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Let 𝑅𝑅 be a ring, 𝐼𝐼 be an ideal of 𝑅𝑅 and √𝐼𝐼 be a prime radical of 𝐼𝐼. This study generalizes the prime radical 
of √𝐼𝐼 which denotes by √𝐼𝐼𝑛𝑛+1 , for 𝑛𝑛 ∈ ℤ+. This generalization is called the 𝑛𝑛-prime radical of ideal 𝐼𝐼. 
Moreover, this paper demonstrates that 𝑅𝑅 is isomorphic to a subdirect sum of ring 𝐻𝐻𝑖𝑖 where 𝐻𝐻𝑖𝑖 are 𝑛𝑛-prime 
rings. Furthermore, two open problems are presented. 
Keywords: Prime ring, Prime ideal, Semiprime ideal, Prime radical. 
 

 
 
Let 𝑅𝑅 be a ring and 𝐼𝐼 be an ideal of 𝑅𝑅. The prime radical of the ideal 𝐼𝐼 is 

 √𝐼𝐼 = {𝑟𝑟 ∈ 𝑅𝑅 ∶ for every 𝑚𝑚 − system 𝑀𝑀 containing  𝑟𝑟,𝑀𝑀 ∩ 𝐼𝐼 ≠ ∅} 
and the radical of ring 𝑅𝑅 is also defined as 𝛽𝛽(𝑅𝑅) = √0  [11].  

The reason for studying radicals is that a ring 𝑅𝑅 is isomorphic to a subdirect sum of prime rings if and 
only if 𝛽𝛽(𝑅𝑅) = (0) [11]. Due to this feature, problems in rings can be transferred to prime rings by using 
the prime radical of a ring. 

In generalizing the classical notion of the radical in a ring, different kinds of radicals have been 
defined by many authors, including Köthe [8], Baer [5], Levitzki [9], Jacobson [7], Brown-McCoy [6], 
Azumaya [4] and McCoy [10]. Moreover, different generalizations of the prime radical have also been tried 
to be accomplished [13], [12]. 
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This study constructs a different generalization of the prime radical which is represented by √𝐼𝐼𝑛𝑛+1  and 
analyzes the properties of √𝐼𝐼𝑛𝑛+1 . It also attempts to characterize the 𝑛𝑛-radical of a ring and denoted it by 
𝛽𝛽𝑛𝑛(𝑅𝑅). 

 
 

 
The current section provides the following basic definitions in [1, 11]. 
Definition 2.1. Let R be a ring and I be a semigroup ideal of R. If aRb ⊂ I implies a ∈ I or b ∈ I, then I is 
called a semigroup prime ideal.  
Definition 2.2. Let I be an ideal of ring R. If aRb ⊂ I implies a ∈ I or b ∈ I, then I is called a prime ideal.  
Definition 2.3. Let I be a semigroup ideal of ring R. I is called a semigroup semiprime ideal, if aRa ⊂ I 
implies a ∈ I.  
Definition 2.4. Let I be an ideal of ring R. I is a called semiprime ideal, if aRa ⊂ I implies a ∈ I.  
Definition 2.5. [3] Let R be a ring and ∅ ≠ I be an ideal of R. In [1], the set ℒR(I) is defined as follows:  

 ℒR(I) = {a ∈ R: aRa ⊂ I} 
Motivated by this set,  

 ℒRn(I) = {a ∈ R: aRa ⊂ ℒRn−1(I), n ∈ ℕ} 
Definition 2.6. [3] Let I be an ideal of ring R. I is called an n-prime ideal if ℒRn(I) is a semigroup prime 
ideal.  
Definition 2.7. [3] Let I be an ideal of ring R. I is called an n-semiprime ideal if ℒRn(I) is a semigroup 
semiprime ideal.  
Definition 2.8. [3] R is called an n-prime ring if ℒRn(0) is a semigroup prime ideal.  
Definition 2.9. [3] R is called an n-semiprime ring if ℒRn(0) is a semigroup semiprime ideal.  
 

 
 

Key definitions and notations essential for the generalization of radicals are presented below. 
Notation 1.  Let I be a semigroup semiprime ideal. Then, from [3], ℒRn(I) = I. Accordingly,  

 An(I) = { J ⊂ R ∶  J semigroup ideal and ℒRn(J) = I}                                              (1) 
 is not an empty set because of I ∈ An(I).  
Lemma 3.1.  Let J and J be two ideals of ring R. Then, ℒRn(J ∩ J) = ℒRn(J) ∩ ℒRn(J).  
 
