Original Article

Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi / Institute of Natural and Applied Science Journal

Cilt 16, Sayı 2, 47-53, 2023 / Volume 16 Issue 2, 47-53, 2023

Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi Institute of Natural and Applied Science Journal

Dergi ana sayfası/ Journal home page: https://dergipark.org.tr/tr/pub/kujs

E-ISSN: 2587-2389

Elemental Analysis of Onobrychis buhseana Bunge Ex Boiss and Onobrychis bobrovi Grossh

Species by ICP-MS

Shahla JAFAROVA^{1*}

¹ Azerbaijan State Agricultural University, Faculty of Veterninary Medicine, Department of Pharmacy, Ganja, Azerbaijan

(İlk Gönderim / Received: 07. 12. 2023, Kabul / Accepted: 27. 06. 2024, Online Yayın / Published Online: 05. 08. 2024)

Keywords: Elemental analysis, ICP-MS, Microwave digestion, Onobrychis bobrovi, Onobrychis buhseana **Abstract:** The element composition of the underground and surface parts of Onobrychis buhseana and Onobrychis bobrovi, which are distributed in the flora of Azerbaijan, was studied by an ICP-MS device, and the amount of 26 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Ag, Cd, Sn, Ba, Ce, Tl, and Pb) in the raw material was determined in ppm. The composition of raw materials is dominated by some macroelements (calcium, potassium, and magnesium), microelements (iron and zinc), and ultramicroelements (selenium, cobalt, and chromium). Some of the most frequent harmful trace elements, such as As and Cd, were discovered at extremely low concentrations.

Onobrychis buhseana Bunge Ex Boiss ve Onobrychis bobrovi Grossh'nin ICP-MS

ile Elementel Analizi

Anahtar Kelimeler: Elementel analiz, ICP-MS, Mikrodalga sindirimi, *Onobrychis bobrovi, Onobrychis buhseana* Özet: Azerbaycan florasında yayılış gösteren Onobrychis buhseana ve Onobrychis bobrovi'nin toprak altı ve toprak üstü kısımlarının element kompozisyonu ICP-MS cihazı ile incelenmiş ve 26 elementin (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Ag, Cd, Sn, Ba, Ce, Tl ve Pb) miktarları hammaddelerinde ppm ile tespit edilmiştir. Hammaddelerin bileşiminde bazı makro elementler (kalsiyum, potasyum ve magnezyum), mikro elementler (demir ve çinko) ve ultramikro elementler (selenyum, kobalt ve krom) baskındır. As ve Cd gibi en yaygın toksik eser elementlerden bazıları oldukça düşük seviyelerde bulundu.

*İlgiliyazar: lala2002@list.ru DOI: 10.58688/kujs.1401808

1. INTRODUCTION

Traditional medicine (TM) forms the basis of healthcare. Medicinal plants containing diverse elements can be used to treat certain disorders. (WHO 2013). Plants play a crucial role in the nutrition of humans and animals, as well as in their medicinal treatment. They provide macro- and microelements that are essential for various biochemical and physiological processes.

However, some plants can absorb toxic elements from the air or soil due to anthropogenic factors, posing a danger to human life. Therefore, it is necessary to control toxic compounds and heavy metals in plants (Gill, 2014; Proshad et al., 2020).

Various methods are used to assess the quality of plant elements: inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma optical emission spectrometry (ICP-EOS), instrumental neutron activation analysis (INAA), atomic absorption spectrometry (Chevidaev et al., 2023; İslam et al., 2023; Bekoe et al., 2024).

The amount of 20 chemical elements in the medicinal plants Acanthus ilicifolius, Avicennia ofcinalis, and Xylocarpus mekongensis was determined by instrumental neutron activation analysis (INAA) and atomic absorption spectrometry. The study also evaluated the potential health risks associated with the use of these plants. (İslam et al., 2023).

The elemental analysis of Polyalthia longifolia (Sonn.) Thwaites revealed that the levels of toxic heavy metals (arsenic, lead, cadmium, and mercury) in the plant exceed recommended standards (Bekoe et al., 2024).

