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Crop Type Classification using Sentinel 2A-Derived Normalized Difference 

Red Edge Index (NDRE) and Machine Learning Approach 

Bere Benjamin BANTCHINA1*, Kemal Sulhi GÜNDOĞDU2

Abstract: Satellite remote sensing (RS) enables the extraction of vital information on land cover and crop type. 

Land cover and crop type classification using RS data and machine learning (ML) techniques have recently 

gained considerable attention in the scientific community. This study aimed to enhance remote sensing research 

using high-resolution satellite imagery and a ML approach. To achieve this objective, ML algorithms were 

employed to demonstrate whether it was possible to accurately classify various crop types within agricultural 

areas using the Sentinel 2A-derived Normalized Difference Red Edge Index (NDRE). Five ML classifiers, 

namely Support Vector Machines (SVM), Random Forest (RF), Decision Tree (DT), K-Nearest Neighbors 

(KNN), and Multi-Layer Perceptron (MLP), were implemented using Python programming on Google 

Colaboratory. The target land cover classes included cereals, fallow, forage, fruits, grassland-pasture, legumes, 

maize, sugar beet, onion-garlic, sunflower, and watermelon-melon. The classification models exhibited strong 

performance, evidenced by their robust overall accuracy (OA). The RF model outperformed, with an OA rate of 

95% and a Kappa score of 92%. It was followed by DT (88%), KNN (87%), SVM (85%), and MLP (82%). 

These findings showed the possibility of achieving high classification accuracy using NDRE from a few Sentinel 

2A images. This study demonstrated the potential enhancement of the application of high-resolution satellite RS 

data and ML for crop type classification in regions that have received less attention in previous studies. 
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Sentinel 2A Uydu Görüntüsünden Normalleştirilmiş Fark Kırmızı Kenar İndeksi 

(NDRE) Kullanılarak Tarımsal Ürünlerin Makine Öğrenme Yöntemleri ile 

Sınıflandırılması 

 

Öz: Uzaktan algılama, arazi örtüsü ve bitki türleriyle ilgili kritik bilgilerin edinilmesini sağlayarak tarım 

alanındaki araştırmalara önemli katkılar sunmaktadır. Son zamanlarda, uzaktan algılama verileri ve makine 

öğrenimi algoritmaları aracılığıyla arazi örtüsü ve ürün türlerinin sınıflandırılması konusu büyük ilgi 

çekmektedir. Bu çalışmanın ana amacı, yüksek çözünürlüklü uydu görüntüleri ve makine öğrenimi yaklaşımını 

kullanarak uzaktan algılama araştırma alanını geliştirmektir. Bu hedefe ulaşmak adına, Sentinel 2A'dan elde 

edilen Normalleştirilmiş Fark Kırmızı Kenar İndeksi (NDRE) ile tarım alanlarındaki çeşitli ürün türlerinin etkili 

bir şekilde sınıflandırılmasının mümkün olup olmadığını değerlendirmek amacıyla çeşitli makine öğrenimi 

yöntemleri kullanılmıştır. Karar Ağaçları (KA), Destek Vektör Makineleri (DVM), Rastgele Orman (RO), K-En 

Yakın Komşular (KEYK) ve Çok Katmanlı Algılayıcı (ÇKA) dahil olmak üzere beş makine öğrenimi 

sınıflandırıcı algoritması uygulanmıştır. Analizde değerlendirilen hedef arazi örtüsü sınıfları arasında tahıllar, 

nadas, yem bitkileri, meyveler, çayır-mera, baklagiller, mısır, şeker pancarı, soğan-sarımsak, ayçiçeği ve karpuz-

kavun bulunmaktadır. Elde edilen sınıflandırma modelleri, yüksek doğruluk oranları ile güçlü bir performans 

sergilemiştir. RF modeli %95'lik genel doğruluk (OA) oranı ve %92'lik Kappa skoru ile en yüksek performans 

göstermiştir. Bunu sırasıyla %88, %87, %85 ve %82 OA ile KA, KEYK, DVM ve ÇKA takip etmiştir. Bu 

bulgular, az sayıda Sentinel 2A görüntüsünden NDRE kullanılarak yüksek sınıflandırma doğruluğu elde 

edilebileceğini göstermektedir. Bu çalışma, yüksek mekânsal çözünürlüğe sahip uydu uzaktan algılama verileri 

ve makine öğrenimi algoritmalarının, mahsul türü sınıflandırması için potansiyel bir gelişim sağlayabileceğini 

doğrulamıştır. 

