0,j0 if b = 0, otherwise it forms the
transactions based on ei1,j1 received value from C
and sends them to A.

Guess: A outputs bit b′.

If b = b′, the adversary wins the game. The

18

https://doi.org/10.55859/ijiss.1399189

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
O. Oksuz, Vol.13, No.1, pp.1-22
https://doi.org/10.55859/ijiss.1399189

advantage of the adversary is AdvUnLink
A = 1

2
+ ϵ,

where ϵ is a negligible value.

A note that we assume that the adversary
has some knowledge about the passengers and
drivers. That means the adversary knows the
entities’ travel information. Thus, we introduce
some rules to restrict the adversary in our
ride-sharing system. Let passenger i0’s travel
locations’ (departure and destination) set be
TLi0 = {(StartPointei0,jβ , EndPointei0,jβ)}

n
β=1,

passenger i1’s travel locations’ set be TLi1 =

{(StartPointei1,jβ , EndPointei1,jβ)}
n
β=1, and chal-

lenge event’s (smart contract) travel location TLc =

StartPointc, EndPointc. Then, (TLi0 ∪ TLi0) ∩
TLc = ∅, or TLc ∈ (TLi0 ∩ TLi0). In other words,
we do not let the adversary to issue the challenge
event’s location as TLc if TLi0 ∩ TLc = ∅ but TLc

if TLi1 ∩ TLc ̸= ∅ or vice versa. Otherwise, the
adversary can win the game with high probability
since a passenger can use the same departure and
destination locations multiple times.

Proof: Setup: B sets system public parameters
and sends them to A. These parameters consists
of the specification of PRG F , a hash function
H : {0, 1}κ → [1, n − 1], signature parameters
(ECDSA), l hash functions for setting Bloom

filter, a hash function HB for bid commitment, a
hash function HF , A creates a smart contract and
puts it into the blockchain. Moreover, A outputs
event ei0,j0 (entity i0’s j0th event) and ei1,j1 (entity
i1’s j1th event) to be challenged upon.

Query: A adaptively makes q-event queries. For
event eiα,jβ ((0 ̸= β) and (1 ̸= β)), where 1 ≤
β ≤ q/2, B asks C to get user iα’s jβth leaf node
value on the corresponding tree. Once B receives
the value aα,β which is the value (fkα(β) ∈ {0, 1}κ)
of a pseudo random function evaluated on β or a
random function’s output {0, 1}κ. Then, B forms
the transaction based on the function: CommitBid ,

RevealBid , PayPrice, StartTravelPassenger , and
EndTravelPassenger . Then, B sends them to A. To
form user α’s βth address and public key (for signa-
ture), it converts {0, 1}κ to range [1, n − 1], where
n is the order of the group. For this conversion,
B uses H . Then it computes pkα,β = H(aα,β)G

(verification key). The address of the passenger is
the hash of the public key, HF (pkα,β).

Challenge: B flips a coin b and asks C to receive
the value of aib,jb . Once it receives the value from C
forms the transactions as that in query phase. Then,
B sends them to A.

Guess: A outputs bit b′.

If the received value is the output of PRF ,
AdvUnLink

A,κ = Pr[BPRF (·)(1κ) = 0], where PRF ←
{0, 1}κ. If the received value is the output of
uniformly random function (RF), RF ← F ,
AdvUnLink′

A,κ = Pr[BRF (·)(1κ) = 0], where RF :

{0, 1}κ → {0, 1}κ.

Thus, we can write |AdvUnLink
A,κ − AdvUnLink′

A,κ | =
|Pr[BfPRF (·)(1κ) = 0] − Pr[BRF (·)(1κ) = 0]| ≥ ϵ.
It means that if A breaks our scheme with non-
negligible probability ϵ, B distinguishes PRF func-
tions from random functions. we also know the
result from [27] that the relation between win-
ning probabilities between AdvC,κ and AdvB,κ is
AdvC,κ = ϵ

κq
AdvB,κ, that PRG-attacker C distin-

guishes random strings from pseudo random strings
generated by PRG F is also non-negligible. Thus,
it results in a contradiction that violates the security
of F .

