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 Respiratory disorders, including chronic obstructive pulmonary disease (COPD) and asthma, are 

major causes of death globally. Early diagnosis of these conditions is essential for effective 

treatment. Auscultation of the lungs is the traditional diagnostic method, which has drawbacks 

such as subjectivity and susceptibility to environmental interference. To overcome these 

limitations, this study presents a novel approach for wheeze detection using deep learning 

methods. This approach includes the usage of artificial data created by employing the open ICBHI 

dataset with the aim of improving in generalization of learning models. Spectrograms that were 

obtained as the output of the Short-Time Fourier Transform analysis were employed in feature 

extraction. Two labeling approaches were used for model comparison. The first approach involved 

labeling after wheezing occurred, and the second approach assigned labels directly to the time 

steps where wheezing patterns were seen. Wheeze event detection was performed by constructing 

four RNN-based models (CNN-LSTM, CNN-GRU, CNN-BiLSTM, and CNN-BiGRU). It was 

observed that labeling wheeze events directly resulted in more precise detection, with exceptional 

performance exhibited by the CNN-BiLSTM model. This approach demonstrates the potential for 

improving respiratory disorders diagnosis and hence leading to improved patient care.       
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1. Introduction 

Among the leading causes of death worldwide are 

respiratory diseases, including chronic obstructive 

pulmonary disease (COPD), and asthma. COPD, the third 

leading cause of death globally, was responsible for 3.23 

million deaths in 2019. In the same year, approximately 

262 million people were affected by asthma, resulting in 

the deaths of 455,000 individuals [1-3]. The given 

statistics highlight the importance of early detection of 

respiratory diseases. The most frequently used method for 

respiratory disorders diagnosis is lung auscultation, which 

is a non-invasive and cost-effective method of diagnosis 

used to assess the condition of the lungs’ health [4]. The 

auscultation method is used to listen to the sounds 

produced by the lungs. This method is essential for 

evaluating patients' respiratory symptoms (i.e. coughing, 

wheezing, or crackling). Although medical technologies 

for pulmonary diagnosis (i.e. spirometry, and chest X-ray) 

have advanced significantly, auscultation remains one of 

the commonly employed approaches for diagnosing 

respiratory sounds employing the traditional analog 

stethoscope [5]. Although auscultation with a stethoscope 

is valuable, it has some limitations, such as its subjectivity, 

as it relies on the expertise of the physician. Additionally, 

it provides inaccurate information when used in noisy 

environments. Besides, there is a risk of infection if it 

comes into direct contact with the patient [4]. Due to these 

limitations, researchers sought to improve the efficiency of 

auscultation by parameterizing lung sounds through 

computerized lung sound analysis or digital stethoscopes, 

which include sampling, filtering, feature identification, 

and lung sound classification [6]. 

Respiratory sounds are produced by the air moving 

through the lungs and airways during breathing [7]. The 

respiratory sounds can be categorized into two classes; 

normal and abnormal (adventitious) sounds. Normal 

respiratory sounds are characterized by a low noise in the 

inspiration phase and are difficult to hear during the 

exhalation phase. Their highest frequency range is under 

100 Hz [7]. On the other hand, extra respiratory sounds 

that are not normally heard during breathing are called 

adventitious sounds. Those abnormal (adventitious 

sounds) can indicate the presence of pulmonary ailment 

[8]. The Internal Lung Sound Association has divided 
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adventitious sounds into continuous and discontinuous 

sounds. The adventitious sounds are further classified into 

wheeze and rhonchi, which are continuous sounds, and 

fine and coarse crackles, which are discontinuous sounds 

[9]. Crackles are discontinuous and explosive clicking or 

crackling sounds caused by the opening of small airways. 

The duration of crackles is short and usually less than 100 

ms [9]. Crackles can indicate various health conditions 

such as pneumonia, chronic bronchitis, bronchiectasis, 

congestive heart failure, and obstructive pulmonary 

disease [10]. Wheezes are continuous sounds that occur as 

a result of air passing through narrow passageways due to 

blockage in the airways [9]. The duration of wheezes is 

considerably longer than the duration of crackles. Their 

duration lasts more than 100 ms, with an average of 250 

ms, and they have a dominant frequency of 100 Hz or 

greater [9]. The sound of wheezes can differ among 

individuals and is influenced by factors such as the extent 

of the condition and the location where the stethoscope 

was positioned during auscultation [11]. Wheezes can 

indicate various health conditions such as asthma and 

bronchial stenosis [7]. A wheezing sound can be classified 

as monophonic or polyphonic. Monophonic wheeze refers 

to the wheezing sound heard consistently throughout the 

respiratory cycle with a uniform pitch. It is generally 

caused by airway narrowing because of a foreign body or 

tumor. Polyphonic wheezing involves multiple wheezes of 

different pitches occurring simultaneously, which is 

generally caused by asthma or COPD [7]. The presence of 

such different wheeze types makes wheeze detection more 

complex. 

The human’s ear ability to indicate adventitious 

respiratory sounds is limited. The intensity and type of 

abnormal sounds, as well as their amplitude, are significant 

factors contributing to detection errors in respiratory signal 

analysis. In addition, other environmental factors such as 

artifacts coming from patient movements, coughing, or 

speech are also limiting factors for lung auscultation. 

Hence, the validation of automatic adventitious sound 

detection algorithms should not solely rely on auscultation 

as the standard diagnosis method. Based on the reasons 

discussed, there is a need for the development of methods 

and algorithms that can accurately detect the adventitious 

sounds and implement them into smart stethoscopes for 

more effective diagnosis of respiratory illnesses. 

Therefore, in the last years, researchers put their efforts 

into developing classification models using machine 

learning-based algorithms. Before 2017, the available data 

on respiratory sounds were limited and insufficient [12]. 

Later, a challenge for lung sound classification was 

published at the International Conference on Biomedical 

and Health Informatics (ICBHI) 2017, containing 920 

respiratory records collected from 126 subjects [13].  