 

Anahtar Kelimeler: Makine Öğrenme, NDRE, Sınıflandırma, Tarımsal Ürünlerin, Sentinel 2A, Uzaktan 

Algılama. 

 

Introduction 

The incorporation of cutting-edge technologies into agriculture is essential for accurate and effective crop 

management. The emergence of remote sensing, specifically the Sentinel and Landsat satellites, has provided 

opportunities for detailed research using high-resolution imagery. The use of remote sensing data and machine 

learning techniques for the classification of crop types has gained considerable interest in recent years. Scientists 

have investigated the utilisation of Sentinel-2 data for crop mapping and vegetation monitoring. Sentinel imagery 

time series, characterised by a brief return time and superior spatial resolution, has demonstrated significant 

promise in crop classification, particularly in areas prone to frequent cloud cover (Cuenca et al., 2020). Several 
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studies have investigated the application of various machine learning algorithms to classify land use/land cover 

and crop types. Machine learning techniques, such as k-nearest neighbors (KNN), random forest (RF), support 

vector machine (SVM), and deep recurrent neural network approaches, have been investigated for land cover 

classification using remote sensing data (Zhou et al., 2017; Ndikumana et al., 2018; Sitokonstantinou et al., 

2018; Mustak et al., 2019; Yang et al., 2019; Abubakar et al., 2020). These studies have emphasised the 

significance of classification algorithms and the capacity of machine learning approaches to achieve precise crop 

mapping by utilising remote sensing data (Sonobe et al., 2018; Sonobe, 2019; Yang et al., 2019; Ren et al., 2020; 

Mashaba-Munghemezulu et al., 2021). These approaches have contributed to the early mapping of crops (Tian et 

al., 2021) and land cover mapping (Pech-May et al., 2022). 

Furthermore, the use of deep learning models and ensemble learning techniques has been proposed for fine 

crop classification and identification, demonstrating their potential for accurate and detailed crop mapping (Li et 

al., 2020; Lu et al., 2022; Liu et al., 2022; Mazarire et al., 2022) in heterogeneous agricultural landscapes. 

Therefore, the examined literature demonstrates the significance of employing machine learning and 

classification algorithms and integrating remote sensing data with crop models to classify crop types accurately. 

Hyperspectral imaging and deep learning algorithms have been identified as viable methods for crop 

classification. Numerous technologies and methodologies exist for accurately mapping crops using remote 

sensing data. Nevertheless, additional studies are required to integrate dense time series of remote sensing data, 

categorise a wide array of crop varieties on a larger scale, and offer a comprehensive understanding of 

classification certainty and effectiveness during the cultivation period. Additional research is required, 

particularly in numerous regions of the world, which have yet to receive much scrutiny from researchers. 

In addition, vegetation indices derived from the spectral reflectance of crops captured by high-resolution 

remote sensing offer a wealth of information regarding plant health, growth, and composition (Gündoğdu & 

Bantchina, 2018). The complex subtleties of these indices function as excellent indicators for differentiating 

between different crop varieties, offering a non-intrusive method for monitoring large-scale agricultural 

landscapes. Incorporating machine learning algorithms into this framework signifies a fundamental change in 

agricultural classification approaches.  