The probability of AdvUnLink′
A,κ needs to be cal-

culated when B uses random strings to answer
queries from A. There are q queries. If B uses the
same strings to answer A’s query, it is possible
that A figures out whether ei0,j0 or ei1,j1 . The
probability of picking the same string is q

2κ
. Thus,

AdvUnLink′
A,κ = 1

2
+ q

2κ
. When we combine this result

19

https://doi.org/10.55859/ijiss.1399189

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
O. Oksuz, Vol.13, No.1, pp.1-22
https://doi.org/10.55859/ijiss.1399189

with |Pr[AdvUnLink
A,κ = 0] − Pr[Adv′A,κ = 0]| ≤ ϵ,

we have AdvA,κ = 1
2
+ q

2κ
+ ϵ = 1

2
+ ϵ′, where ϵ′ is

a negligible function.

Data privacy of a passenger is satisfied by using
users’ pseudo identities not real identities. Since
there is no real identity in the system, our protocol
satisfies data privacy. Data privacy and unlinkability
property of a driver can be shown in a similar way as
above. In the game, the adversary gives two different
identities and their events to the challenger to be
challenged upon to create one of the smart contracts.
Moreover, it asks q-adaptive smart contract queries.
In the challenge phase, the challenger gives one
of two challenge smart contract and the corre-
sponding driver’s smart contract function executions
(StartTravelDriver, EndTravelDriver, Final). Then,
the adversary makes its guess.

8. Discussion

A user reputation mechanism can be added to our
first scheme (users’ addresses do not change for
each event) but not the second scheme.

In general, a user increases his reputation once
he completes a ride-sharing event successfully. The
user gets credits for each event. The user’s repu-
tation/credits are linked to his address. The user
should have a constant identity (address) that it
credits to accumulate. The credits are stored in the
blockchain so that anyone can view them. In our
first scheme, each user can have a reputation score
since each user has a single identity (address) for
every ride-sharing event. However, it is difficult to
add a reputation mechanism to second scheme. In
the second scheme (more secure), the entities do
not use a fixed address to get credits. Besides, the
entities use a different address for each ride-sharing
event. A possible solution is to have a trusted third

party (CA) that can map entities’ credits to entities’
addresses. Then, the trusted party maps entities’
credits to their current addresses and makes them
public. However, mapping a user’s credits to his new
address results in a privacy breach. If a dishonest
entity knows a user’s total credits, the entity can
easily de-anonymize the user. The entity simply
aggregates a bunch of credits that belong to different
addresses in the blockchain. Then, it checks if the
aggregated value equals accumulated credit. So, an
entity tries to map multiple addresses (credits) to a
specific user by having their reputation score.

A note that if there is only one passenger that it
offers bid b for the event, the passenger pays dpst

since the passenger should offer b > dpst. Thus,
dpst will be the second price to pay to the driver.

One of the main reason why we use V ickrey

auction is to provide benefits to both parties (pas-
senger and driver). Drivers are paid at least dpst

which is half of the travel expenses (toll costs, gas
cost). Passengers pay the second highest price as
the travel fee. V ickrey auction provides entities a
transparent and secure auction mechanism. V ickrey

auction provides bid privacy to the entities. The
auction consists of two phases: Commit and Reveal.
In the commit phase, the passengers offer bids while
their bids are not seen by other bidders. In the reveal
phase, the passengers should reveal their bids in the
clear. The winner is decided once the revealed bid
in the reveal phase matches with the committed bid
in the commit phase.

In the literature, many studies considered multiple
passengers to travel together. In this case, each user
occupies an available seat until there is no seat. In
the proposed protocol, we focus on one passenger
to travel due to some pandemics that protect entities
from infections. To decide the passenger among
multiple passengers, we use V ickrey auction. Our
focus is to have data privacy and functionality

20

https://doi.org/10.55859/ijiss.1399189

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
O. Oksuz, Vol.13, No.1, pp.1-22
https://doi.org/10.55859/ijiss.1399189

(machine learning, data mining, and protection of
health) at the same time.

In the proposed system, the liability of driver is
examined by the trusted party (certificate authority).
In this paper, we do not focus on potential consid-
erations like in the event of an accident or dispute.
We leave it as future work.

We say our system has lightweight operations
since the operations heavily consist of hashing for
anonymization technique to preserve users’ data
privacy. Other studies heavily use encryption algo-
rithms [1], [2], [8], [11], [12], [13] to preserve users’
data privacy and others do not use any method to
preserve users’ data privacy [4], [6], [14], [16], [17],
[18].