In this study, artificial data derived from the ICBHI 

dataset was generated to address issues like the scarcity of 

wheeze events and excessive noise in certain respiratory 

recordings. The spectrograms obtained from the short-time 

Fourier Transform (STFT) analysis of the recordings were 

utilized for feature extraction. Prior to inputting these 

spectrograms into the constructed model, two labeling 

approaches were employed. While prior studies mostly 

used convolutional neural networks (CNNs) for lung 

sound classification, this study employs a convolutional 

recurrent neural network (CRNN) architecture to better 

capture time-dependent patterns in the data. Detecting 

wheeze sounds not only indicates their presence but also 

their timing during breathing cycles. This research seeks 

to develop an efficient algorithm using digital auscultation 

recordings for improved respiratory disease detection with 

smart stethoscopes. While previous studies focused on the 

classification of respiratory sounds as will be discussed in 

the next section, this study aims to go beyond the 

classification by incorporating novel detection methods 

that provide detailed information on the occurrence, 

duration, and frequency of wheeze events accruing in a 

respiratory record. This detection method can allow for 

personalized treatment for individuals with respiratory 

disorders. Furthermore, integrating a detection algorithm 

into an electronic stethoscope provides real-time alerts of 

wheeze events present during medical examinations, 

resulting in more accurate diagnosis and improved care for 

patients with respiratory disorders. 

The paper structure is as follows: Section 2 provides a 

comprehensive literature review of studies conducted 

using the ICBHI 2017 open-source data for adventitious 

sound classification. Section 3 details the methodology 

followed for building a wheeze detection model. Section 4 

presents the results obtained, including the performance 

matrices and visual representations of them, in addition to 

a discussion of those results and a comparison between 

different models and labeling techniques. Finally, Section 

5 encapsulates the conclusion of the study. 

 

2. Literature Survey  

Previous studies have employed different methods that 

have been applied for respiratory sound classification using 

the ICBHI 2017 dataset. In several studies, the ICBHI open 

dataset from 2017 has been a valuable resource [13]. 

Jakovljevic et al. applied a hidden Markov model to analyze 

Mel-frequency cepstral coefficients (MFCC) in respiratory 

sound data [14]. Chambres et al. took a different approach, 

combining low-level features and MFCC while using a 

decision tree to identify adventitious lung sounds, achieving 

an accuracy of 49.63% [15]. Kochetov et al. introduced a 

classification system for lung sounds, employing a noise-

masking recurrent neural network (NMRNN) and utilizing 

STFT for feature extraction [16]. Ma et al. brought in spectral 

analysis techniques such as STFT and Wavelet Transform 
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(WT), implementing a bilinear ResNet (bi-ResNet) neural 

network to classify respiratory sounds with an accuracy of 

52.79% [17]. Ngo et al. ventured into the use of Gamatongue 

spectrograms, employing an ensemble of Clustering deep 

neural networks (C-DNN) and Autoencoder networks to 

classify respiratory cycle anomalies [18]. Acharya et al. 

proposed a hybrid CNN-RNN model for classifying features 

derived from Mel spectrograms [19]. Serbes et al. used STFT 

and WT for feature extraction, employing a support vector 

machine (SVM) as their classifier, resulting in an accuracy 

of 49.86% [20]. Demir et al. used the STFT for feature 

extraction and presented two different deep-learning 

approaches. The first method included a 16-layer deep 

convolutional neural network (VGG-16 CNN) with an SVM 

classifier, achieving an accuracy of 65.5%. In the second 

approach, transfer learning was employed with the CNN 

model and a softmax function, yielding an accuracy of 63.09% 

[21]. In 2020, Demir et al. introduced a CNN model trained 

using spectrogram images paired with a Linear Discriminant 

Analysis (LDA) classifier and the Random Subspace 

Ensembles (RSE) method, resulting in an accuracy of 71.15% 

[22]. Bilal M. devised a system focused on extracting 

spectrograms from lung sound signals and feeding them into 

a custom 12-layer CNN, achieving an accuracy of 64.5% 

[23]. 

   Asatani et al. employed STFT for extracting the features 

from the data and integrated Convolutional Recurrent Neural 

Networks (CRNNs) with bidirectional Long Short-Term 

Memory (bi-LSTM) blocks to enhance classification 

accuracy [24]. Similarly, Yang et al. employed STFT for 

feature extraction and developed a framework using ResNet-

18, incorporating Squeeze-and-Excitation (SE) and Spatial 

Attention Blocks (SA) [25]. In a related vein, Liu et al. 

classified adventitious respiratory sounds, using Log Mel-

filterbank (LMFB) for feature extraction and employing 

CNN for classification, achieving an accuracy of 81.62% 

[26]. Likewise, Perna and Tagarelli used MFCCs for feature 

extraction and recurrent neural networks (RNN) for 

adventitious respiratory sound classification [27]. Zulfiqar et 

al. used spectrograms with Artificial Noise Addition (ANA) 

for feature extraction, employing various CNN architectures 

(AlexNet, ResNet50, VGG16, and Baseline) for the 

classification of diverse adventitious respiratory sounds [28]. 

Similarly, Nguyen and Pernkopf incorporated STFT and 

Log-Mel for feature extraction, using a pre-trained ResNet 

model to classify adventitious lung sounds [29]. Ntalampiras 

and Potamitis introduced a unique feature set based on 

wavelet analysis, implementing a directed acyclic graph 

(DAG) network architecture comprising hidden Markov 

models (HMM) to model their distribution [31]. So far, most 

research concerning ICBHI data has focused on classifying 

respiratory sounds. This involves training a machine learning 

model to identify the presence or absence of certain classes 

but does not provide details about where these classes are 

located. Detection combines classification and localization, 

offering information about the type of object present and its 

specific location. In our previous study [34], we developed a 

method for wheeze detection using STFT for feature 

extraction, and CNN-GRU deep learning model. The built 

wheeze detection model achieved an F1 score of 0.73. This 

study is built upon the previous work, however, in this study, 

an alternative labeling method and other RNN architectures 

were employed to improve wheeze detection. 

