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Abstract
Pantograph equations, which we encounter in the branches of pure
and applied mathematics such as electrodynamics, control systems and
quantum mechanics, are essentially a particular form of the functional
differential equations characterized with proportional delays. This
study focuses on exploring the approximate solution to the Pantograph
differential equation. Since there is no analytic solutions for this equation
class, only the approximate solutions can be obtain. For this purpose, Pell
Collocation Method which is one of the numerical solution methods is
chosen. As the result of applying the method to the equation, an algebraic
equation system has been gained and then the approximate solution has
been found by using MATHEMATICA via the given initial conditions.
The method is applied to the some test examples and then the results are
presented by both graphically and by table. The error estimations show
that the method works accurately and efficiently.

Keywords: Approximate solution, pantograph differential equation,
collocation method
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Öz
Elektrodinamik, kontrol sistemleri ve kuantum mekaniği gibi teorik ve
uygulamalı matematiğin dallarında karşılaştığımız Pantograf denklemleri,
orantısal gecikmeli fonksiyonel diferansiyel denklemlerin özel bir türüdür.
Bu çalışmada, Pantograf diferansiyel denklemin yaklaşık çözümleri
üzerine çalışılmıştır. Bu denklem sınıfı için analitik çözüm olmadığından
sadece yaklaşık çözümleri bulunabilir. Bu amaçla sayısal çözüm
yöntemlerinden biri olan Pell sıralama yöntemi seçilmiştir. Yöntemin
denkleme uygulanması sonucunda bir cebirsel denklem sistemi elde
edilmiş ve MATHEMATICA programı kullanılarak verilen başlangıç
koşulları ile yaklaşık çözüm bulunmuştur. Bu yöntem bazı test örneklerine
uygulanmış ve sonuçlar hem grafiksel olarak hem de tablo olarak ifade
edilmiştir. Hata analizleri bu yöntemin doğru ve etkili çalıştığını
göstermiştir.

Anahtar Kelimeler: Yaklaşık çözüm, pantograf diferansiyel denklemi,
sıralama yöntemi
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Introduction

Many problems that we encounter in every aspect of our lives are modeled via mathematics and solutions

of the models are one of the main topic for the researchers. Differential equations take an important

place in these modeling. One of these differential equations is the Pantograph differential equation.

The Pantograph differential equation (PDE) is a special class of the functional differential equations.

Actually, Pantograph is a device that collects electric current from electric poles in vehicles such as

trains and trams. For the modelling of the problem, PDE was firstly mentioned in the study [1] by J.R.

Ockendon and A.B.Tayler in 1971. In this study, the Pantograph of the electric locomotive was modeled.

Later, many studies were conducted on this subject. Since the PDE equation does not have an exact

solution, only approximate solution can be found. To obtain the approximate solution, various numerical

methods such as homotopy methods, Haar wavelets, Legendre approximations, Sinc collocation method

can be considered. To get more information about these numerical methods, readers can be look into

[2-11]. In recent years different numerical approaches are applied to the PDE. For instance, Sedaghat

et. al. applied a numerical approach to find the approximate solution of the PDE with the help of

Chebyshev polynomials in [12]. In the work [13] Jafari et. al. provide an efficient transferred Legendre

pseudospectral method for solving PDE. M. M. Bahşi and M. Çevik resorted to the Perturbation approach

for Pantograph delay differential equation (PDDE) in [14]. R. Alrebdi and H. K. Al-jeaid in [15]

examined the PDDE with the help of the Laplace transformation, which is one of the integral transformations.

For more work related to PDE see [16-20].

In recent years, some collocation methods to solve the linear and nonlinear differential, integral and

pantograph equations have been presented in many articles. Such as Legendre-Gauss collocation method

[21], Chebyshev collocation method [22], Fibonacci wavelet collocation method [23], Hermite collocation

approach [24], Legendre spectral collocation method [25] and Lagrange-collocation method [26]. In

addition to these methods, there are also Pell collocation method and Pell-Lucas collocation methods.