Breast collection No. 2 was analyzed using the ICP-MS method, which showed that the complex has a rich mineral composition. Additionally, the levels of heavy metals and arsenic were found to be within permissible norms (Chevidaev et al., 2023)

The nutritional value of six plant species from Bajaur province of Pakistan was evaluated through elemental analysis. Different values of elemental abundances were found depending on the phenological stage (Haq et al., 2024).

The concentrations of five macro elements (potassium, calcium, magnesium, sodium, and manganese) in cereals sold at Ajaka market in Igalamela, Nigeria were determined using titration and UV-visible spectrophotometry. The analysis results were found to be below the standard permissible limits set by the World Health Organization (WHO)/Food and Agricultural Organization (FAO) (Ojattah et al., 2023).

In this study, we aimed to investigate the elemental composition of Onobrychis buhseana and Onobrychis bobrovi species, which are widely distributed in Azerbaijan. The elemental composition was determined by digesting the study samples with concentrated nitric acid and analyzing them using inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS is a cornerstone method in analytical chemistry. It uses a high-temperature plasma source to atomize and ionize samples, followed by mass spectrometric detection to precisely quantify the elemental composition. It is renowned for its sensitivity, selectivity, and wide dynamic range, and finds extensive application in fields ranging from environmental science to bioanalysis, contributing significantly to the advancement of scientific research and industrial analysis (Ruffolo et al., 2022). The microwave digestion method was used before analysis. This method is the most useful sample preparation method required for trace metal analysis (Zhao et al., 2011).

The Onobrychis genus is a group of medicinal plants belonging to the leguminous family. It is primarily found in temperate zones of South Asia, the Mediterranean region, Europe, and Asia. According to The Plant List website, the genus has 528 distinct species, only 171 of which have been recognized (http://www.theplantlist.org). Azerbaijan's flora includes 22 species of the genus Onobrychis. Onobrychis heterophylla is native to Azerbaijan and grows in the Lerik region, while Onobrychis bakuensis is native to the Caucasus and is prevalent in northern Iran (Флора Азербайджана, 1954; Ranjbar et al., 2010).

Onobrychis species have been reported to possess antioxidant, antibacterial, anti-inflammatory, and anticarcinogenic properties (Isam et al., 2020; Altn et al., 2023). Onobrychis is a plant that provides biological nitrogen fixation, which helps to maintain soil fertility and vitality. It is also cultivated as a valuable fodder plant for farm animals and is suitable for the production of high-quality honey due to its rich supply of nectar. The plant is abundant in proteins, carbohydrates, phytic acid, microelements, and vitamins A, D, E, K, rutin, and isoquercetin (Kozuharova, 2018; Beyaz R., 2019; Emre et al., 2019; Huyen et al., 2020; Craine et al., 2023).

The plant contains various chemical elements, classified into three categories based on their abundance: macro-, micro-, and ultramicroelements. These elements are crucial to the human body as they influence essential physiological processes such as growth, development, fertilization, respiration, hematopoiesis, and immunogenesis.

The objective of this study is to quantify the essential and toxic elements present in these medicinal plants and to investigate the potential health risks associated with their use.

2. MATERIALS AND METHODS

2.1. Plant materials

During the flowering period of the plant, O. buhseana samples were gathered from Badamli village in the Shahbuz district of Nakhchivan MR, and O.bobrovi samples were collected from Jengi village in the Gobustan district in May 2022. Above-ground and underground parts of both species were sampled separately. The above-ground part of O. buhseana species was marked as Sample 1, the underground part as Sample 2, the above-ground part of O. bobrovi species as Sample 3, and the underground part as Sample 4.

2.2. Chemicals and Reagents

The reagents used during the sample preparation process are 65% (v/v) nitric acid (HNO₃) and 30% (v/v) hydrogen peroxide (H₂O₂) products of Carlo Erba and Merck brands, respectively. The ultrapure water was obtained by a water purification system (Millipore Direct-Q® 3 UV).