  Wheeze detection offers unique advantages compared to 

sound classification alone. In addition to identifying the 

wheezing event occurrence, this method predicts the 

duration and frequency of wheezing events throughout the 

diagnostic process. This leads to tailored treatments and 

individualized care, enabling healthcare providers to 

customize interventions and medications for individuals.  

 

3. Materials and methods 

    In this section, the methods employed for constructing a 

detection model are discussed. Figure 1. provides a visual 

representation of the methodology workflow. 

3.1 Data Description  

For this study, the public dataset of the 2017 ICBHI 

competition was used, containing a total of 920 lung sounds 

recorded by two research teams in Portugal and Greece. The 

recordings ranged in length from 10 to 90 seconds with 

sampling frequencies of 4 kHz, 10 kHz, and 44.1 kHz. The 

cycles can be classified as crackle, wheeze, both crackle, and 

wheeze, or no ambient noise [13]. Wheezes and crackles are 

annotated in the dataset with detailed start and end times. The 

first column in the detailed annotation indicates the start time, 

the second indicates the end time, and the third indicates the 

name. Text files with detailed events were used for the study. 

 

3.2 Signal Processing 

The ICBHI database contains recordings with sampling 

frequencies of 4 kHz, 10 kHz, and 44.1 kHz. To maintain 

consistency and compatibility across audio files, they were 

resampled to a 4 kHz sampling rate. Afterward, to reduce 

unwanted noise arising from different sources like coughing, 

intestinal/cardiac sounds, and stethoscope movement, a 

12th-order Butterworth band-pass filter with cutoff 

frequencies set at 120 and 1800 Hz was applied to the 

recordings. 

 

3.3 Preparing the Data for Training 

According to the annotations, among a total of 920 audio 

files, only 341 of them contain one or more instances of 

wheezing events, totaling 1879 wheeze events in those files. 

The duration of wheeze segments varies between 0.03 

seconds and 5.80 seconds. 



 

 

 

     Figure 2. shows the histogram of the durations, where it 

can be seen that the majority of wheezes are between the 

interval of 0.1 seconds and 0.4 seconds. The range of the 

highest bar, which represents the most frequent durations, in 

the histogram is between 0.17 and 0.31 seconds. Those 

numbers match with the literature, which states that wheeze 

sounds last more than 100 ms on average. 

    The used dataset encompasses approximately 5.5 hours of 

recordings as mentioned before. However, when considering 

the wheezes specifically, the total duration amounts to only 

approximately 18 minutes of the data. Therefore, the 

duration of wheezing is only 5.61% of the overall duration 

of the provided data. This scarcity of wheezing occurrences 

in the dataset presents a considerable obstacle to developing 

a reliable wheeze detection model. In addition, during data 

review, inaccurate event labels in the annotation file were 

noticed, also, some audio files remained heavily distorted by 

excessive noise, even after applying the bandpass filter, 

leading to the emergence of oscillatory patterns that exhibit 

characteristics similar to wheezing, i.e., exhibiting 

characteristics like speech or motion artifacts. Consequently, 

the model may recognize them as instances of wheezing, or 

it can categorize wheezing as a normal sound. To overcome 

these limitations, an artificial data generation technique was 

employed. By creating synthetic data using the annotation 

files, it is possible to expand the existing dataset and obtain a 

larger and more diverse set of wheeze events with reduced 

noise. This strategy aims to enhance the precision of the 

models by furnishing a more comprehensive training dataset. 

3.4 Generating Artificial Data 

   The data was initially split into training and testing sets 

with a 70% to 30% ratio. Wheezing-containing audio files 

were identified, and wheezing segments were extracted from 

them for both training and testing datasets. Figure 3. 

illustrates the waveform of one of the wheeze segments, 

where the oscillatory behavior of the wheeze can be clearly 

seen.   

   Audio files without wheeze events were also identified, 

and their first 10 seconds were downloaded. Before using 

them as background for synthetic data, each file underwent a 

review, with those containing talking or excessive ambient 

sounds excluded. 

 Using wheeze segments and background audio, synthetic 

data was created. The code randomly selected 10-second 

backgrounds and added 2 to 4 wheezes to each. 130 different 

 

Figure 2. The Histogram of Wheeze Durations 

Figure 1. The flowchart of detection framework. The figure contains a visualization of the CRNN 

model used in the detection process 
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backgrounds with lower noise levels and minimal talking 

sounds were selected. Among these, 100 background signals 

were employed for training, while 30 background signals 

were used for testing.  

The code ensures no overlapping segments in selected 

audio clips to avoid simultaneous wheeze events. It creates 2, 

3, or 4 wheeze segments in 10-second sound files. Having at 

least two wheeze events per audio is crucial to balance the 

skewed labels (mostly 0s), reducing the risk of overfitting. 

This approach generates 1500 training and 200 testing audio 

files.  
 

3.5 Short-Time Fourier Transform Spectrogram 

  The Short-Time Fourier Transform (STFT) is a 

commonly used method for the time-frequency analysis 

attributes of a signal. It involves dividing the input signal into 

overlapping windows and subsequently applying the Fast 

Fourier Transform (FFT) to each of these windows. The 

STFT shows how the frequency content of the signal 

changes over time, making it a powerful tool for analyzing 

time-varying spectral features. The mathematical 

representation of the STFT, X[m,w], is as follows [32]: 

             𝑋[𝑚, 𝑤] = ∑ 𝑥[𝑛]𝑤[𝑛 − 𝑚]𝑒−𝑖𝑤𝑛

𝑁−1

𝑛=0

                  (1) 

Where in Equation (1), 𝑥[𝑛] represents the input signal, 

𝑤[𝑛] refers to the window function and N is the length of the 

FFT. Squaring the magnitude of the STFT,  |𝑋[𝑚, 𝑤]|2 , 

gives the spectrogram which is the visual representation of 

the signal in the time-frequency domain. 