These two collocation methods based on Pell and Pell-Lucas polynomials respectively. These polynomials

belong to families of orthogonal polynomials and are characterized by recursive expressions and satisfy

the following properties [27]: Pell polynomials, Pn(x), are defined as follows

Pn+2(x) = 2xPn+1(x) + Pn(x) , n ⩾ 0

where P0(x) = 0, P1(x) = 1 . Pell-Lucas polynomials, Qn(x), are defined by

Qn+2(x) = 2xQn+1(x) +Qn(x) , n ⩾ 0

where Q0(x) = 2, Q1(x) = 2x . There are many studies using methods based on Pell and Pell-Lucas

polynomials [28-32]. In our paper, we tried to obtain the approximate solution by applying the Pell

collocation method (PCM) to a class of nonlinear PDE (NPDE).
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Let us consider a class of NPDE defined as

n∑
s=0

m∑
p=0

Rsp(x)v
p (αspx+ βsp (x)) v

(s)(λspx+ γsp (x))

+
n∑

s=1

m∑
p=1

Qsp(x)v
(p) (αspx+ βsp (x)) v

(s)(λspx+ γsp (x)) = g(x), for a ≤ x ≤ b

(1)

with the initial conditions

n∑
s=0

[
ajsv

(s)(0) + bjsv
(s)(0)

]
= δj , j = 0, 1. (2)

Here, v(0)(x) = v(x), v0(x) = 1. Also, v(x) is an unknown function; the functions Rsp(x), Qsp(x)

and g(x) are continuous on [0, 1]; ajs, bjs, αsp, λsp and δj are constants. Additionally, βsp (x) and

γsp (x) are either appropriate constants or random variables. In our approach, we will consider the

approximate solution to be the truncated Pell series, represented as:

v (x) =
M+1∑
m=1

cmPm(x). (3)

In this series, Pm(x) (1 ≤ m ≤ M + 1) are the Pell polynomials; cm are the coefficients to be found

and M ∈ Z+(M ≥ n). The first few Pell polynomials are as follows:

P0(x) =0,

P1(x) =1,

P2(x) =2x,

P3(x) =4x2 + 1,

P4(x) =8x3 + 4x,

P5(x) =16x4 + 12x2 + 1,

...

(4)

Fundamental Relations

Let Eq. (3) be our approximate solution of Eq. (1). In order to obtain the approximate solution, we will

try to write Eq. (1) in matrix form according to the solution of Eq. (3).

i) If αsp = λsp = 1, βsp (x) = γsp (x) = 0, Pell polynomials in Eq. (4) can be represented in matrix

format as

P (x) = Γ (x)N. (5)
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Here, P (x) = [P1 (x) P2 (x) · · ·PM+1 (x)], Γ (x) =
(
1 x x2 x3...xM

)
, C = (c1 c2 · · · cM+1)

T and

N =



1 0 1 0 1 0 1 0 1 · · ·
0 2 0 4 0 6 0 8 0 · · ·
0 0 4 0 12 0 24 0 40 · · ·
0 0 0 8 0 32 0 80 0 · · ·
0 0 0 0 16 0 80 0 240 · · ·
0 0 0 0 0 32 0 192 0 · · ·
0 0 0 0 0 0 64 0 448 · · ·
0 0 0 0 0 0 0 128 0 · · ·
0 0 0 0 0 0 0 0 256 · · ·
...

...
...

...
...

...
...

...
...

. . .



.

So, we can express Eq. (3) as

v (x) = P (x)C. (6)

If we put Eq. (5) in Eq. (6), then v(x) will be

v (x) ∼=vM (x) = Γ (x)NC,

v′(x) ∼=v′M (x) = Γ (x)BNC,

v′′ (x) ∼=v′′M (x) = Γ (x)B2NC,

...

v(s) (x) ∼=v
(s)
M (x) = Γ (x)BsNC.

(7)

Also,

Γ′(x) =Γ (x)B,

Γ′′(x) =Γ (x)B2,

Γ′′′(x) =Γ (x)B3,

...

Γ(s) (x) =Γ (x)Bs.

(8)

170



Albayrak Sinop Uni J Nat Sci 9(1): 167-183 (2024)
E-ISSN: 2564-7873

In Eq. (8)

B =



0 1 0 0 0 0 · · · 0

0 0 2 0 0 0 · · · 0

0 0 0 3 0 0 · · · 0

0 0 0 0 4 0 · · · 0

0 0 0 0 0 5 · · · 0

0 0 0 0 0 0 · · · 0
...

...
...

...
...

. . . . . . M

0 0 0 0 0 0 · · · 0


, B0 =



1 0 0 0 0 0 · · · 0

0 1 0 0 0 0 · · · 0

0 0 1 0 0 0 · · · 0

0 0 0 1 0 0 · · · 0

0 0 0 0 1 0 · · · 0

0 0 0 0 0 1 · · · 0
...