2.3. Microwave Digestion and Sample Preparation

The microwave digestion method was used before analysis. The process uses microwaves to heat a combined sample with concentrated acid and dissolve the solids for analysis. Microwave and acid digestion are known to be a suitable method for the degradation of many kinds of samples such as soils, organic samples, and heat-resistant alloys. At the same time, it reduces the risk of contamination from the external environment and allows more reliable results to be obtained. The first step of the method is to weigh the sample into a container and add concentrated acid. Microwave energy causes rapid heating of the sample and concentrated acid. Because this mixture is in a closed container, it can reach very high temperatures. In this case, the oxidative potential of the acid increases. In this way, concentrated acid can separate the sample better. The device used for the microwave digestion method consists of Milestone Ethos, Start laboratory station with built-in temperature sensor, 640-260 terminal with easy CONTROL software, and HPR1000/10S high-pressure split rotor. The samples weigh approximately 0.5 g and the weighing results are given in Table 1.

Reagents: 6 ml of HNO₃, 2 ml of H₂O₂

The sample was weighed, and the sample and reagents were taken into the TMF vessel and closed using a torque wrench. The sample was burned by the "application note" procedure and the program below (Table 2). After degradation, the samples filtered through filter paper were made up to 50 ml with ultrapure water.

2.4. Element Determination with ICP-MS

The instrument used in the study was Thermo Scientific – X Series 2 ICP-MS. Fluid flow rates were controlled with a peristaltic pump, sample flow was pumped at 0.8 ml/min, the wash station at 4 ml/min, and the wash station overflow at 8 ml/min. All samples were measured three times. In addition, the operating conditions of the system are given in Table 3.

3. RESULTS AND DISCUSSION

The element abbreviation, isotope masses, regression coefficient, and calibration range of the analytes are given in Table 4. Quantitative results and %RSD values of analytes are given in Table 5. Results are given in ppm for all elements.

Sample-1

Ca > K > Mg > Na > B > Sr > Al > Fe > Ba > Mn > Zn > Sn > Ni > Li > Cu > Se > V > Co > Cr > As > Ce > Cd > Pb > Ag > Be > Tl

Sample-2

 $\label{eq:ca} \begin{array}{l} Ca>\!\!K>\!\!Mg>\!\!Sr>\!\!Fe>\!\!Al>\!\!Na>\!\!Ba>\!\!Mn>\!\!B>\!\!Zn>\!\!Sn>\!\!Ni\\ >\!\!Cu>\!\!V>\!\!Cr>\!\!Li>\!\!Co>\!\!Ce>\!\!As>\!\!Se>\!\!Cd>\!\!Ag>\!\!Be>\!\!Tl>\!\!Pb \end{array}$

Sample	Weight (g)
Sample-1	0.5104
Sample-2	0.5016
Sample-3	0.5039
Sample-4	0.5122

 Table 1. Weight of Sample

Table 2. Microwave program

Step	Time	T1 T2		Р	Power			
1	00:15:00	200°C	110°C	45 bar	Max Power*			
2	00:15:00	200°C	110°C	45 bar	Max Power*			
*Max Power: 1500W for Ethos and 1200W Start units.								

what rower. 1500 w for Euros and 1200 w Start units

Table 3. Operating conditions of the system

Description	Extraction	Lens 1	Lens 2	Lens 3	Sampling Depth	Cool	Auxiliary	Nebuliser	Forward power	D1	CCT Gas 1	CCT Gas 2	D2
XSII Xt Redoks	-96	-990	-75.3	-143.5	150	13	0.7	0.97	1400	-43.9	0	0	-151

Sample-3

K >Ca >Mg >Na >Fe >Al >Sr >B >Mn >Zn >Sn >Ba >Li >Cu >Ni >Pb >V >Cr >Ce >Se >Co >Cd >As >Ag >Be >Tl

Sample-4

$\label{eq:ca} \begin{array}{l} Ca > \!\!\! K > \!\!\! Al > \!\!\! Mg > \!\!\!\! Fe > \!\!\! Sr > \!\!\! Li > \!\!\!\! Mn > \!\!\!\! Ba > \!\!\! B > \!\!\! Na > \!\!\!\! Zn > \!\!\! Sn \\ > \!\!\! Ni > \!\!\! Cu > \!\!\! V > \!\!\! Cr > \!\!\! Ce > \!\!\! Co > \!\!\! As > \!\!\!\! Pb > \!\!\! Cd > \!\!\!\! Be > \!\!\! Se > \!\!\! Ag > \!\!\! Tl \end{array}$

ICP-MS was used to perform elemental analysis on O. buhseana and O. bobrovi species collected from various regions of Azerbaijan. The data from four samples, examining twenty-six elements, is summarised in Table 5 according to their amount (mg/kg) in fresh weight. The following elements were determined in ppm concentrations: Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Ag, Cd, Sn, Ba, Ce, Tl, and Pb. No traces of Au and Hg were found in any of the samples.