 When visualizing the audio signal's spectrogram, it 

becomes evident that specific patterns associated with the 

characteristic frequency range become clearly visible.  For 

the best visualization of the patterns, and for obtaining 

accurate features to be fed to the model, the parameters of the 

STFT should be selected carefully by giving attention to both 

the time resolution and the frequency resolution of the 

spectrogram. A narrow window provides good time 

resolution but sacrifices frequency resolution, while a wide 

window offers poor time resolution but good frequency 

resolution. Since wheezes last a long time and have a narrow 

frequency pattern, there is a need for better frequency 

resolution to visualize them in the time-frequency domain. 

   Figure 4 displays a plot of an audio signal alongside its 

corresponding spectrogram. In this study, a Blackman-Harris 

(BH) window was used for wheeze visualization with a 

length of 512 and a 192 overlap (75% of the window size). 

This allows us to clearly see wheezes as narrowband spectral 

patterns, often referred to as "snakes" in the spectrogram. 

3.6 Labeling the Data 

   The labels were produced using two distinct approaches.  

In the first approach, the labels for the audio signals were 

synchronized with the time frames of the spectrograms, 

assigning one label for every three-time steps. The portions  
 

 

of the audio that lack wheezes are assigned zero. While 

labeling the portions of wheezing, a specific approach was 

employed.  

In this approach, a target label of 1 is assigned to the 10 

consecutive time steps following the end of a wheeze-

containing clip. The goal of labeling in this way is to train the 

model to recognize when wheezing sounds show up, with a 

focus on the time immediately after the clip ends. Each 

generated spectrogram has a label in the shape of (1, 99) 

which is the output of the model. The labeling of segments is 

visually represented in Figure 5A, where a binary 

classification is applied: "the time steps immediately after the 

wheezing event shows up" (labeled as 1) or " time steps 

without wheezes, or wheezing events" (labeled as 0). 

   In the second approach, the labels are assigned directly to 

the time steps where the wheeze occurs. In this way, the 

model is supposed to be able to predict the exact time of the 

 
Figure 3. Wheeze segment plot in the time domain  

 

Figure 4. Audio signal plot in the time domain and its 

corresponding STFT spectrogram 
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wheeze appearance. Similar to the first approach, the shape 

of the labels is (1, 99). The labeling of segments is visually 

represented in Figure 5B, where a binary classification is 

applied: "with wheeze" (labeled as 1) or "without wheeze" 

(labeled as 0). 

 

3.6 RNN-Based Model Architecture 

   In this study, four RNN-based models, namely CNN-

LSTM, CNN-GRU, CNN-BiLSTM, and CNN-BiGRU, 

were investigated. The built model architecture includes a 

single convolutional layer, followed by three RNN layers, 

and finalized with a dense layer.  

   The model starts with a convolutional layer, taking a 309-

time step input. The convolutional layer is critical to extract 

low-level features and decrease the output dimensionality. 

This layer has 196 units, uses a 15-sized kernel, and has a 

stride of 3. This adjustment aligns the model's output 

dimensionality with the label dimensions (99). The CNN 

layer accelerates learning by reducing input dimensionality. 

Consequently, batch normalization is applied to normalize 

the feature, and then the ReLU activation function is used to 

introduce non-linearity. A dropout layer is added to prevent 

overfitting.  

   Following the CNN layer, RNN layers are employed. The 

architecture of the four models is identical in terms of the 

number of layers, dropouts, batch normalizations, and other 

parameters. The only difference lies in the type of RNN 

blocks used. The first layer utilizes 512 units and return 

sequences, allowing the model to capture temporal 

relationships and patterns within the dataset. Dropout and 

batch normalization are applied to enhance the stability of 

the model. The next RNN layer also utilizes 512 units. This 

layer further captures complex temporal relationships in the 

data. Dropout and batch normalization are applied similarly 

to the previous layer. The last RNN layer employs 256 units 

and serves to prepare the data for the subsequent output layer. 

Dropout and batch normalization are applied again to ensure 

robustness and prevent overfitting. The final layer consists of 

a time-distributed dense layer with sigmoid activation. The 

model's architecture is presented in Table 1.  

   The model was trained for 30 epochs. For the evaluation of 

the models, several metrics were generated to assess their 

performance. These metrics include accuracy, precision, 

recall, and F1 score. 

4. Results and Discussion 

4.1 Models’ Accuracies   

Table 2 presents the evaluation metrics for the model, 

comparing the two different labeling techniques. The CRNN 

models with positive labels starting after the events achieved 

remarkably similar accuracies ranging between 0.82 and 

0.84. Notably, the GRU-based model achieved the lowest 

accuracy, while the bidirectional models exhibited the 

highest accuracy among the four models. These accuracies 

indicate that the model can correctly identify wheeze patterns 

in 82-84% of cases. Similarly, the CRNN models with the 

positive labels aligned directly on the wheeze events 

demonstrated accuracies within the same range as the models 

using the alternative labeling technique. However, in this 

case, the LSTM-based model achieved the lowest accuracy 

of 0.82.  

While accuracy is a crucial metric for classification tasks, in 

scenarios where the distribution of labels is heavily skewed 

towards the "0" class, accuracy may not provide the most 

informative assessment. In such cases, defining more 

meaningful metrics such as F1 score, Precision, and Recall, 

offers a more insightful evaluation of the model's 

performance. By considering those metrics, a better 

understanding of the model’s ability to correctly predict 

positive class while minimizing false positives and false 

negatives can be achieved. 

 

4.2 Models’ Precision and Recall Values   

Precision evaluates how effectively the model can 

correctly identify positive predictions. Equation (2) 

represents the mathematical calculation of precision. A 

higher precision score signifies the model's capacity to 

correctly identify wheezing patterns while reducing the 

misclassification of non-wheezing events as wheezing. 