...
...

...
...

. . . . . . 0

0 0 0 0 0 0 · · · 1


,

Γ1,0 =


1 x0 ... xM0
1 x1 ... xM1

1
... ...

...

1 xM ... xMM

 .

ii) If αsp , λsp , βsp (x) and γsp (x) are either random constants or variables, then the approximate

solution using the Pell polynomials in Eq. (3) can be represented in the matrix format

v (λspx+ γsp (x)) ∼= vM (λspx+ γsp (x)) = P (λspx+ γsp (x))C. (9)

By considering Eq. (5) and Eq. (6) in Eq. (9), we get the matrix forms

v (λspx+ γsp (x)) ∼=vM (λspx+ γsp (x)) = P (λspx+ γsp (x))C = Γ (λspx+ γsp (x))NC,

v′ (λspx+ γsp (x)) ∼=v′M (λspx+ γsp (x)) = Γ(λ, γ) (x)BNC,

v′′ (λspx+ γsp (x)) ∼=v′′M (λspx+ γsp (x)) = Γ(λ, γ) (x)B
2NC,

...

v(s) (λspx+ γsp (x)) ∼=v
(s)
M (λspx+ γsp (x)) = Γ(λ, γ) (x)B

sNC.

(10)

Furthermore, the relationships between Γ (λspx+ γsp (x)) and its derivatives

Γ′ (λspx+ γsp (x)), Γ′′ (λspx+ γsp (x)),..., Γ(s) (λspx+ γsp (x)) are described as

Γ′ (λspx+ γsp (x)) =Γ (λspx+ γsp (x))B,

Γ′′ (λspx+ γsp (x)) =Γ (λspx+ γsp (x))B
2,

Γ′′′ (λspx+ γsp (x)) =Γ (λspx+ γsp (x))B
3,

...

Γ(s) (λspx+ γsp (x)) =Γ (λspx+ γsp (x))B
s,

(11)
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where

Γλ, γ =


Γ (λspx0 + γsp (x0))

Γ (λspx1 + γsp (x1))
...

Γ (λspxM + γsp (xM ))

 =


1 λspx0 + γsp (x0) ... (λspx0 + γsp (x0))

M

1 λspx1 + γsp (x1) ... (λspx1 + γsp (x1))
M

1
... ...

...

1 λspxM + γsp (xM ) ... (λspxM + γsp (xM ))M

 .

With the help of Eq. (10) and Eq. (11), we find

v(s) (λspx+ γsp (x)) = Γ (λspx+ γsp (x))B
sNC. (12)

The Pell collocation points are defined by

xi = a+
(b− a) i

M
, i = 0, 1, ...,M. (13)

If we substitute these grid points into Eq. (12), we get

v(s) (λspxi + γsp (xi)) = Γλ, γ (xi)B
sNC, s = 0, 1, ..., n (14)

and the closed form of the Eq. (14) can be stated as:

V(s) = Γλ, γB
sNC, s = 0, 1, ..., n. (15)

Here

V(s) =


v(s) (λspx0 + γsp (x0))

v(s) (λspx1 + γsp (x1))
...

v(s) (λspxM + γsp (xM ))

 .
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In addition, the matrix forms of
(
V̂
)p

V(s) and
(
V̂
)(p)

V(s) which emerges in Eq. (1) are

(
V̂
)p

V(s) =


vp (αspx0 + βsp (x0)) v

(s) (λspx0 + γsp (x0))

vp (αspx1 + βsp (x1)) v
(s) (λspx1 + γsp (x1))

...

vp (αspxM + βsp (xM )) v(s) (λspxM + γsp (xM ))



=


vp (αspx0 + βsp (x0)) 0 ... 0

0 vp (αspx1 + βsp (x1)) ... 0
...

...
. . .

...

0 0 ... vp (αspxM + βsp (xM ))



×


v(s) (λspx0 + γsp (x0))

v(s) (λspx1 + γsp (x1))
...

v(s) (λspxM + γsp (xM ))


(
V̂
)(p)

V(s) =


v(p) (αspx0 + βsp (x0)) v

(s) (λspx0 + γsp (x0))

v(p) (αspx1 + βsp (x1)) v
(s) (λspx1 + γsp (x1))

...

v(p) (αspxM + βsp (xM )) v(s) (λspxM + γsp (xM ))



=


v(p) (αspx0 + βsp (x0)) 0 ... 0

0 v(p) (αspx1 + βsp (x1)) ... 0
...