Proof. Since ℒR0(J) = J and ℒR0(J) = J, for n = 0, the proof is obtained evidently. Let n = 1. If x ∈ ℒR(J) ∩
ℒR(J), then xrx ∈ ℒR0(J) = J and xrx ∈ ℒR0(J) = J, for all r ∈ R. Hence, xrx ∈ J ∩ J = ℒR0(J ∩ J). Therefore, 
x ∈ ℒR(J ∩ J). Accordingly, ℒR(J) ∩ ℒR(J) ⊆ ℒR(J ∩ J). Conversely, if x ∈ ℒR(J ∩ J), then xrx ∈ J ∩ J =
ℒR0(J ∩ J). From here, xrx ∈ ℒR0(J) = J and xrx ∈ ℒR0(J) = J, for all r ∈ R. This means x ∈ ℒR(J) ∩ ℒR(J). 
Consequently, ℒR(J ∩ J) ⊆ ℒR(J) ∩ ℒR(J). Assume that  

ℒRn(J ∩ J) = ℒRn(J) ∩ ℒRn(J) 
for an arbitrary n ∈ ℕ. 
Let x ∈ ℒRn+1(J) ∩ ℒRn+1(J). Then, xrx ∈ ℒRn(J) and xrx ∈ ℒRn(J), for all r ∈ R. Therefore, xrx ∈ ℒRn(J) ∩
ℒRn(J) for all r ∈ R. From here, xrx ∈ ℒRn(J ∩ J). As a result, x ∈ ℒRn+1(J ∩ J). Thus, ℒRn+1(J) ∩ ℒRn+1(J) ⊆
ℒRn+1(J ∩ J). The converse is similar. Hence, ℒRn+1(J ∩ J) = ℒRn+1(J) ∩ ℒRn+1(J).  
 
Corollary 3.2.  {Ji}i∈Λ is a set of ideals of ring R. Then, ℒℛn(⋂i∈Λ Ji) = ⋂i∈Λ ℒℛn(Ji).  

  
Proof. The proof is evident from induction.  

2. BASIC CONCEPTS AND NOTIONS 
 

3. A GENERALIZATION OF THE PRIME RADICAL 
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Theorem 3.3. Let I be a semigroup semiprime ideal. J ∩ J ∈ An(I), for every J, J ∈ An(I).  
 

Proof. If J, J ∈ An(I), then ℒRn(J) = ℒRn(J) = I. From Lemma 3.1,  
I = ℒRn(J) ∩ ℒRn(J) = ℒRn(J ∩ J) 

Then, J ∩ J ∈ An(I).  
 
Lemma 3.4.  Let I be a semigroup semiprime ideal of ring R. Then, An(I) ⊂ An+1(I), for all n ∈ ℕ. 

 
Proof. Let J ∈ An(I). Thus, ℒRn+1(J) = ℒR(ℒRn(J)) = ℒR(I) = I . Therefore, J ∈ An+1(I) and An(I) ⊂
An+1(I).  

 
Notation 2. Let Iα be a semigroup semiprime ideal, for all α ∈ Λ. Consider the set  

�J = �
α∈Λ

Jα: Jα ∈ An(Iα),α ∈ Λ� 

 From Notation 1, since Iα ∈ An(Iα), for all α ∈ Λ, then ⋂α∈Λ Iα is an element of this set. Let’s symbolize 
this set with ⋂α∈Λ An(Iα). 

 
Theorem 3.5.  Let Iα be a semigroup semiprime ideal, for all α ∈ Λ. Then,  

�
α∈Λ

An(Iα) ⊂ An(�
α∈Λ

Iα) 

  
Proof. Let J ∈ ⋂α∈Λ An(Iα). Then, J = ⋂α∈Λ Jα where Jα ∈ An(Iα), for all α ∈ Λ. Hence, from Corollary 
3.2,  

ℒRn(J) = ℒRn ��
α∈Λ

Jα� = �
α∈Λ

ℒRn(Jα) = �
α∈Λ

Iα 

 Accordingly, J ∈ An(⋂α∈Λ Iα). 

Example 1. Let (F, +, . ) be a field and R = ��
a b c
0 d e
0 0 0

� : a, b, c, d, e ∈ F� be a ring. 