                        𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑ 𝑇𝑃

∑(𝑇𝑃 + 𝐹𝑃)
                        (2) 

Recall assesses the model's capacity to accurately identify 

all positive instances. Equation (3) represents the 

mathematical calculation of the recall. The recall score 

evaluates the model's ability to detect the real instances of 

wheezing in the dataset, ensuring that it doesn't overlook any 

existing wheezing events. 

                                  𝑅𝑒𝑐𝑎𝑙𝑙 =  
∑ 𝑇𝑃

∑(𝑇𝑃 + 𝐹𝑁)
                                (3) 

    

 

 

 

Table 1. Model Architecture 

Layer Type Kernel Attribute Activation 

Conv1D 15 (196 Filters) ReLu 

BatchNormalization 
 

- 

Dropout 0.8 - 

RNN 512 units - 

Dropout 0.8 - 

BatchNormalization 
 

- 

RNN 512 units - 

Dropout 0.8 - 

BatchNormalization 
 

- 

RNN 256 units - 

Dropout 0.8 - 

BatchNormalization 
 

- 

Dropout 0.8 - 

TimeDistributed Dense 1 Sigmoid 
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Figure 5. Visual Representation of the Labeling. (A) Positive Labeling After Wheeze Events and (B) Positive Labeling Directly on 

Wheeze Events 

 

       Examining the precision values in Table 2, it becomes 

evident that almost all models supplied with positive labels 

after wheeze events achieve relatively high values for 

negative class (0) which refers to wheeze absence, ranging 

from 0.86 to 0.87. This indicates the ability of the models to 

correctly classify non-wheezing events. However, the 

precision for the positive classes (1) which refers to the 

wheeze events, varies between the models. The CNN-

BiGRU model achieves the highest precision of 0.78, while 

the CNN-GRU model has the lowest precision of 0.60. 

The macro average represents the average across both classes, 

treating them equally. The macro precision average ranges 

between 0.74 and 0.82, with the highest value for the CNN- 

 

BiGRU model. These results indicate the models can 

precisely classify approximately 74%-82% of the positive 

instances. Regarding recall of the same labeling technique, 

the models show varying performances. For the negative 

class (0), the recall values range between 0.90 and 0.96, 

suggesting the models’ effectiveness in capturing true 

negative (TN) instances.  

   However, for the positive class (1), the recall values range 

from 0.43 to 0.54, indicating that the model's ability to 

capture positive wheeze events ranges between 43% and 

54%. The macro average of the models ranges between 0.70 

to 0.73, with the highest value for the CNN-BiLSTM model. 

This indicates that the models exhibit a balanced 

Table 2.  Accuracy, Precision, Recall, and F1 Score Values 

  Positive Labels After Wheeze Events Positive Labels on Wheeze Events 

Metric  CNN-

LSTM 

CNN-

GRU 

CNN-

BLSTM 

CNN-

BGRU 

CNN-

LSTM 

CNN-

GRU 

CNN-

BLSTM 

CNN-

BGRU 

Accuracy  0.83 0.82 0.84 0.84 0.82 0.83 0.84 0.84 

Precision 0 0.86 0.87 0.87 0.85 0.85 0.85 0.86 0.86 

1 0.75 0.60 0.67 0.78 0.73 0.75 0.75 0.79 

Recall 0 0.95 0.90 0.92 0.96 0.92 0.93 0.92 0.94 

1 0.47 0.54 0.53 0.43 0.57 0.56 0.61 0.58 

F1 score 0 0.89 0.88 0.90 0.91 0.88 0.89 0.89 0.90 

1 0.58 0.57 0.59 0.56 0.64 0.64 0.68 0.67 

Macro 

average 

Precision 0.80 0.74 0.77 0.82 0.79 0.80 0.81 0.82 

Recall 0.71 0.72 0.73 0.70 0.74 0.74 0.77 0.76 

F1 Score 0.74 0.73 0.74 0.73 0.76 0.76 0.78 0.78 
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performance in terms of correctly identifying wheezing 

events and non-wheezing events. 

   When examining the precision and recall values derived 

from the second labeling technique, which directly labels 

wheeze events as positive, positive differences in 

performance become apparent when compared to the first 

labeling technique within the same table. In terms of 

precision, all the models achieve relatively high values for 

both the negative class (0) and the positive class (1) when 

compared with the alternative labeling technique. The 

precision value values range between 0.85 and 0.86 for the 

negative class and from 0.73 to 0.79 for the positive class. 

   For recall, the models again exhibit varying performance 

with relatively high values for the negative class. However, 

the recall values for the positive class, in the second 

technique that directly labels wheeze events as positive, 

range from 0.56 to 0.61, suggesting that the models have 

varying degrees of success in identifying wheezing events. 

Overall, the recall values are relatively higher than the 

alternative model. The macro average of the models ranges 

between 0.74 to 0.77, with the highest value for the CNN-

BiLSTM model. 

 

4.3 Models’ F1 Scores   

The F1 score is calculated as the harmonic mean of 

precision and recall. It is a metric that combines precision 

and recalls into a single value providing a balanced measure 

of models’ performance. Considering the unbalanced nature 

of the labels, where the positive class (wheeze events) is a 

minority class, it is crucial to focus on the F1 score of the 

positive class (1). Looking at Table 2, it can be observed that 

among the models, CNN-BiLSTM and CNN-BiGRU 

consistently demonstrate higher F1 scores for wheeze events 

across both labeling techniques. For positive labeling after 

wheeze events, the BiLSTM model achieves the highest F1 

score of 0.59 for the positive labels, while for labeling 

directly on wheeze events both bidirectional models give the 

same highest F1 score of 0.68. Comparing the F1 scores for 

the positive class, the second labeling technique outperforms 

the models with positive labeling after the wheeze events. 

This suggests that labeling directly on wheeze events 

provides a more balanced correct identification of wheeze 

events (precision) and captures all actual wheeze events 

(recall). 