...
. . .

...

0 0 ... v(p) (αspxM + βsp (xM ))



×


v(s) (λspx0 + γsp (x0))

v(s) (λspx1 + γsp (x1))
...

v(s) (λspxM + γsp (xM ))



(16)

where

V̂ = Γ̂ N̂ Ĉ and
(
V̂
)(p)

= Γ̂
(
B̂
)p

N̂ Ĉ, (17)

Γ̂λ,γ =


Γ (λspx0 + γsp (x0)) 0 ... 0

0 Γ (λspx1 + γsp (x1)) ... 0
...

...
. . .

...

0 0 ... Γ (λspxM + γsp (xM ))

,
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B̂ =


B 0 ... 0

0 B ... 0
...

...
. . .

...

0 0 ... B

, N̂ =


N 0 ... 0

0 N ... 0
...

...
. . .

...

0 0 ... N

, Ĉ =


C 0 ... 0

0 C ... 0
...

...
. . .

...

0 0 ... C

.

By alternating the grid points given in Eq. (13) into Eq. (16), the following equation system is obtained

n∑
s=0

m∑
p=0

Rsp(xi)v
p (αspxi + βsp (xi)) v

(s)(λspxi + γsp (xi))

+
n∑

s=1

m∑
p=1

Qsp(xi)v
(p) (αspxi + βsp (xi)) v

(s)(λspxi + γsp (xi))

= g(xi),

(18)

which can be represented using Eqs. (14) and (16) as

n∑
s=0

m∑
p=0

Rsp

(
V̂
)p

V(s) +
n∑

s=1

m∑
p=1

Qsp

(
V̂
)(p)

V(s) = G, (19)

where

Rsp = diag [Rsp(x0) Rsp(x1) ... Rsp(xM )] ,

Qsp = diag [Qsp(x0) Qsp(x1) ... Qsp(xM )] ,

G =
[
g(x0) g(x1) ... g(xM )

]T
.

By substituting the relations (15) and (17) into Eq. (19), the fundamental matrix equation is achieved as
n∑

s=0

m∑
p=0

Rsp

(
Γ̂α,β N̂ Ĉ

)p
Γλ,γB

sN+
n∑

s=1

m∑
p=1

QspΓ̂α,β

(
B̂
)p

N̂ Ĉ Γλ,γB
s
N

C = G. (20)

Briefly, Eq. (20) can also be shown as,

WC = G or [W;G] , (21)

where

W =

n∑
s=0

m∑
p=0

Rsp

(
Γ̂α,β N̂ Ĉ

)p
Γλ,γB

sN+

n∑
s=1

m∑
p=1

QspΓ̂α,β

(
B̂
)p

N̂ Ĉ Γλ,γB
s
N.

Here, Eq. (21) represents a system comprising (M + 1) nonlinear algebraic equations involving (M +

1) unknown Pell coefficients. Utilizing Eq. (15) for the values a and b, we formulate the matrix

representation of the conditions stated in Eq. (2) as
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{
n−1∑
s=0

[ajsΓ (0) + bjsΓ (0)] (B)(s)N

}
C = δj , j = 0, 1, 2, ..., n− 1

alternatively, this can be expressed as

Uj C = [δj ] or [Uj ; δj ] ; j = 0, 1, 2, ..., n− 1 (22)

Here

Uj =
n−1∑
s=0

[ajsΓ (0) + bjsΓ (0)] (B)(s)N = [uj0 uj1 uj2 ... ujM ] .

Hence, through the substitution of the condition matrices in (22) with the n rows of the augmented matrix

in (21), the new augmented matrix is achieved as

[
Ŵ; Ĝ

]
=



w00 w01 w02 · · · w0M ; g(x0)

w10 w11 w12 · · · w1M ; g(x1)

w20 w21 w22 · · · w2M ; g(x2)
...

...
...

. . .
... ;

...

w(M−n)0 w(M−n)1 w(M−n)2 · · · w(M−n)M ; g(xM−n)

u00 u01 u02 · · · u0M ; δ0

u10 u11 u12 · · · u1M ; δ1

u20 u21 u22 · · · u2M ; δ2
...

...
...

. . .
... ;

...

u(n−1)0 u(n−1)1 u(n−1)2 · · · u(n−1)M ; δn−1



(23)

Thus, the determination of the unknown Pell coefficients cm, m = 1, 2, ...,M + 1 is achieved through

the solution of the system outlined in Eq. (23). Next, the coefficients are inserted into Eq. (3) to derive

the approximate solution.