Scalability is also a main problem in blockchain
and related to the complexity of the consensus
mechanism. Once transactions and blocks are issued
by users, they are broadcast to entire network.
This results in high throughput in the network.
The throughput of the blockchain is defined as the
number of transactions stored in a blockchain per
second. In our protocol, we might face a scalability
problem once a dishonest passenger executes the
smart contract functions sequentially many times
to form transactions. This results in a scalability
problem in the network. If the dishonest passenger
uses the same address to form a transaction, the
smart contract can be programmed in a way to
catch this fraudulence. However, if the passenger
uses different pseudonyms (addresses), then all its
transactions will be valid since the passenger is
anonymous in the system. This fraudulence can not
be caught by the smart contract. In this case, the
trusted party (CA) should come to play to check all
transactions to figure out the dishonest passenger.
Once CA figures it out, the passenger should be
omitted from the system. Then, CA should update
the Bloom filter without using the dishonest pas-

senger’s public keys and sends it to RSUs.

9. Conclusion and Future Work

This paper proposes a solution for a secure, safe,
and transparent ride-sharing system in a pandemic
such as COV ID − 19 using blockchain and smart
contracts. To be protected from viral infections in
pandemics, people keep physical distance and avoid
crowds and close contact. In this paper, instead of
fully booking their car seats with passengers, the
driver takes one person to share the ride to avoid
crowds and getting any infection. A smart contract
is proposed in the system to execute a V ickrey

auction to determine the passenger. The V ickrey

auction allows users to use sealed bids. Thus, bids
are protected from being viewed by others. The
smart contract keeps all transactions in a secure and
transparent ride-sharing system. Moreover, any third
party can not link the passenger and drivers’ travel
data (locations and cost of travel). The user chooses
a different pseudo anonymous address and public
key for each riding event to unlink their transactions.
Since the travel data is not encrypted, the data can
be applied to machine learning and data mining to
get real-world applications.

As a future work, we would like to implement our
work to evaluate its performance. We will examine
users’ communication and computational costs once
they execute the smart contracts. Another future
work will be our system’s liability once in the event
of an accident or dispute.

Declarations

Funding Statement : No funds, grants, or other
support was received.

Conflict of Interest Disclosure : The authors
declare that they have no conflict of interest.

21

https://doi.org/10.55859/ijiss.1399189

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
O. Oksuz, Vol.13, No.1, pp.1-22
https://doi.org/10.55859/ijiss.1399189

References

[1] D. Wang and X. Zhang, “Secure ride-sharing services based
on a consortium blockchain,” IEEE Internet of Things Journal,
vol. 8, no. 4, pp. 2976–2991, 2021.

[2] D. Zonda and M. Meddeb, “Proxy re-encryption for privacy
enhancement in blockchain: Carpooling use case,” in IEEE
International Conference on Blockchain (Blockchain), 2020, pp.
482–489.

[3] K. Kato, Y. Yan, and H. Toyoizumi, “Blockchain application for
rideshare service,” in 8th International Conference on Logistics,
Informatics and Service Sciences (LISS), 2018, pp. 1–5.

[4] S. Kudva, R. Norderhauga, S. Badsha, S. Sengupta, and A. S. M.
Kayes, “Pebers: Practical ethereum blockchain based efficient
ride hailing service,” in EEE International Conference on Infor-
matics, IoT, and Enabling Technologies (ICIoT). IEEE, 2020,
pp. 422–428.

[5] M. S. Hossan, M. L. Khatun, S. Rahman, S. Reno, and
M. Ahmed, “Securing ride-sharing service using ipfs and hy-
perledger based on private blockchain,” in 24th International
Conference on Computer and Information Technology (ICCIT),
2021, pp. 1–6.

[6] N. Mahmoud, A. Aly, and H. Abdelkader, “Enhancing
blockchain-based ride-sharing services using ipfs,” Intelligent
Systems with Applications, vol. 16, p. 200135, 2022.

[7] T. M. Choi and X. Shi, “On-demand ride-hailing service plat-
forms with hired drivers during coronavirus (covid-19) out-
break: can blockchain help?” IEEE Transactions on Engineering
Management, vol. 71, pp. 737–752, 2024.

[8] J. Huang, Y. Luo, M. Xu, B. Hu, and J. Long, “pshare: Privacy-
preserving ride-sharing system with minimum-detouring route,”
Applied Sciences, vol. 12, no. 2, pp. 1–18, 2022.

[9] P. Paillier, “Public-key cryptosystems based on composite
degree residuosity classes,” in International Conference on
the Theory and Applications of Cryptographic Techniques.
Springer: Berlin/Heidelberg, Germany, 1999, pp. 223–238.