     In order to provide a more comprehensive overview of the 

model's performance, two bar charts were illustrated to 

visualize the accuracy and the macro averages of the 

precision, recall, and F1 score. Figure 6 shows the scores of 

the models with positive labels after wheeze events, while 

Figure 7 depicts the scores of the models with positive labels 

on wheeze events. These charts provide a concise and visual 

representation of the data presented in Table 2. Upon closer 

inspection of the figures, it becomes evident that the 

bidirectional models outperform other architectures in both 

labeling techniques. 

4.4 Visualization of the Obtained Results 

      In this study, results obtained from the models are 

visualized to offer a visual assessment of the model's 

performance in detecting wheezing events. Both the 

spectrogram and the prediction values were used to assess 

the model's ability in this regard. In this section, two 

examples are presented. The first example is from the 

artificial test data, and the second is from one of the original 

audios of ICBHI data. Figure 8 illustrates the results of one 

created audio example with positive labeling after the 

wheeze event. Peaks or changes in the prediction values of 

the probability graphic show when the model predicts the 

occurrence of a wheeze event. It can be seen that all the 

models except the BiGRU model could predict all the 

wheezes in the audio. GRU model's prediction values were 

less than 0.8, whereas the LSTM-based models gave 

prediction values of more than 0.9. Figure 9 illustrates the 

results of the same example but with the positive labels 

aligned directly on the wheezes. Looking at the true labels it 

can be seen that the bidirectional models could identify all 

the present wheeze events in the audio. 

 

 
Figure 6. Accuracy, precision, F1 score, and recall scores for 

models with positive labels after wheeze events 

 

 
Figure 7. Accuracy, precision, F1 score, and recall scores for 

models with positive labels on wheeze events 
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Figure 8. Visualization of the spectrogram, the predictions, and the 

true labels with positive labels after the wheeze events. 

 

 
Figure 9. Visualization of the spectrogram, the predictions, and the 

true labels with positive labels aligned on the wheeze events 

 

 
Figure 10. Visualization of the spectrogram, the predictions, and 

the true labels with positive labels after the wheeze events 

 

 

Figure 11. Visualization of the spectrogram, the predictions, and 

the true labels with positive labels aligned on the wheeze 

events. 

 

    The BiGRU model could detect the wheeze after the 

second 6 with a prediction value of 0.6, whereas the BiLSTM 

model was able to detect the same wheeze event with a 

prediction value of 0.8. On the other hand, the unidirectional 

models were not able to detect it.  Figure 10 illustrates the 

results of one of the original audio examples with positive 

labeling after the wheeze events. From the annotation, it can 

be seen that all the models were not able to detect the short 

wheeze event at the duration between 0.036 and 0.393, 

whereas all of them were able to predict the other two events. 

Figure 11 illustrates the results of the same audio, but with 

labels directly assigned to the wheeze events. Looking at the 

annotations, it can be noticed that all models were not able to 

predict the same wheeze event at the start of the audio, 

however, for the other wheeze events the bidirectional 

models gave a more accurate prediction, with the best 

prediction given from the BiLSTM model. A set of other 

synthetic data and original data were also visualized, and as 

a visual result, it was noticed that the models with positive 

labels assigned directly to the wheeze events, especially the 

BiLSTM model, were able to detect the wheeze events more 

precisely.   

 

4.5 Comparison Between Models 

The conclusive comparison between LSTM-based and 

GRU-based models is difficult, however, in terms of 

computation times, the GRU-based models have been 

proven to be faster than the LSTM models [33]. As 

mentioned before, with the labels being unbalanced, and the 

positive class (wheeze events) being a minority, it is crucial 

to focus on the F1 score of the positive class (1). Therefore, 

focusing on the positive class of the F1 score it can be noticed 

that the LSTM-based models outperform other models in the 

first labeling technique. This difference in performance 

could be explained by the LSTM architecture, which 

includes a memory cell and gating mechanisms that allow it 
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to capture and remember long-term dependencies and retain 

information over a longer sequence. In the case of wheeze 

detection, where multiple time steps may be required to 

detect wheezing, these long-term dependencies are 

particularly useful. TN and TP values shown previously may 

be slightly lower in GRU models due to their relatively 

weaker ability to retain and utilize longer-term information. 

On the other hand, in positive labeling directly on wheeze 

events, looking at the F1 scores of positive labels, it can be 

noticed that the bidirectional models tend to outperform the 

unidirectional models. Bidirectional models have the 

advantage of considering both past and future contexts 

during training. The reason for this can be that bidirectional 

models are capable of capturing bidirectional dependencies 

between wheezing events. Using bidirectional models, input 

sequences can be processed in both forward and backward 

directions, providing a more comprehensive input 

understanding. 

   Looking at the tables above, it is noticed that in both 

labeling techniques, the CNN-BiLSTM model achieves the 

highest F1 score for positive labels and the macro average. 

This can be attributed to the advantages offered by its 

architecture which combines the strength of both LSTM and 

bidirectional models. Therefore, the CNN-BiLSTM model 

with its combination of long-term dependencies capture and 

remember from LSTM and bidirectional context modeling, 

offers a favorable balance between capturing temporal 

patterns of wheeze events and incorporating bidirectional 

dependencies, making it well-suited for the wheeze detection 

task. 

 

4.6 Comparison Between Labeling Techniques 

In this study, two different labeling techniques were used. 

The results of each technique were obtained separately and 

presented in previous parts. The first labeling approach 

involves assigning positive labels following wheeze events. 

By applying this labeling method, the models consider the 

entire context of the wheeze events’ pattern, allowing for a 

thorough analysis of those patterns. This labeling approach 

is generally applied in speech recognition tasks, where the 

labeling is performed after the speech utterance. However, in 

contrast to speech recognition or trigger word detection 

scenarios, the duration of spoken words is typically constant, 

whereas the lengths of wheeze events in the dataset vary 

significantly. This variability in wheeze duration presents a 

challenge in labeling wheezes after the event, as a fixed 

number of positive labels may not adequately capture the 

varying lengths of wheezes present in the data set. This 

challenge suggests relatively lower F1 scores for positive 

labels compared with the alternative method. Implementing 

this labeling technique along with using the CNN-LSTM 

model for wheeze detection offers the advantage of real-time 

alarm generation. By implementing the algorithm into a 

stethoscope, it may be possible to receive an instant alert 

when a wheeze occurs. This instantaneous feedback can be 

valuable in medical settings to tackle the problems 

mentioned in the introduction section of this study. However, 

using bidirectional models with this labeling method requires 

waiting for the recording of respiratory sounds to finish, 

which limits the real-time capabilities. 