Error Estimation

To determine the accuracy of the proposed method, we define the error function EM (x) as following

EM (x) = |vM (x)− v(x)|. (24)

Here, vM (x) is the approximate solution and v(x) is the exact solution of Eq.(1).

Illustrative Example

This section provides four numerical examples to showcase the effectiveness of the proposed method.

By using the error function EM (x), the method has been tested on these problems. The numerical results

obtained have been displayed through tables and graphics.
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Example 1. Let us examine the differential equation:

v′′(x) + v′(
x

4
)v

(x
5

)
− v2

(x
2

)
= −x4

16
+

x3

50
− x2

2
+

x

2
+ 1, (25)

with the initial conditions

v(0) = 1, v′(0) = 0.

Eq. (25) is the second-order nonlinear pantograph differential equation and the function v(x) = x2+1 is

the exact solution of this equation. The solution v(x) approximated by the Pell polynomials is obtained

as

v (x) =

M+1∑
m=1

cmPm(x)

where M = 2, R20 (x) = 1, α20 = 1, β20 = 0, R11 (x) = 1, α11 = 1
4 , β11 = 0, λ11 = 1

5 , γ11 =

0, R01 (x) = −1, α01 = 1
2 , β01 = 0, λ01 = 1

2 , γ01 = 0, and g (x) = −x4

16 + x3

50 − x2

2 + x
2 + 1. Thus,

for M = 2 the set of obtained collocation points by Eq. (13) are computed as

x0 = 0, x1 =
1

2
, x2 = 1

From Eq. (20), we obtain{
R20Γ1,0B

2N+R11Γ̂ 1
5
,0N̂ĈΓ 1

4
,0BN+R01Γ̂ 1

2
,0 N̂ Ĉ Γ 1

2
,0N

}
C = G

where

W = R20Γ1,0B
2N+R11Γ̂ 1

5
,0N̂ĈΓ 1

4
,0BN+R01Γ̂ 1

2
,0 N̂ Ĉ Γ 1

2
,0N

R20 = R11 =

 1 0 0

0 1 0

0 0 1

 , R01 =

 −1 0 0

0 −1 0

0 0 −1

 ,

Γ1,0 = Γ =

 Γ (0)

Γ
(
1
2

)
Γ (1)

 =

 1 0 0

1 1
2

1
4

1 1 1

 , Γ̂1,0 =

 Γ (0) 0 0

0 Γ
(
1
2

)
0

0 0 Γ (1)

 ,

Γ 1
2
,0 =

 1 0 0

1 1
4

1
16

1 1
2

1
4

 , Γ̂ 1
2
,0 =


Γ 1

2
,0 (0) 0 0

0 Γ 1
2
,0

(
1
2

)
0

0 0 Γ 1
2
,0 (1)
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Γ 1
4
,0 =

 1 0 0

1 1
8

1
64

1 1
4

1
16

 , Γ̂ 1
4
,0 =


Γ 1

4
,0 (0) 0 0

0 Γ 1
4
,0

(
1
2

)
0

0 0 Γ 1
4
,0 (1)



Γ 1
5
,0 =

 1 0 0

1 1
10

1
100

1 1
5

1
25

 , Γ̂ 1
5
,0 =


Γ 1

5
,0 (0) 0 0

0 Γ 1
5
,0

(
1
2

)
0

0 0 Γ 1
5
,0 (1)



N =

 1 0 1

0 2 0

0 0 4

 , N̂ =

 N 0 0

0 N 0

0 0 N

 ,

B =

 0 1 0

0 0 2

0 0 0

 , B̂ =

 B 0 0

0 B 0

0 0 B

 Ĉ =

 C 0 0

0 C 0

0 0 C

 , G =

 1
7191
6400
383
400

 .

From Eq. (22), the matrix representation of the initial condition is

[U0; δ0] = [1 0 1 ; 1] , [U1; δ1] = [0 2 0 ; 0] .

Hence, the resulting augmented matrix [Ŵ; Ĝ] is obtained as following

[Ŵ; Ĝ] =

 −a− c 2a+ 2c 8− c− a ; 1

1 0 1 ; 1

0 2 0 ; 0

 .

The matrix of Pell coefficients C is established by solving this system:

C =

[
3

4
0

1

4

]T
Then, for M = 2, the solution approximated using the Pell polynomials is

v2 (x) = x2 + 1.