Different remote sensing approaches can be used for monitoring vegetation and primary production 

dynamics. The aim of the present study was to evaluate the capability of Sentinel-2A-derived Normalized 

Difference Red Edge Index (NDRE) to classify crop type accurately using seven imagery and machine learning 

algorithms agricultural land. The studied crops included cereals, fallow, forage, fruits, grassland-pasture, 

legumes, maize, sugar beet, onion-garlic, sunflower, and watermelon-melon. The classification performance of 

various ML classifiers, including Random Forest (RF), Support Vector Machines (SVM), K-Nearest Neighbours 

(KNN), Decision Tree (DT), and Multi-Layer Perceptron (MLP) classifiers, were investigated. 
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Materials and Methods 

Study site 

This study was conducted in Uluabat Village, located in the Karacabey District of Bursa Province, northwest 

Turkey. The study site covers an area of 16.01 km2 and lies between latitudes 40°11'4.28"N and 40°12'1.46"N 

and longitudes 28°23'27.20"E and 28°27'266"E (Figure 1). The climate of the study area has characteristics of a 

Marmara transition-typ e Mediterranean climate. Precipitation occurs mainly during spring and in the form of 

snow during winter. The coldest month of the year is February, and the hottest month is July. Although the 

vegetation covering the soils of the study area provides the general characteristics of the Marmara Region, 

regions close to the sea and rural areas show differences. Alluvial soils generally exist in and around Karacabey 

(Bantchina et al., 2017). In the study area, maize, pulses, tomatoes, fodder crops, orchards, sugar beets, 

meadows, pastures, and fruits are cultivated with minor changes yearly. 

 

Figure 1. Sentinel 2A RGB imagery of the study area 

Ground truth data  

The data used in this study were obtained from the Karacabey Irrigation Union, where the crop types declared by 

farmers on a parcel basis during the cultivation period were collected. These declarations were cross-referenced 

with onsite observations to validate their accuracy. Field investigations were conducted during the 2022 crop 

season. During the field investigation, the coordinates of the samples and the crop types were recorded. The 

established crop patterns from the field observations and parcel maps were processed using ArcGIS ArcMap 

10.8 (ESRI, Redlands, California, USA) software. After preprocessing, 1233 fields with different crop types 
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were considered. The final dataset with parcel numbers and the distribution of pixel numbers for the different 

crops are listed in Table 1. 

 

Table 1. Parcels and pixels number per crop type 

Crop Types Number 
of Parcels 

Number 
of Pixels 

            Cereals  69 7719 
             Fallow  114 9954 
             Forage  87 8875 
             Fruits  3 133 

Grassland - Pasture  22 6984 
            Legumes  169 19424 

              Maize  694 63641 
       Onion-Garlic  23 1810 

      Sugar Beet 4 357 
       Sunflower 12 1522 

Watermelon-Melon 36 10236 
Total  1233 130655 

 

Sentinel 2A-Derived Normalized Difference Red Edge Index (NDRE) 

Sentinel-2A imagery was used in this study. Sentinel-2A provides high-resolution optical imagery of Earth's 

surface. These scenes were downloaded from https://scihub.copernicus.eu/dhus/#/home. This study used seven 

images of 29 April, 12 May, 18 June, 18 July, 10 August, 16 September, and 09 October 2022 covering the study 

area, all atmospheric corrected and cloudless. These seven images were selected by considering one per month to 

demonstrate if a small number of images could achieve good classification accuracy.  

Vegetation indices (VIs) derived from Sentinel-2A data are widely used in remote sensing and environmental 

monitoring to assess vegetation health, growth, and productivity. The Normalized Difference Red Edge Index 

(NDRE) was used in this study. NDRE (Hardisky et al., 1983) is a vegetation index commonly used in remote 

sensing to assess plant health and monitor crop productivity. Unlike traditional vegetation indices that rely on 

red and near-infrared (NIR) bands, NDRE is calculated using NIR and red-edge (RE) spectral bands, which are 

sensitive to changes in plant chlorophyll content and leaf structure. In this study, 10 m spatial resolution bands 

(band 8, NIR) and 20 m resolution bands (band 8A, RE) were selected for each scene. To maintain consistency, 

bands with distinct 20 m resolutions were resampled (downscaled)  to a uniform 10 m resolution for NDRE 

calculation using SNAP. The formula for NDRE is as follows: 

𝑁𝐷𝑅𝐸 =  
(𝑁𝐼𝑅 − 𝑅𝐸)
(𝑁𝐼𝑅 + 𝑅𝐸)

 

Where: 

− NIR is the reflectance in the near-infrared spectral band 

− RE is the reflectance in the red-edge spectral band 

https://scihub.copernicus.eu/dhus/#/home
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NDRE values range from -1 to 1, with higher values indicating healthier and more photosynthetically active 

vegetation. 