Elements can generally be categorized into two types: essential and toxic (Mohamed et al., 2003).

Potassium (Mg) ions are essential for protein and carbohydrate production, while magnesium ions are involved in over 300 intracellular enzymatic processes. Calcium (Ca) ions are rigid constants in the body that are crucial for bone tissue growth and, along with magnesium ions, help to maintain neuromuscular conduction in the body. Sodium (Na) is essential for maintaining acid-base and fluid balance (homeostasis) in the body, as well as for normal nerve and muscle function (Брин et al., 2016).

In the body, iron (Fe) participates in energy release mechanisms, enzymatic reactions, immunological functions, and cholesterol metabolism. The transferrin protein is responsible for supplying iron to cells and tissues. Selenium's (Se) biological purpose in the body is related to its antioxidant activity. Additionally, Se acts as an antagonist to mercury and arsenic, boosts the body's immune function, and minimizes the risk of producing new derivatives (Радыш et al., 2017).

Zinc (Zn) is a cofactor for many enzymes involved in biochemical processes. It is necessary for protein synthesis, including collagen, and contributes to cell division and differentiation as well as T-cell immunity formation (Roohani et al., 2013).

Table 4. Calibration ranges and regression coefficients for the element analysis

No	Elements	Isotope	\mathbf{R}^2	Calibration Range (ppb)
1	Li	7	0.999971	1-100
2	Be	9	0.999281	1-100
3	В	11	0.999724	1-100
4	Na	23	0.999354	100-1000
5	Mg	24	0.998140	100-1000
6	Al	27	0.999488	1-100
7	Κ	39	0.992875	100-1000
8	Ca	44	0.998674	100-1000
9	V	51	0.998134	1-100
10	Cr	52	0.998429	1-100
11	Mn	55	0.998513	1-100
12	Fe	56	0.998960	100-1000
13	Co	59	0.999620	1-100
14	Ni	60	0.999194	1-100
15	Cu	65	0.9996550	1-100
16	Zn	66	0.999040	1-100
17	As	75	0.999275	1-100
18	Se	82	0.999949	1-100
19	Sr	88	0.999717	1-100
20	Ag	107	0.999665	1-100
21	Cd	111	0.999133	1-100
22	Sn	118	0.999325	1-100
23	Ba	134	0.999285	1-100
24	Ce	140	0.999836	1-100
25	Au	197	0.998311	1-100
26	Hg	202	0.999368	1-100
27	T1	205	0.998117	1-100
28	Pb	208	0.999704	1-100

