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Abstract

Nonlinear evolution of acoustic disturbance such as a sound wave is governed by Burgers equation.

This presentation will focus on the evolution of wave motion is governed by Burgers equation, com-

paring solutions in limited time ranges, such as those are obtained by numerical method known as

parabolic method, with exact solutions obtained using the method of matched asymptotic coordinate

expansions.
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1 Introduction

In this presentation I consider an initial-value problem for BurgersŠ equation, namely,

ut + uux − uxx = 0, −∞ < x < ∞, t > 0 (1)

u(x, 0) =

{

u+, x > 0,

u−, x < 0
(2)

where u? > u+. In what follows we label initial-value problem (1), (2) as IVP. In this presentation I
develop the large-time structure of the solution of IVP using the method of matched asymptotic coordinate
expansions. I begin by examining the asymptotic structure of the solution to IVP as t → 0.

2 ASYMPTOTIC STRUCTURE

Asymptotic solutions of IVP as t → 0

Consideration of initial data (2) indicates that the structure of the asymptotic solution of IVP as t → 0
has three asymptotic regions, namely:

RegionI : x = o(1) u(x, t) = O(1)

RegionII+ : x = O(1)(> 0) u(x, t) = u+ + o(1)

RegionII− : x = O(1)(< 0) u(x, t) = u− − o(1).

To examine region I, I introduce the scaled coordinate η = xtα where α > 0 and η = O(1), and after
some minor calculation, the expansion in region I is obtained as

u(η) = A1 + B1erfc
(η

2

)

(3)

where A1 and B1are constants to be determined on matching, and erfc[.] is the complementary function.
As η → ∞ we move into region II+ and after some calculations:
In region II+, we have that

2669



u(x, t) = u+ + exp

(

−x2

4t
+

1
2

lnt +
u+x

2
− ln(x) + ln

(u− − u+)√
π

+ o(1)

)

(4)

as t → 0 with x = O(1)(> 0).
As η → −∞ we move into region II− and after some calculations:
In region II−, we have that

u(x, t) = u− − exp

(

−x2

4t
+

1
2

lnt +
u−x

2
− ln(−x) + ln

(u− − u+)√
π

+ o(1)

)

(5)

as t → 0 with x = O(1)(< 0).

The asymptotic structure as t → 0 is now complete with the expansions in regions I, II+ and II−

providing a uniform approximation to the solution of IVP as t → 0 .

Asymptotic solutions of IVP as |x| → ∞
Now, I examine the asymptotic structure of the solution to IVP as |x| → ∞ with t = O(1). I first
consider the structure of solution to IVP as x → ∞ with t = O(1) . In region III+, I obtain after some
calculations that

u(x, t) = u+ + exp

(

−x2

4t
+

u+x

2
− ln(x) +

(

−u+
2

4
t +

1
2

lnt + ln
(u− − u+)√

π

)

+ o(1)

)

(6)

as x → ∞, with t = O(1). Expansion (6) remains uniform for t ≫ 1 provided that x ≫ t, but becomes
non-uniform when x = O(t) as t → ∞.

I now investigate the structure of solution of IVP as x → −∞, with t = O(1). In region III−, I obtain
after some calculations that

u(x, t) = u− − exp

(

−x2

4t
+

u−x

2
− ln(−x) +

(

−u−
2

4
t +

1
2

lnt + ln
(u− − u+)√

π

)

+ o(1)

)

(7)

as x → −∞, with t = O(1). Expansion (7) remains uniform for t ≫ 1 provided that (−x) ≫ t, but
becomes non-uniform when (−x) = O(t) as t → ∞.

Asymptotic solutions of IVP as t → ∞
The asymptotic expansions (6) and (7), which are defined in region III+ (x → ∞ with t = O(1)) and
region III− (x → −∞ with t = O(1)) remain uniform provided |x| ≫ t but become nonuniform when
|x| = O(t). After minor calculations I have leading order problem and the solution of this problem is
combination of a one-parameter family of linear solutions and the associated envelope solution

c0(y) =

{

(y−u+)2

4 , y > u+ + 2A

, A[y − (u+ + A)], u+ + A < y 6 u+ + 2A
(8)

for each A > 0. When each case is considered separately.

(a)In first case c0(y) = (y−u+)2

4 , y > u+:
In region IV+

u(y, t) = u+ + exp

{

− (y − u+)2

4
t − 1

2
lnt − H(y) + o(1)

}

(9)

as t → ∞ with y = O(1)(∈ (u+, ∞)). In region A, I have that

u(η, t) = u+ +
2e− η2

4

D2 − √
π

t− 1
2 + o(t− 1

2 ) (10)
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as t → ∞ with η = O(1). In region V,

u = u− − o(1) ast → ∞, (11)

and we conclude that this case can be ruled out and that c0(y) is given by (81).