The established crop patterns from field observations were integrated into the attribute table of the parcel 

map using ArcGIS ArcMap 10.8 (ESRI, Redlands, California, USA). Vector-based data were further 

transformed into a raster pixel format. The NDRE values were calculated using the Python window in ArcMap 

10.8 software using spectral bands, as shown in Figure 2. 

 

 

Figure 2. Data processing into ArcGIS ArcMap software 

 

The data were exported in an Excel worksheet format, with each row containing information on a distinct 

pixel and column encompassing the parcel number. The final dataset, with 130655 rows/pixels, was curated for 

training and testing purposes by using the ML algorithms.  

Machine Learning Classifier Algorithms 

In this study, five machine learning classifier algorithms, namely, Random Forest (RF), Decision Tree (DT), 

Support Vector Machines (SVM), K-nearest Neighbors (KNN), and Multi-Layer Perceptron (MLP), were used 

for classification. The five classifier algorithms were as follows: 

Random Forest (RF) 

RF is a machine learning technique that utilises an ensemble of decision trees to generate predictions (Arora et 

al., 2022). Every decision tree in RF is trained on a random subset of the training data and a random subset of the 

input features (Strobl et al., 2007). 

Decision Tree (DT) 

DT is used for regression and classification tasks. These are intuitive and interpretable models that make 

predictions by recursively partitioning the feature space based on the values of input features (Izza et al., 2022). 
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Every internal node of a tree is a decision based on a specific feature, and every leaf node is a predicted value or 

class label (Mahynski et al., 2022). 

Support Vector Machines (SVM) 

SVM is a powerful and widely used supervised machine learning algorithm for classification tasks. SVMs have 

been particularly effective in handling high-dimensional data with limited training samples, making them 

suitable for applications such as hyperspectral image classification (Ghamisi et al., 2017). 

K-Nearest Neighbors (KNN) 

KNN is a simple yet effective method that determines the class of a query example by identifying its nearest 

neighbors in the training dataset (Cunningham & Delany, 2021). The KNN algorithm assigns the class label of 

most of its k-nearest neighbors to the query example, where k is a parameter defined by the user (Jensen & 

Cornelis, 2008). 

Multi-Layer Perceptron (MLP) 

MLP is a type of artificial neural network (ANN) that has been extensively applied in various domains, including 

computer science (LeCun et al., 1998), artificial intelligence (Rumelhart et al., 1986), statistics (Pham et al., 

2019), and geophysics (Hajian et al., 2011). The MLP is trained using a back-propagation algorithm, which is a 

successful gradient-based learning technique (Haykin & Kosko, 2009). 

Classification Models Implementation 

The classification models were trained using Python programming on Google Collaboratory. The dataset was 

split into training and test sets using an 80:20 partition. Hyperparameters were set before the learning process 

began. When tuning the hyperparameters, a grid search technique was used to determine the optimal 

combination for each crop type classification. The hyperparameters for each classifier algorithm used in this 

study are listed in Table 2. 