		Sample-1		Sample-2		S	ample-3	Sample-4		
No	Elements	%RSD ^a	Quantification (mg Analyte/kg Sample) ppm	%RSD ^a	Quantification (mg Analyte/kg Sample) ppm	%RSD ^a	Quantification (mg Analyte/kg Sample) ppm	%RSD ^a	Quantification (mg Analyte/kg Sample) ppm	
1	Li	1.168	$\boldsymbol{6.561 \pm 0.077}$	2.071	0.561 ± 0.012	3.365	5.447 ± 0.183	0.106	2.15 ± 0.002	
2	Be	1.815	0.005 ± 0	5.237	0.012 ± 0.001	4.005	0.01 ± 0	5.613	0.05 ± 0.003	
3	В	2.481	349.3 ± 8.668	2.131	21.66 ± 0.462	1.908	48.02 ± 0.916	0.934	17.75 ± 0.166	
4	Na	4.667	1352 ± 63.11	4.319	324.9 ± 14.03	3.572	1085 ± 38.76	17.89	175.1 ± 31.32	
5	Mg	2.762	5315 ± 146.8	1.046	1987 ± 20.79	2.19	1688 ± 36.98	1.627	1348 ± 21.93	
6	Al	3.079	176.6 ± 5.439	1.312	510.4 ± 6.695	1.283	$472\pm\!\!6.054$	0.543	2091 ± 11.36	
7	K	1.928	7246 ± 139.7	1.261	3231 ± 40.74	2.382	13220 ± 3148	5.825	2105 ± 122.6	
8	Ca	3.867	11760 ± 454.8	0.732	$\textbf{46900} \pm \textbf{343.1}$	1.763	5052 ± 89.08	1.688	10270 ± 173.4	
9	V	4.868	0.368 ± 0.018	1.544	1.075 ± 0.017	1.177	0.897 ± 0.011	0.397	3.541 ± 0.014	
10	Cr	5.93	0.318 ± 0.019	1.183	0.964 ± 0.011	1.208	0.769 ± 0.009	0.304	1.869 ± 0.006	
11	Mn	3.647	58.2 ± 2.123	1.237	33.43 ± 0.413	1.523	29.85 ± 0.455	0.655	32.31 ± 0.212	
12	Fe	13.76	154.6 ± 21.27	4.861	626 ± 30.43	7.308	551.6 ± 40.31	5.005	900.5 ± 45.07	
13	Со	4.411	0.32 ± 0.014	0.864	0.485 ± 0.004	2.757	0.246 ± 0.007	0.533	0.697 ± 0.004	
14	Ni	3.916	6.561 ± 0.193	0.289	8.899 ± 0.026	2.767	3.72 ± 0.103	0.805	7.213 ± 0.058	
15	Cu	4.070	4.826 ± 0.196	0.345	3.78 ± 0.013	1.458	4.383 ± 0.064	0.484	4.589 ± 0.022	
16	Zn	3.647	21.34 ± 0.778	0.882	12.67 ± 0.112	1.729	13.06 ± 0.226	0.959	13.14 ± 0.126	
17	As	3.332	0.188 ± 0.006	2.703	0.364 ± 0.01	3.61	0.168 ± 0.006	0.225	0.497 ± 0.001	
18	Se	1.622	0.832 ± 0.013	5.337	0.098 ± 0.005	3.268	0.301 ± 0.01	21.6	0.047 ± 0.01	
19	Sr	4.620	194.9 ± 9.003	1.141	838.1 ± 9.56	1.610	95.51 ± 1.537	0.437	317 ± 1.387	
20	Ag	5.109	0.013 ± 0.001	1.948	0.03 ± 0.001	1.917	0.015 ± 0	0.378	0.04 ± 0	
21	Cd	1.953	0.135 ± 0.003	3.163	0.088 ± 0.003	2.804	0.181 ± 0.005	0.696	$0.377{\pm}0.003$	
22	Sn	3.857	13.49 ± 0.521	2.868	12.19 ± 0.35	1.495	13.02 ± 0.195	1.172	$\boldsymbol{9.375} \pm 0.110$	
23	Ba	3.939	75.91 ± 2.99	1.222	163.4 ± 1.996	1.399	8.467 ± 0.119	0.640	24.75 ± 0.159	
24	Ce	2.787	0.148 ± 0.004	1.379	0.401 ± 0.006	0.839	0.37 ± 0.003	1.851	1.523 ± 0.028	
25	Au	-	Nd ^b							
26	Hg	-	Nd ^b							
27	Tl	0.804	0.001 ± 0	2.93	0.004 ± 0	1.764	0.002 ± 0	2.693	0.011 ± 0	
28	Pb	3.458	0.076 ± 0.003	1.432	$\textbf{0.003} \pm \textbf{0}$	0.99	0.999 ± 0.01	0.414	0.496 ± 0.002	

Table 5. Amount of metals in plant samples and %RSD values

^aRelative standard deviation, ^bNot detected.