[10] T. M. Choi and J. B. Sheu, “Risk-averse ride-hailing platform
operations with safety risk-averse consumers under pandemics:
Roles of blockchain technology and government sponsors,”
IEEE Transactions on Engineering Management, 2023.

[11] X. Shen, Z. Wang, B. Wang, L. Wang, and Q. Pei, “A privacy-
preserving ride-matching scheme without a trusted third-party
server,” IEEE Systems Journal, vol. 17, no. 4, pp. 6413–6424,
2023.

[12] M. Li, Y. Chen, C. Lal, M. Conti, F. Martinelli, and M. Alazab,
“Nereus: Anonymous and secure ride-hailing service based on
private smart contracts,” IEEE Transactions on Dependable and
Secure Computing, vol. 20, no. 4, pp. 2849–2866, 2023.

[13] H. W. Q. Li and C. Dong, “A privacy-preserving ride matching
scheme for ride sharing services in a hot spot area,” Electronics,
vol. 12, no. 4:915, 2023.

[14] X. Zhang, J. Liu, Y. Li, Q. Cui, X. Tao, and R. P. Liu,
“Blockchain based secure package delivery via ridesharing,” in

11th International Conference on Wireless Communications and
Signal Processing (WCSP), 2019, pp. 1–6.

[15] X. Zhang, J. Liu, Y. Li, Q. Cui, X. Tao, R. P. Liu, and W. Li,
“Vehicle-oriented ridesharing package delivery in blockchain
system,” Digital Communications and Networks, 2022.

[16] S. Benedict, “Shared mobility intelligence using permissioned
blockchains for smart cities,” New Gener. Comput., vol. 40,
no. 4, pp. 1009–1027, January 2022.

[17] S. Chopra, B. Palanisamy, and S. Sural, “Credit-based peer-
to-peer ride sharing using smart contracts,” in 2022 IEEE
International Conference on Blockchain and Cryptocurrency
(ICBC). IEEE, pp. 1–3.

[18] S. Renu and B. G. Banik, “Implementation of a secure ride-
sharing dapp using smart contracts on ethereum blockchain,” In-
ternational Journal of Safety and Security Engineering, vol. 11,
pp. 167–173, 2021.

[19] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Tech. Rep., 2008.

[20] V. Buterin, “Ethereum,” Tech. Rep., 2014.
[21] A. Hahn, R. Singh, C. C. Liu, and S. Chen, “Smart contract-

based campus demonstration of decentralized transactive energy
auctions,” in IEEE Power and Energy Society Innovative Smart
Grid Technologies Conference (ISGT. IEEE, 2017, pp. 1–5.

[22] T. Chen, A. S. Khan, G. Zheng, and S. Lambotharan,
“Blockchain secured auction-based user offloading in hetero-
geneous wireless networks,” IEEE Wireless Communications
Letters, vol. 9, no. 8, pp. 1141–1145, Aug 2020.

[23] C. Schnorr, “Efficient signature generation by smart cards,” J.
Cryptology, vol. 4, pp. 161–174, January 1991.

[24] K. M. Moriarty, B. S. Kaliski, J. Jonsson, and A. Rusch, “Pkcs
#1: Rsa cryptography specifications version 2.2,” RFC, Tech.
Rep., 2016.

[25] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve
digital signature algorithm (ecdsa),” International Journal of
Information Security, vol. 1, pp. 36–63, 2001.

[26] Z. Guan, G. Si, X. Zhang, L. Wu, N. Guizania, X. Du, and
Y. Ma, “Privacy-preserving and efficient aggregation based on
blockchain for power grid communications in smart commu-
nities,” IEEE Communications Magazine, vol. 56, no. 7, pp.
82–88, July 2018.

[27] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct
random functions,” Journal of the ACM (JACM), vol. 33, no. 4,
pp. 792–807, 1986.

22

https://doi.org/10.55859/ijiss.1399189

	Introduction
	Related Work
	Definitions
	Ride Sharing
	Blockchain
	Smart Contracts
	Vickrey Auction
	Digital Signature
	Hash Function
	Bloom Filter
	Pseudo Random Generator
	Pseudo Random Function

	Threat Model
	Proposed System
	Setup
	Smart Contract
	Consensus

	Un-Linkable Carpooling System

	Complexity Analysis
	Security Analysis
	Discussion
	Conclusion and Future Work
	References