 

Table 2. ML hyperparameters used for modelling in this study 

ML Models Best hyperparameters used 

Random Forest {'criterion': 'gini', 'max_depth': 75, 'min_samples_leaf': 2, 'min_samples_split': 10, 
'n_estimators': 50} 

Support Vector Machines {'C': 1, 'degree': 2, 'gamma': 'scale', 'kernel': 'linear', 'probability': True, 'shrinking': 
True} 

K-Nearest Neighbors {'metric': 'euclidean', 'n_neighbors': 10, 'weights': 'distance'} 
Decision Tree {'criterion': 'entropy', 'max_depth': 10, 'min_samples_leaf': 10, 'min_samples_split': 5} 

Multi-Layer Perceptron {'activation' : 'tanh', 'alpha' : 0001, 'hidden_layer_sizes' : (100,), 'learning_rate' : 
'constant', 'solver' : 'adam'} 
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Models Accuracy Assessment 

Assessing the accuracy of machine learning models in crop type classification is crucial for understanding how 

well the model performs and whether it suits the classification task. Statistical tools were used to evaluate the 

accuracy of the classification models. The evaluation metrics used were as follows:  

Confusion Matrix is a tool used in machine learning and classification to assess the performance of a 

classification model. It provides a way to visualise the performance of a model by summarising the results of its 

predictions on a dataset, particularly in the context of binary (two-class) classification problems. A confusion 

matrix was built based on the concepts of true positives, true negatives, false positives, and false negatives. True 

Positives (TP): These are instances that are correctly predicted as positive by the model. In other words, the 

model correctly identifies instances from the positive class. True Negatives (TN): These are instances that are 

correctly predicted as negative by the model. The model correctly identifies instances from the negative class. 

False Positives (FP): These are instances that are incorrectly predicted as positive by the model but actually 

belong to the negative class. False Negatives (FN): These are instances that are incorrectly predicted as negative 

by the model but actually belong to the positive class. A confusion matrix is usually presented in tabular form 

with two classes, "positive" and "negative," along with the actual and predicted labels (Table 3). 

 

Table 3. Confusion Matrix format 

 Actual Positive Actual Negative 

Predicted Positive TP FP 

Predicted Negative FN TN 

 

From this confusion matrix, performance metrics such as accuracy, precision, recall, and F1-score were 

calculated to evaluate the performance of the classification models. Overall Accuracy (OA) measures the 

proportion of correctly classified instances among all instances. Precision (P) measures the number of predicted 

positive instances that are actually positive. Recall (R) indicates how well the model captures all positive 

instances. F1-Score is the harmonic mean of Precision and Recall, providing a balanced measure between the 

two. The Kappa score (K), also known as Cohen's Kappa coefficient, has been widely used as an inter-rater 

reliability metric in machine learning and is particularly valuable in evaluating the performance of classification 

models. Collectively, these metrics help understand the strengths and weaknesses of the classification model 

used in this study and make informed decisions about its performance and potential improvements (Muntean & 

Militaru, 2023). The formulae for the performance metrics are listed in Table 4.  
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Table 4. Model performance evaluation metrics 

Performance Metrics Formula 

Overall Accuracy (OA) 
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) 

Precision (P) 
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃) 

Recall (R) 
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁) 

F1-Score 2 ∗
𝑃 ∗ 𝑅

(𝑃 + 𝑅) 

 True Positives (TP), True Negatives (TN), False Positives (FP), False Negatives (FN) 

Results and Discussions 

Quantitative Classification Performance Results 

Quantitative results for the five machine learning classifiers used in this study to classify cereals, fallow, forage, 

fruits, grassland-pasture, legumes, maize, sugar beet, onion-garlic, sunflower, and watermelon-melon in Uluabat 

village are presented in this section. Quantitative results are summarised using the performance metrics 

Precision, Recall, F1-score, Overall Accuracy (OA), and Kappa score (K). The confusion matrix and its 

significance in evaluating the performance of the models are presented.  

Random Forest Classifier (RF) Model Accuracy 

The Random Forest (RF) model demonstrated remarkable accuracy by achieving an OA of 95%. The highest 

performance in terms of Precision was observed in the Grassland-Pasture fields with 98% Precision. This model 

exhibited a robust capability to classify all crop types correctly by exhibiting strong performance, particularly in 

terms of Precision, Recall, F1-score, and Kappa score (92%). Table 5 shows the accuracy of the RF model for 

the studied crops. 