    Positive labeling directly aligned with the wheeze event 

offers several advantages. Firstly, more precise identification 

of wheeze occurrence, allowing for accurate duration 

estimation, can be achieved. Furthermore, direct labeling in 

the event can capture fine-grained details of the wheezing 

pattern, leading to a higher F1 score for positive labels. It 

enables the model to learn specific wheeze features, resulting 

in enhanced differentiation between wheeze and non-wheeze 

segments. To implement the CNN-LSTM system with such 

a labeling approach to an electronic stethoscope for wheeze 

detection to provide an instant alarm, it typically needs to 

wait for the wheeze pattern to reach a recognizable state. 

While the system may not be able to provide an instant alarm 

at the exact onset of the wheeze, once a sufficient portion of 

the wheeze event is detected and recognized, the system can 

trigger an alarm to indicate the presence of a wheeze. 

    In summary, even though the first labeling technique 

allows  comprehensive analysis  of  the  wheeze  pattern,  the 

variable lengths of wheeze events can be challenging and 

result in lower F1 scores for positive labels. On the other 

hand, labeling directly aligned with the event provides 

precise identification and duration estimation of wheeze 

occurrence, yielding higher F1 scores. 

 

4.7 Comparison with Other Studies  

   Table 3 shows some of the most recent and relevant studies 

in the literature for the ICBHI 2017 database. The table 

contains the studies that utilize STFT or comparable time-

frequency representations, such as Mel spectrograms or 

MFCCs, and employ deep learning-based methods for 

classification. In the table, the column “parameters” denotes 

the window length used for time-frequency representation. 

Furthermore, columns “Sen”, “Spe”, “Sco”, and “Acc” refer 

to the ICBHI 2017 benchmark sensitivity, specificity, 

scoring result, and classification accuracy, respectively. 

Although the studies listed in Table 3 employed methods 

similar to those utilized in this study, it's crucial to note a 

distinction. These studies focused on classifying abnormal 

respiratory sounds, and training models to identify the 

presence or absence of adventitious lung sounds in the record. 

However, they lacked the capacity to provide localization 

information about these classes. As mentioned previously, 

the majority of works on the ICBHI 2017 database have 

centered around classifying respiratory sounds without 

offering details about where these sounds occur. In contrast, 

our study stands out by aiming to develop a model for 

wheeze detection, which integrates both the classification 

and the localization of the wheeze sounds.   
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5. Conclusions 

   Chronic respiratory disorders have a significant impact on 

lung function and overall health, with conditions such as 

chronic obstructive pulmonary disease and asthma 

contributing to a high number of deaths globally. Early 

diagnosis and regular monitoring of respiratory illnesses are  

crucial for effective management. While traditional 

auscultation using a stethoscope has been a common 

diagnostic tool, it has limitations in terms of subjectivity and 

accuracy. Computer-based respiratory sound analysis has 

emerged as a promising approach to improve the objectivity 

and efficiency of diagnosis. 

The objective of this study is to develop a computer-based 

system capable of detecting wheeze sounds, to address the 

limitations of the traditional auscultation devices mentioned 

before. By implementing computer-based respiratory sound 

analysis using artificial data derived from ICBHI open data, 

conventional recurrent (CRNN) models were trained to 

detect wheeze in the created respiratory recordings. 

In the implementation of the wheeze detection model, one 

of the major challenges faced was the limited open data of 

respiratory sound recordings. The available open data that 

was used in this project is relatively small, comprising only 

920 audio files, of which only 341 files contain one or more 

wheeze events. In this study, to tackle this limitation, 

artificial data was generated from the ICBHI open data. 

However, having a larger dataset with a higher number of 

patients, a higher number of wheeze events, and reduced 

noise would significantly enhance the performance of the 

wheeze detection models, leading to more efficient and 

accurate wheeze detection capabilities.   

   Before training the data, two different methods of labeling 

were applied to the created recordings, each with its 

advantages and considerations. Those techniques are; 

positive labeling after wheeze events, and positive labeling 

aligned with the wheeze events. The second labeling method 

showed more precise identification, duration estimation, and  

 

enhanced differentiation between wheeze and non-wheeze 

segments. 

   The comparison between different models and labeling 

techniques showed that the LSTM-based models 

demonstrated better performance in terms of F1 score for 

positive labels after the wheeze events. On the other hand, 

the bidirectional models showed superior performance and 

F1 scores for positive labeling directly aligned with wheeze 

events. The CNN-BiLSTM model emerged as the most 

effective model, leveraging the strengths of both LSTM and 

bidirectional architecture. It combines the ability to capture 

long-term dependencies and incorporate bidirectional 

dependencies making it suitable for wheeze detection 

problems. 

   In future studies, it is recommended to address the limited 

dataset issue by acquiring a larger dataset with more patients, 

wheezing events, and reduced noise. Moreover, using K-fold 

cross-validation can lead to a more robust analysis, 

enhancing the reliability of wheeze detection models. This 

would further improve the efficiency and accuracy of 

computer-based respiratory sound analysis in order to foster 

their potential for early diagnostics and monitoring of 

respiratory diseases. 
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Table 3. Studies in Literature for the ICBHI 2017 Dataset.  Column "parameters" denotes the window length for employed time-

frequency representation. 

Reference Time-frequency representation Learning model Results (%) 

Type parameters Sen Spe Sco Acc 

Kochetov et al. 