Cobalt (Co) participates in enzymatic activities, such as thyroid hormone production, and promotes erythropoiesis by boosting iron absorption (Yamada, 2023). Chromium (Cr) plays a crucial role in the synthesis of carbohydrates and lipids, regulates blood sugar levels by enhancing insulin function, increases cardiac muscle activity, aids in the elimination of toxins, heavy metal salts, and radionuclides from the body, and promotes muscle growth (Anderson, 1997). As and Cd have a therapeutic effect on the body at low doses. They influence oxidation and other metabolic processes in mitochondria and interact with protein and amino acid thiol groups (Nordberg et al., 2007).

4. CONCLUSION

The table shows that Ca (11760 ppm in sample 1, 46900 ppm in sample 2, and 10270 ppm in sample 4) and K (13220 ppm in sample 3) were the most abundant detectable

elements, while Tl (in samples 1, 3, and 4) and Pb (in sample 2) were the least abundant.

The contents of Ca (10270-46900), Na (175.1-1352), Mg (1348-5315), Fe (154.6-900.5), and Zn (12.67-21.34) found in the samples suggest that they are potential sources for these elements. The amount of Se is low in the samples. Fe concentrations varied from 154.6 to 900.5 mg/kg, with the maximum concentration found in Sample 4. Therefore, O. bobrovi could be a possible natural supplement for this microelement. The concentrations of Zn in this study ranged from 12.67 to 21.34 mg/kg, which is equal to the maximum permissible limit set by the World Health Organization (27 mg/kg) (FAO/WHO. 2001).Table 5 shows the concentrations of various elements, including hazardous trace elements such as As, Co, Cd, Cr, and Pb, which were identified at extremely low levels. (WHO. 1996).

5. REFERENCES

- Altın S., Alp C., Koksal E., Akyüz, S. (2023). Determination of Antioxidant, Antimicrobial, and Antiproliferative Activities of Onobrychis argyrea subsp. argyrea ExtractsOnobrychis argyrea subsp. argyrea Ekstrelerinin Antioksidan, Antimikrobiyal ve Antiproliferatif Aktivitelerinin Belirlenmesi. Journal of the Institute of Science and Technology, 13(2), 1134-1141.
- Anderson R.A. (1997). Chromium as an Essential Nutrient for Humans. Regulatory Toxicology and Pharmacology, 26(1), 35-41.
- Bekoe E.O., Orman E., Lartey M., Gordon A., Asafo-Agyei T. (2024). Phytochemical Analysis and Elemental Contents of Varieties of Polyalthia longifolia (Sonn.) Thwaites. Journal of Natural Remedies, 24(2), 271-281.
- Beyaz R. (2019). Biochemical responses of sainfoin shoot and root tissues to drought stress in In vitro Culture. Legume Research, 42 (2), 173-177.
- Chevidaev V.V., Bokov D.O., Gravel İ.V., Samylina İ.A. (2023). Study of the Elemental Composition of Pectoral Species No. 2 and Its Components. The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products Regulatory Research and Medicine Evaluation, 1-10.
- Craine E. B., Shakiroglu M., Peters T.E., Barriball S., Schlautman B. (2023). Nutritional quality of Onobrychis viciifolia (Scop.) seeds: A potentially novel perennial pulse crop for human use. Legume Science, 1-15.
- Emre İ., Sepet H., Kürşat M., Bahşi M., Yilmaz Ö., Şahin A. (2019). The Lipide Soluble Vitamin Contents of Some Onobrychis Miller Taxa. International Journal of Secondary Metabolite, 20(2), 224-228.
- FAO/WHO. 2001. Human Vitamin and Mineral Requirements
- Gill M. (2014). Heavy metal stress in plants. International Journal of Advanced Research, 2(6), 1043–1055.
- Isam A., Ahmed M., Matthäus B., Özcan M. M., Juhaimi F.A., Ghafoor K., Babiker E.E., Osman M.A., Alqah H.A.S. (). Determination of Bioactive Lipid and Antioxidant Activity of Onobrychis, Pimpinella, Trifolium, and Phleum spp. Seed and Oils. Journal of Oleo Science, 69(11), 1367-1371.
- İslam M.A., Kabir S., Hossen M.B. (2023). Elemental characterization of medicinal plants of the Sundarban by INAA and AAS techniques: health risk assessments and statistical analysis. Journal of Radioanalytical and Nuclear Chemistry, 332, 3687-3696