 
Table 5. Performance metrics of the RF model 

Crop Type Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

Cereals 91 91 91 
Fallow 93 93 93 
Forage 91 90 91 
Fruits 93 93 93 

Grassland - Pasture 98 98 98 
Legumes 93 92 92 

Maize 96 96 96 
Onion-Garlic 95 92 94 

Sugar Beet 95 85 89 
Sunflower 92 90 91 

Watermelon-Melon 97 95 96 
accuracy   95 

macro avg. 94 92 93 
weighted avg. 95 95 95 
Kappa Score 92   
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Decision Tree Classifier (DT) Model Accuracy 

The DT model demonstrated an overall accuracy of 88%. The DT model achieved accuracy values ranging from 

63% to 93%, 61% to 93%, and 62% to 93% for the Precision, Recall and F1-score, respectively, implying 

moderate to good accuracy. A kappa score of 84% was achieved. The accuracy results of the DT model are listed 

in Table 6. 

 
Table 6. Performance metrics of the DT model  

Crop Type Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

            Cereals  81 83 82 
             Fallow  80 82 81 
             Forage  81 83 82 
             Fruits  63 61 62 

Grassland-Pasture  86 86 86 
            Legumes  86 86 86 

              Maize  93 93 93 
       Onion-Garlic  88 84 86 
         Sugar Beet  83 58 68 
          Sunflower  79 76 77 

   Watermelon-Melon  86 83 84 
           accuracy    88 

    macro avg.  82 80 81 
 weighted avg.  88 88 88 

Kappa Score 84   
 

K-Nearest Neighbors Classifier (KNN) Model Accuracy 

KNN demonstrated an overall accuracy of 87%, achieving accuracy values ranging from 76% to 91%, 58% to 

94%, and 68% to 92% for Precision, Recall, and F1-score, respectively. The kappa score of the KNN classifier 

was 82%. The accuracy results of the KNN model are presented in Table 7. 

 
Table 7. Performance metrics of the KNN model 

Crop Type Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

            Cereals  82 75 79 
             Fallow  80 75 77 
             Forage  86 81 84 
             Fruits  76 79 77 

Grassland-Pasture  80 87 84 
            Legumes  85 85 85 

              Maize  91 94 92 
       Onion-Garlic  90 83 86 
         Sugar Beet  83 58 68 
          Sunflower  86 64 74 

   Watermelon-Melon  84 83 84 
           accuracy    87 

    macro avg. 84 79 81 
 weighted avg.  87 87 87 

Kappa Score 82   
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Support Vector Machines Classifier (SVM) Model Accuracy 

The SVM demonstrated an overall accuracy of 85%, achieving accuracy values ranging from 78% to 92%, 60% 

to 94%, and 71% to 91% for the Precision, Recall, and F1-score, respectively. The Kappa score of the SVM 

classifier was 78%. The accuracy results for the SVM model are presented in Table 8.  

 

Table 8. Performance metrics of the SVM model 

Crop Type Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

            Cereals  78 70 74 
             Fallow  78 69 73 
             Forage  88 73 80 
             Fruits  88 75 81 

Grassland - Pasture  79 83 81 
            Legumes  80 81 80 

              Maize  88 94 91 
       Onion-Garlic  92 84 88 
         Sugar Beet  87 60 71 
          Sunflower  90 60 72 

   Watermelon-Melon  84 74 79 
           accuracy    85 

    macro avg.  85 75 79 
 weighted avg.  85 85 84 
Kappa_Score 78   

 

Multi-Layer Perceptron Classifier (MLP) Model Accuracy 

The MLP model exhibited an overall accuracy of 82%. The model achieved accuracy values ranging from 70% 

to 87%, 55% to 92%, and 66% to 89% for Precision, Recall, and F1-score, respectively. The kappa score of the 

MLP classifier was 75%. The Model accuracy results are presented in Table 9. 