(b) In the second case c0(y) = A[y − (u+ + A)]:
In region IV+(a) I obtain that

u(y, t) = u+ + exp

{

− (y − u+)2

4
t − 1

2
lnt − HR(y) + o(1)

}

(12)

as t → ∞ with y = O(1)(∈ (u+ + 2A, ∞)) and where HR(y) ∼ lny − ln (u
−

−u+)√
π

. In region TR+ I have
that

u(η, t) = u+ +

(

1
2

e−ERerfc
(η

2

)

+ o(1)

)

e−A2t−Aηt (13)

as t → ∞ with η = O(1). As η → −∞ move out from region TR+ into region IV+(b). I obtain that

u(y, t) = u++exp {−A[y − (u+ + A)]t − ER}+t− 1
2 KR(y) exp

{

− (y − u+)2

4
t

}

+o

(

t−1/2 exp

{

− (y − u+)2

4
t

})

(14)

as t → ∞ with y = O(1)(∈ (u++A, u++2A)) and where KR(y) ∼ e−ER√
π((u++2A)−y)

. Now as y → (u++A)+

move out of region IV+(b) into region TW and in this region we have that

U(z) =
u+ + (2A + u+)e−Az

1 + e−Az
, −∞ < z < ∞ (15)

where the translational invariance has been fixed by requiring U(0) = 1/2. Before completing region TW,
I summarize regions IV±(b).
Region IV−(b)

u(y, t) = u−−exp {A[y − c]t − EL}+t− 1
2 KL(y) exp

{

− (y − u−)2

4
t

}

+o

(

t−1/2 exp

{

− (y − u−)2

4
t

})

(16)

as t → ∞ with y = O(1)(∈ (u+, c)) where c = u++u
−

2 and A = u
−

−u+

2 .
Region IV+(b)

u(y, t) = u++exp {A[y − c]t − ER}+t− 1
2 KR(y) exp

{

− (y − u+)2

4
t

}

+o

(

t−1/2 exp

{

− (y − u+)2

4
t

})

(17)

as t → ∞ with y = O(1)(∈ (c, u−)).
In summary, I have in region TW, that

u(z, t) =
u+ + u−e−Az

1 + e−Az
+ O(t−3/2e− A2

4
t) (18)

as t → ∞ with z = o(1) where A = u
−

−u+

2 , z = x − s(t) and

s(t) = ct + O
(

t−3/2e− A2

4
t
)

(19)

as t → ∞. We recall that

c =
u+ + u−

2











> 0 when u− > u+ > −u− with u− > 0

< 0 when u+ < u− < −u+ with u+ < 0

= 0 u+ = −u− with u− > 0
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3 Numerical Solutions

In this section representative numerical solutions of IVP are presented which confirm the analysis pre-
sented in this chapter. I solved IVP using the numerical method outlined in [7]. In order to obtain
numerical solutions of IVP I use a parabolic method with N = 100 where N is the number of grid points
time step △t = 0.001 and the length △x = 0.005.

In this Section we consider two sets of problem parameters which illustrate the situation when the
wave speed c is positive and when it is negative. The two cases, we will consider are:

1. u− = 1, u+ = 0

2. u+ = −1, u− = 0

We now consider these two cases in turn.

u
−

= 1, u+ = 0

In Figure 1 we plot the numerical solution of IVP against x at times t = 10 t = 15 t = 20 and t = 25
clearly, the solution converges to the PTW rapidly as t → ∞.
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Figure 1: Numerical solution of IVP at times t = 10 t = 15 t = 20 and t = 25.

The asymptotic wave speed, ṡ(t), is given by

ṡ(t) =
1
2

+ O(χ(t)) (20)

as t → ∞. Clearly, In Figure 2 the numerically calculated wave speed rapidly approaches the expected
value of 1

2 as t → ∞.
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Figure 2: Numerical solution of ṡ(t) versus t.
In Figure 3 I observe that the numerically calculated curve rapidly approaches φ0 = 0 as t → ∞.
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Figure 3: Numerical solution of s(t) − 0.5t versus t.

Finally, in Figure 4 I observe that the numerically calculated curve rapidly approaches the line of gradient
− 1

16 as t → ∞. However, numerical error grows rapidly for t > 20.

7674



0 2 4 6 8 10 12 14 16 18 20
−7

−6

−5

−4

−3

−2

−1

0

t

ln
(t

3
/
2
|ṡ
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Figure 4: Numerical solution of ln (t3/2|ṡ(t) − 1
2 |) versus t.

u
−

= 0, u+ = −1

In Figure 5 I plot the numerical solution of IVP against x at times t = 10 t = 15 t = 20 and t = 25
clearly, the solution converges to the PTW rapidly as t → ∞.
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Figure 5: Numerical solution of IVP at times t = 10 t = 15 t = 20 and t = 25.
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Clearly, In Figure 6 the numerical calculate wave speed rapidly approaches the expected value of − 1
2 as

t → ∞.
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Figure 6: Numerical solution of ṡ(t) versus t.

In Figure 7 I plot s(t) + 1
2 t versus t. I observe that the numerically calculated curve rapidly approaches

φ0 = 0 as t → ∞.
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Figure 7: Numerical solution of s(t) + 0.5t versus t.

4 Conclusions

it is worth noting that the structure of solution of IVP as t → ∞ depends critically on interaction between
the selected envelope-touching solution of equation in region IV+ and the selected envelope solution of
equivalent equation in region IV−. These results are in argument with the numerical simulations of
Section Numerical Solutions. Figure 1 and 5 are solid forms of propagation in fluids [Figure 8].

10
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Figure 8: Propagation in fluids
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