I1 = ��
a b c
0 0 e
0 0 0

� : a, b, c, e ∈ F�, I2 = ��
0 b c
0 d e
0 0 0

� : b, c, d, e ∈ F�, 

I3 = ��
a b c
0 0 0
0 0 0

� : a, b, c,∈ F�, I4 = ��
0 b c
0 0 d
0 0 0

� : b, c, d ∈ F�, 

I5 = ��
0 b c
0 0 0
0 0 0

� : b, c ∈ F�, I6 = ��
0 0 c
0 0 d
0 0 0

� : c, d ∈ F� and 

I7 = ��
0 0 c
0 0 0
0 0 0

� : c ∈ F� are semigroup semiprime ideals of R. From here, 

ℒR(I1) = I1, ℒR(I2) = I4, ℒR(I3) = I1, ℒR(I4) = I4, ℒR(I5) = I4, ℒR(I6) = I4, ℒR(I7) = I4 and 
 ℒR(0) = I5 ∪ I6. Besides that, I1 and I2 are prime ideals. Moreover, I1 ∩ I2 = I4 is a semiprime ideal. Thus, 
A(I1) = {I1}andA(I2) = {I2, I3}. 

Consider with Λ = {1,2}, ⋂α∈Λ A(Iα) = {I4, I5}. 
Because of ⋂α∈Λ Iα = I1 ∩ I2 = I4,   
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A��
α∈Λ

Iα� = {I4, I5, I6, I7} 

is provided.  
Therefore,  

�
α∈Λ

A(Iα) ⊂ A��
α∈Λ

Iα�. 

  
 

Notation 3. Let I be a semigroup semiprime ideal. Then,  
ℒR−n(I) = �

J∈An(I)

J. 

  
Theorem 3.6. If I is a semigroup semiprime ideal, then ℒR−n(I) ∈ An(I).  

 
Proof. Let I be a semigroup semiprime ideal.  

ℒRn(ℒR−n(I)) = ℒRn � �
J∈An(I)

J� = �
J∈An(I)

ℒRn(J) = I 

 Hence, ℒR−n(I) ∈ An(I).  Since I is a semigroup semiprime ideal, ℒR−n(I) ∈ An(I). Therefore, ℒR−n(I) ⊂ J 
 for all J ∈ An(I).  
 
Definition 3.7. If I is a semigroup semiprime ideal of R, then ℒR−n(I) is called an n-minimal semigroup 
semiprime ideal of An(I).  
 
Lemma 3.8. [3] Let R and S be two rings and φ: R → S be an endomorphism and P be an ideal with Kerφ =
K ⊂ P. If P is a n-semiprime ideal of ring R, then φ(P) is a n-semiprime ideal of ring R.  
 
Lemma 3.9. [3] Let R and S be two rings and φ: R → S be an endomorphism and P be an ideal with Kerφ =
K ⊂ P. If P is a n-prime ideal of ring R, then φ(P) is a n-prime ideal of ring R.  
 
Theorem 3.10. Let Iα be a semigroup semiprime ideal, for all α ∈ Λ. Then,  

ℒR−n(�
α∈Λ

Iα) ⊂�
α∈Λ

ℒR−n(Iα) 

  
Proof. From Theorem 3.5,  

ℒR−n(�
α∈Λ

Iα) = �
J∈An(⋂α∈Λ Iα)

J ⊂ �
J∈⋂α∈ΛAn(Iα)

J. 

 Therefore, 
�

J∈⋂α∈ΛAn(Iα)

J = �
α∈Λ

ℒR−n(Iα). 

 
 
 
Example 2. Adopting the Example  1,  
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ℒR−1(I1) = �
J∈A(I1)

J = I2, 

  
ℒR−1(I2) = �

J∈A(I2)

J = I5, 

  
�
α∈Λ

ℒR−1(Iα) = ℒR−1(I1) ∩ ℒR−1(I2) = I5 

 and  
ℒR−1(�

α∈Λ

Iα) = ℒR−1(I1 ∩ I2) = I7. 

 Therefore,  
ℒR−1(�

α∈Λ

Iα) = I7 ⊂ I5 = �
α∈Λ

ℒR−1(Iα). 

  
This means that equality may not be achieved. 

 
Definition 3.11. Let I be an ideal of ring R and √I be the prime radical of I. Then, the n-prime radical of I 
is characterized as  

√In+1 = ℒR
−(n−1)(√I), for  n ∈ ℤ+ 

 where 1-prime radical of I is equivalent to √I = ℒR0(√I). Moreover, the n-prime radical of ring R can be 
defined as n-radical of the ring  

βn(R) = �(0)n+1  
 where n ≥ 1, n ∈ ℕ, and 1-radical of ring R is equivalent to β(R).  

  
Theorem 3.12. Let I be an ideal of ring R. Then,  

√In+1 ⊂ √In  
 for n ∈ {2,3, . . . }.  

 
Proof. Let I be an ideal of R. Then, from Lemma 3.2, An−1(√I) ⊂ An(√I). Accordingly,  

√In+1 = ℒR
−(n−1)(√I) = �

J∈An−1(√I)

J ⊂ �
J′∈An(√I)

J′ = ℒR
−(n)(√I) = √In . 