- Haq A., Badshah L. (2024). Proximate and elemental assessment of six selected plant species at various phenological stages from district Bajaur, Pakistan. Pakistan Journal of Botany, 56(3), 1-8.
- Huyen N., Verstegen M., Hendriks W., Pellikaan W. (2020). Sainfoin (Onobrychis viciifolia) silage in dairy cow rations reduces ruminal biohydrogenation and increases transfer efficiencies of unsaturated fatty acids from feed to milk. Animal Nutrition, 6(3), 333-341.
- Kozuharova E. (2018). Flower Constancy of Bumblebees The Case of Onobrychis pindicola (Fabaceae) Pollinators. Journal of Apicultural Science, 62(1), 1-6.
- Mohamed A.E., Rashed M.N., Mofty A. (2003). Assessment of essential and toxic elements in some kindsof vegetables. Ecotoxicol Environ Safety, 55(3), 251–260
- Nordberg G.F., Gerhardsson L, Broberg K, Mumtaz M, Ruiz P, Fowler B.A. (2007). Chapter 7 - interactions in metal toxicology. In: Nordberg GF, Fowler BA, Nordberg M, and Friberg LT, editors. Handbook on the toxicology of metals. 3rd ed. Burlington: Academic Press; 117–145.
- Ojattah G.U., Oguche S.O. (2023). Assessment of Five Macro Elements in Some Cereals Obtained from Ajaka Market in Igalamela/Odolu Local Government Area, Kogi State, Nigeria. International Journal of Scientific Research in Multidisciplinary Studie, 9(1), 19-24.
- Proshad R, Zhang D, Uddin M, Wu Y. (2020). Presence of cadmium and lead in tobacco and soil with ecological and human health risks in Sichuan province, China. Environmental Science and Pollution Research, 27(18), 1–16.
- Ranjbar M., Karamian R., Vitek E. (2010). Onobrychis bakuensis (Fabaceae), a New Species from Azerbaijan. Annales Botanici Fennici, 47(3), 233 - 236.
- Roohani N., Hurrell R., Kelishadi R., Schulin R. (2013). Zinc and its importance for human health: An integrative review. Res. Med.Sci. 18(2), 144–157.
- Ruffolo S.A., Barca D., Alvarez de Buergo M., La Russa M.F. (2022). ICP-MS – Fundamentals and Application to Forensic Science. In: Mercurio, M., Langella, A., Di Maggio, R.M., Cappelletti, P. (eds) Mineralogical Analysis Applied to Forensics. Soil Forensics. Springer, Cham.
- WHO 2013. WHO traditional medicine strategy: 2014–2023. Geneva
- WHO 1996. Trace elements in human nutrition and health. ISBN 92 4 156173 4 (NLM Classification: QU 130). Geneva

- Yamada K. (2013). Cobalt: Its Role in Health and Disease. Metal Ions in Life Sciences, 13, 295-320.
- Zhao J., Yan W. (2011). Microwave-assisted Inorganic Syntheses, ModernInorganic Synthetic Chemistry, 1st ed, Elsevier, 173-19.
- Брин В.Б., Захаров Ю.М., Мазинг Ю.А., Недоспасов В.О., Пятин В.Ф., Ткаченко Б.И. Нормальная физиология: учебник / под ред. Б. И. Ткаченко. - 3-е изд., испр. И доп. М.: ГЭОТАР-Медиа, 2016 – 688 с.: ил. - ISBN 978-5-9704-3664-6. http://www.studentlibrary.ru /book/ISBN9785970436646.html
- Радыш И.В., Скальный А.В., Нотова С.В., Маршинская О.В., Казакова Т.В.. Введение в элементологию: учебное пособие // Оренбургский гос. ун.-т. – Оренбург, 2017 – 183 с. ISBN 978-5-7410-1655-8
- Флора Азербайджана. Баку, Изд-во АН Аз ССР, в 8-х томах, т. 5, 1954, с. 458-471.Fessenden R.J., Fessenden, J.S. (1986). Organic Chemistry. Third Edition, Brooks, Cole Publishing Company, California, 892.
- http://www.theplantlist.org/1.1/ Angiosperms/Leguminosae/ Onobrychis