 

Table 9. Performance metrics of the MLP model 

 
Crop Type Precision 

(%) 
Recall 

(%) 
F1-score 

(%) 
            Cereals  73 70 72 
             Fallow  70 63 66 
             Forage  80 75 77 
             Fruits  82 77 79 

Grassland - Pasture  77 72 74 
            Legumes  79 79 79 

              Maize  87 92 89 
       Onion-Garlic  86 82 84 
         Sugar Beet  81 74 77 
          Sunflower  85 55 67 

   Watermelon-Melon  78 74 76 
           accuracy    82 

     macro avg.  80 74 76 
 weighted avg.  82 82 82 

Kappa Score 75   
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Qualitative Classification Results 

The map presented in Figure 3 visually represents the classification outcomes of the Random Forest model (the 

outperformed model with 95% overall accuracy) and offers insights into the spatial distribution and arrangement 

of the crop types. The qualitative interpretation of the classified crop map substantiates the effectiveness of our 

machine learning-based approach in accurately distinguishing between crops. The spatial patterns captured in 

these maps validated the accuracy of the classification models and highlighted the feasibility of leveraging 

machine learning techniques for precise crop type identification. 

 
Figure 3. Random Forest model-based classified crop type map 

 

In summary, in terms of Overall Accuracy, the best model to classify different crops in Uluabat was Random 

Forest (95%), followed by Decision Tree (88%), K-Nearest Neighbors (87%), Support Vector Machine (85%), 

and Multi-Layer Perceptron (82%). The Kappa score ranged between 75% and 92%. All the models performed 

well by displaying robust accuracy, making them suitable for diverse crop classifications in the study area. These 

models, characterised by robust accuracy, are viable tools for crop science research in diverse regional contexts. 

Although the models reflected a high level of accuracy, low accuracy for some crops (e.g., cereals and fruits) 

may be observed because of factors such as varying soil conditions, land management practices, and natural 

variations in vegetation health. This underscores the need to refine and adapt the classification models to 

consider these nuanced differences in future studies. The findings are acceptable as they align comparably with 

the results documented in the relevant literature. For instance, Sonobe (2019) highlighted the effectiveness of RF 
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and SVM as the most effective classification approaches for identifying vegetation types using remote sensing 

data, with an overall accuracy of 92.1%. Abubakar et al. (2020) achieved overall accuracies of 96.93% and 

97.44% for maize classification using Random Forest, Support Vector Machines, Simple Bayes, machine 

learning algorithms, and Sentinel 2-derived vegetation indices. Fan et al. (2021), in their study on crop type 

classification, achieved the highest overall accuracy of 96–98%, using Sentinel 2 and Random Forest algorithm. 

Furthermore, Lu et al. (2022) achieved a classification accuracy of 91.2% with a kappa coefficient of 0.882 using 

deep learning for fine crop classification.  

Furthermore, using RapidEye imagery on crop type classification, Ustuner et al., 2014 found that NDRE has 

the highest contribution to classification accuracy compared to NDVI and GNDVI. Nevertheless, Kang et al., 

2021 demonstrated that the NDVI time series was more conducive to improving the overall classification 

accuracy of crops, and NDRE can assist NDVI in improving the crop classification accuracy.  

The results of the present study revealed the capability of the Sentinel 2A-derived Normalized Difference 

Red Edge Index (NDRE) and machine learning approach for crop type classification and could contribute 

valuable insights for crop classification and mapping at the parcel level.  

 

Conclusion 

This study investigated the performance of various machine learning models for classifying crop types using the 

Normalized Difference Red Edge Index (NDRE). Notably, the ML models demonstrated high accuracy in 

Uluabat village, reflecting their robust capability for crop type classification. The implications of accurate land 

cover and crop type classification are wide-ranging, encompassing applications such as monitoring land use 

changes, assessing crop health, estimating yields, and facilitating precision agriculture. The present study 

confirmed the importance of NDRE in agricultural monitoring and assessment of crop type and vegetation 

dynamics. By harnessing the synergy between high-resolution remote sensing data and advanced machine 

learning algorithms, stakeholders, including policymakers, researchers, and practitioners, can make informed 

decisions and implement effective land management strategies. This study offers a comprehensive overview of 

the methodologies employed in such a classification, contributes to the existing body of knowledge, and 

provides insights into sustainable land management practices.  
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