  
Corollary 3.13. Let I be an ideal of ring R. Then,  

. . .⊂ √In+1 ⊂ √In ⊂. . .⊂ √I4 ⊂ √I3 ⊂ √I ⊂ I 
  

  
Proof. The proof is obvious from induction.  

  
Corollary 3.14. Let I be an ideal of ring R. Then,  

√In+1 = �
I⊂P,Pprime

ℒR
−(n−1)(P). 

 
Proof. √I = ⋂I⊂P,Pprime P. Then, 
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√In+1 = ℒR
−(n−1)(√I) = ℒR

−(n−1)( �
I⊂P,Pprime

P) = �
I⊂P,Pprime

ℒR
−(n−1)(P). 

 
Example 3. For the ℤ36 ring, let’s examine n-prime radicals βn(ℤ36). 
 

Iiideal ℒℤ36(Ii) 
I0 = (0), I6 = (6), I12 = (12), I18 = (18) ℒℤ36(I0) = ℒℤ36(I6) = ℒℤ36(I12) = ℒℤ36(I18) = (6) 
I1 = (1) = ℤ36 ℒℤ36(I1) = ℤ36 
I2 = (2), I4 = (4) ℒℤ36(I2) = ℒℤ36(I4) = (2) 
I3 = (3), I9 = (9) ℒℤ36(I3) = ℒℤ36(I9) = (3) 
I8 = (8) ℒℤ36(I8) = (4) 
I16 = (16) ℒℤ36(I16) = (8) 

 
Since I12 ∩ I18 = (0),  

ℒℤ36(I12 ∩ I18) = ℒℤ36(0) = I6. 
 In this case, β(ℤ36) = �(0) = I2 ∩ I3 = I6. Furthermore,  
 ℒℤ36

−1 (�(0)) = I0 ∩ I6 ∩ I12 ∩ I18 = (0) 
 and  

β2(ℤ36) = �(0)3 = �(0)1+2 = Lℤ36
−1 (�(0)) = ℒℤ36

−1 ((6)) = (0) 
 and ℤ36 ∕ β2(ℤ36) ≅ ℤ36 . Therefore,  

β2(ℤ36 ∕ β2(ℤ36)) = (0). 
  

 

Example 4.  Let (F, +, . ) be a field and R = ��
a b c
0 d e
0 0 0

� : a, b, c, d, e ∈ F� be a ring. Then,  

β(R) = �(0) = ��
0 a b
0 0 c
0 0 0

� : a, b, c ∈ F�, 

ℒR−1(�(0)) = ��
0 0 a
0 0 0
0 0 0

� : a ∈ F� 

 and  

 β2(R) = �(0)3 = �(0)2+1 = ℒR−1(�(0)) = ��
0 0 a
0 0 0
0 0 0

� : a ∈ F�. 

Quotient ring as  

R = ��
a b c
0 d e
0 0 0

� + β2(R): a, b, c, d, e ∈ F� = ��
a b 0
0 d e
0 0 0

� : a, b, d, e ∈ F� 

 where  

 �
a b 0
0 c d
0 0 0

� + �
x y 0
0 z t
0 0 0

� = �
a + x b + y 0
0 c + z d + t
0 0 0

� 

 and  
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 �
a b 0
0 c d
0 0 0

��
x y 0
0 z t
0 0 0

� = �
ax ay + bz bt
0 cz ct
0 0 0

�. 

 Thus,  I1 = ��
a b 0
0 0 e
0 0 0

� : a, b, e ∈ F�, I2 = ��
0 b 0
0 d e
0 0 0

� : b, d, e ∈ F�, 

I3 = ��
a b 0
0 0 0
0 0 0

� : a, b ∈ F�, I4 = ��
0 b 0
0 0 e
0 0 0

� : b, e ∈ F�, 

I5 = ��
0 b 0
0 0 0
0 0 0

� : b ∈ F�, I6 = ��
0 0 0
0 0 e
0 0 0

� : e ∈ F� are semiprime ideals of R. Then, ℒR(I1) =

I1, ℒR(I2) = I4, ℒR(I3) = I1, ℒR(I4) = I4, ℒR(I5) = I4, ℒR(I6) = I4, and ℒR(0) = I4. Herefrom,  

I2 = ��
0 b 0
0 d e
0 0 0

� : b, d, e ∈ F� andI1 = ��
a b 0
0 0 e
0 0 0

� : a, b, e ∈ F� 

 are prime ideal. Moreover, I1 ∩ I2 = I4 is a semiprime ideal. A(I2) = {I2}  and  A(I1) = {I1, I3} are 
obtained. It is observed that  

β(R) = �(0) = I4 
 Since ℒR

−1��(0)� = (0), β2(R) = (0). Thus,  
β2�R ∕ β2(R)� = β2�R� = (0). 