Example 2. Consider the following differential equation

v′′(x)− v(x) +
8

x2
v2
(x
2

)
= 0; v(0) = 0, v′(0) = 1. (26)

We know that the exact solution of Eq. (26) is found by v(x) = xe−x. Table 1 provides the error function

values and offers a numerical comparison between the proposed method and the modified differential

transform method (MDTM) [33] for M = 8 and M = 11. Figure 1 depicts a visual comparison between

the approximate and exact solutions derived using the proposed method for M = 3, 4, 5.
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Table 1. The numerical results of the error function EM are provided for different values of M for
Example 2

x E8(MDTM) E11(MDTM) E8 E11

0.1 3.56812× 10−12 3.59265× 10−12 2.21233× 10−9 3.60961× 10−13

0.3 4.67857× 10−10 4.52835× 10−12 6.10001× 10−9 9.75359× 10−13

0.5 4.58254× 10−8 5.85598× 10−11 7.06047× 10−9 1.14569× 10−12

0.7 9.28161× 10−7 2.78563× 10−10 5.60762× 10−9 1.11228× 10−12

0.9 8.72761× 10−6 6.64594× 10−9 8.19878× 10−10 1.40254× 10−12

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

Exact

(a) M = 3

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

Exact

(b) M = 4

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

Exact

(c) M = 5

Figure 1. Graphical comparison illustrating exact and approximate solutions for Example 2 at M =
3, 4, 5

Example 3. Let us consider following differential equation [34]

v′′(x) + 2v(x)− v2(x) + v
(x3
8

)
= g(x); v(0) = 0, v′(0) = 1 (27)

where

g(x) = sinx− sin2 x+ sin
(x3
8

)
v(x) = sinx is the exact solution of Eq.(27). Values of the error function specified in Eq.(24) for Eq.(27)

are displayed in Table 2, for M = 9, 10, 11. Figure 2 depicts the graphical representation of the estimated

error function for M = 2, 3 and 4.
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Table 2. The numerical results of the error function EM are provided for M = 9, 10, 11 for Example 3
x E9 E10 E11

0.1 4.49765× 10−13 4.39510× 10−14 5.55112× 10−16

0.3 1.83259× 10−12 1.69309× 10−13 2.05391× 10−15

0.5 3.08087× 10−12 2.83495× 10−13 3.38618× 10−15

0.7 4.14413× 10−12 3.87912× 10−13 4.55191× 10−15

0.9 6.41098× 10−12 9.74887× 10−13 8.88178× 10−16

(a) M = 2 (b) M = 3

(c) M = 4

Figure 2. The graphical comparison illustrating exact and approximate solutions for Example 3 at M =
2, 3, 4

Example 4. Let us consider the following differential equation

xv′(
x

2
)v2(x) + v′′(

x

4
) + v

(x
2

)
+ v′(x− 0.5) = g(x); 0 ≤ x ≤ 1; v(0) = 1, v′(0) = 0 (28)

where

g(x) = − sin(x− 0.5) + cos(x/2)− cos (x/4)− x sin (x/2) cos2 (x) .

v(x) = cos(x) is the exact solution of Eq.28. For M = 5, 7, 9 ; values of the error function specified in

Eq.(24) for Eq.(28) are showed in Table 3. The graphical representation of the estimated error function

for M = 3, 4, 5 is depicted in Figure 3.
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Table 3. The numerical results of the error function EM are provided for different values of M for
Example 4

x E5 E7 E9

0.1 3.91136× 10−7 3.34594× 10−9 1.23668× 10−11

0.3 2.81310× 10−6 2.21417× 10−8 6.88932× 10−11

0.5 3.83995× 10−5 2.74960× 10−7 6.02225× 10−10

0.7 2.73856× 10−4 1.41557× 10−6 2.76425× 10−9

0.9 1.17411× 10−3 2.09302× 10−6 2.20612× 10−8

(a) M = 3 (b) M = 4

(c) M = 5

Figure 3. Graphical comparison illustrating exact and approximate solutions for Example 4 at M = 3,
4, 5

Conclusion

This study utilized the Pell collocation method to solve a class of nonlinear Pantograph differential

equations. The method’s efficiency and accuracy are demonstrated through four distinct examples. The

approximate and error results obtained are compared with those obtained using the modified differential

transform method. From these comparisons, it can be inferred that the method is notably effective in

acquiring approximate solutions for nonlinear Pantograph differential equations.
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