  
Theorem 3.15.  If I is an ideal of R, then ℒR(I) ⊂ √I.  

 
Proof. For all a ∈ ℒR(I), aRa ⊂ I ⊂ √I. Since √I is a semiprime ideal, a ∈ √I. Hence, ℒR(I) ⊂ √I. 

 
Theorem 3.16. If I is an ideal of R, then ℒRn(I) ⊂ √I, for all n ∈ ℕ.  

  
Proof. From Theorem 6, ℒR(I) ⊂ √I, for n = 1. Let  

ℒRn(I) ⊂ √I 
 for all n ∈ ℕ. Therefore, 

 
ℒR(ℒRn(I)) = ℒRn+1(I) ⊂ ℒR(√I) = √I. 

  
Theorem 3.17: Let R be a ring and let {Hi}i∈Λ be a n-prime ring family. If R is isomorphic to a subdirect 
sum of ring Hi, then β(R) = ℒRn(0).  

 
Proof. Since R is isomorphic to a subdirect sum of ring Hi, there is an ideal Ki of R such that R ∕ Ki ≃ Hi 
and ⋂i∈Λ Ki = (0). 
On the other hand, from [[3], Theorem 4], π−1 �ℒHi

n (0)� = ℒRn(Ki) is a prime ideal. Therefore,  

β(R) = �
j∈Λ

Pj ⊂ �
i∈Λ

ℒRn(Ki) = ℒRn ��
i∈Λ

Ki� = ℒRn(0). 

 Hence we get β(R) = ℒRn(0).  
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Theorem 3.18. Let R be a commutative ring with identity. Suppose that (ℒRn(0))2 = (0) and each ideal of 
ring R has pairwise comaximal ideals in R. If β(R) = ℒRn(0), then R is isomorphic to a subdirect sum of 
ring Hi where Hi are n-prime rings.  

 
Proof. Suppose that ℒRn(0) = β(R). Hence,  

ℒRn(0) = �
i∈Λ

Pi 

 where Pi is a prime ideal, for all i ∈ Λ. Since Pi is a pairwise comaximal ideals in R,  

�
i∈Λ

Pi2 = ��
i∈Λ

Pi�
2

= (ℒRn(0))2 = (0) 

Thus, ⋂i Ki = 0 where Pi2 = Ki, for all i ∈ Λ. On the other hand, since ℒRn(Ki) = ℒRn(Pi2) = Pi, ℒRn(Ki) is 
a prime ideal and the set R ∕ Ki ≃ Hi is a n-prime ring. Let πi: R → R ∕ Ki be a natural epimorphism with 
πi(r) = 0, for all i ∈ Λ and 0 ≠ r. As a consequence, r ∈ ⋂i∈Λ Ki = (0). This is a contradiction.  

  
Remark 1. If β(R) = ℒRn(0), then βn�R/βn(R)� = (0).  

  
Proof. If ℒRn(0) = ℒR(ℒRn−1(0)) = β(R), then (0) ∈ An−1�β(R)�. Therefore,  
 βn(R) = �(0)n+1 = ℒR

−(n−1)(0) = ⋂J∈An−1(β(R)) J = (0) 
 and  

βn�R/βn(R)� = (0). 
  

 
 
This article attempts to generalize the prime radical in a promising way. It also investigates the 

properties of the basic notions essential for this generalization specifically 𝐴𝐴𝑛𝑛(𝐼𝐼) and ℒℛ−𝑛𝑛(𝐼𝐼). The paper 
introduces the definitions of 𝑛𝑛-minimal semigroup semiprime ideal, 𝑛𝑛-prime radical of ideal 𝐼𝐼 , and 𝑛𝑛-prime 
radical of ring 𝑅𝑅. Future research could extend these results to different rings, utilizing the generalization 
of prime radicals, thereby contributing significantly to ring theory. Additionally, the paper highlights open 
problems that may guide future studies. 
 

 
 
1.  Minimal (𝑛𝑛 − 1) − prime radical is a subideal of intersection of (𝑛𝑛 − 1)− prime ideals. 
 
2.  Let 𝑅𝑅 be a ring. Then, 𝛽𝛽𝑛𝑛�𝑅𝑅/𝛽𝛽𝑛𝑛(𝑅𝑅)� = (0).  
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