[16] 

STFT 500 ms RNN 58.4 73 65.7 - 

Acharya et al. [19] Mel spectrograms 60 ms hybrid CNN-RNN - 58.01 - - 

Liu et al. [26] LMFB  - CNN - - - 81.62 

Asatani et al. [24] STFT 40 ms CRNN, bi-LSTM 63 83 73 - 

Perna &Tagarelli 

[27] 

MFCCs 250 ms RNN 64 84 74 - 

Saraiva et al. [30] MFCCs - CNN - - - 74.3 
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Nomenclature 

ICBHI : International Conference on Biomedical and 

Health Informatics 

CRDs :  Chronic Respiratory Disorders 

COPD : Chronic Obstructive Pulmonary Disease 

CNN : Convolutional Neural Network 

RNN : Recurrent Neural Network 

NMRNN: Noise Masking Recurrent Neural Network 

ANA : Artificial Noise Addition 

HMM : Hidden Markov Model 

SVM : Support Vector Machine 

DAG : Directed Acyclic Graph 

LDA : Linear Discriminant Analysis 

RSA : Random Subspace Ensembles 

SE : Squeeze-and-Excitation 

SA : Spatial Attention Block   

STFT : Short-Time Fourier Transform 

WT : Wavelet Transform 

LMFB : Log Mel-Filterbank 

MFCC : Mel-Frequency Cepstrum Coefficient 

GRU : Gated Recurrent Unit 

LSTM : Long Short-Term Memory 

Bi-LSTM: Bidirectional Long Short-Term Memory 

Bi-GRU : Bidirectional Gated Recurrent Unit  

TP : True Positive 

TN : True Negative 

FP : False Positive 

FN : False Negative 

Hz : Hertz 

ms : milliseconds 

 

References 

1. Cukic, V., Lovre, V., Dragisic, D., & Ustamujic, A. Asthma 

and chronic obstructive pulmonary disease (COPD) – 

differences and similarities. Materia Socio-Medica, 2012. 

24(2): p. 100. 

2. World Health Organization. (n.d.). Chronic obstructive 

pulmonary disease (COPD). World Health Organization. 

Retrieved [cited October 25, 2022]; Available from: 

https://www.who.int/news-room/fact-sheets/detail/chronic-

obstructive-pulmonary-disease-(copd). 

3. Liang, R., Feng, X., Shi, D., Yang, M., Yu, L., Liu, W., 

Zhou, M., Wang, X., Qiu, W., Fan, L., Wang, B., & Chen, 

W. The global burden of disease attributable to high fasting 

plasma glucose in 204 countries and territories, 1990-2019: 

An updated analysis for the Global Burden of Disease Study 

2019. Diabetes/metabolism research and reviews, 2022. 

38(8): e3572.  

4. Göğüş, F. Z., Karlık, B., & Harman, G. Classification of 

asthmatic breath sounds by using wavelet transforms and 

neural networks. International Journal of Signal Processing 

Systems, 2014. 3(2): p. 106-111.  

5. Güler, İ., Polat, H., & Ergün, U. Combining neural network 

and genetic algorithm for prediction of lung sounds. Journal 

of Medical Systems, 2005. 29: p. 217-231. 

6. Yeginer, M., & Kahya, Y. P. Feature extraction for 

pulmonary crackle representation via wavelet networks. 

Computers in Biology and Medicine, 2009. 39(8): p. 713–

721. 

7. Reichert, S., Gass, R., Brandt, C., & Andrès, E. Analysis of 

respiratory sounds: State of the art. Clinical Medicine: 

Circulatory, Respiratory and Pulmonary Medicine, 2008. p. 

45-58. 

8. Pasterkamp, H., & Zielinski, D. The History and Physical 

Examination. Kendig’s Disorders of the Respiratory Tract 

in Children, 2019 (9th Edition). p. 2–25. 

9. Sarkar, M., Madabhavi, I., Niranjan, N., & Dogra, M. 

Auscultation of the respiratory system. Annals of Thoracic 

Medicine, 2015. 10(3): p. 158-168. 

10. Zaitseva, E. G., Chernetsky, M. V., & Shevel, N. A. About 

Possibility of Remote Diagnostics of the Respiratory System 

by Auscultation. Devices and Methods of Measurements, 

2020. 11(2): p. 148-154.  

11. Kim, Y., Hyon, Y., Jung, S. S., Lee, S., Yoo, G., Chung, C., 

& Ha, T. Respiratory sound classification for crackles, 

wheezes, and rhonchi in the clinical field using deep 

learning. Scientific Reports, 2021. 11(1): p. 1-11. 

12. Hsu, F.-S., Huang, S.-R., Huang, C.-W., Huang, C.-J., 

Cheng, Y.-R., Chen, C.-C., Hsiao, J., Chen, C.-W., Chen, 

L.-C., Lai, Y.-C., Hsu, B.-F., Lin, N.-J., Tsai, W.-L., Wu, 

Y.-L., Tseng, T.-L., Tseng, C.-T., Chen, Y.-T., & Lai, F. 

Benchmarking of eight recurrent neural network variants 

for breath phase and adventitious sound detection on a self-

developed open-access lung sound database—hf_lung_v1. 

PLOS ONE, 2021. 16(7): p. 1-26.  

13. Rocha, B. M., Filos, D., Mendes, L., Serbes, G., Ulukaya, 

S., Kahya, Y. P., … de Carvalho, P. An open access 

database for the evaluation of respiratory sound 

classification algorithms. Physiological Measurement. 2019. 

40: 035001  

14. Jakovljević, N., & Lončar-Turukalo, T. Hidden Markov 

Model Based Respiratory Sound Classification. IFMBE 

Proceedings, 2017. 66: p. 39–43.  

15. Chambres, G., Hanna, P., & Desainte-Catherine, M. 

Automatic Detection of Patient with Respiratory Diseases 

Using Lung Sound Analysis. 2018 International Conference 

on Content-Based Multimedia Indexing (CBMI). 2018. p. 

1-6. 

16. Kochetov, K., Putin, E., Balashov, M., Filchenkov, A., & 

Shalyto, A. 2018. Noise Masking Recurrent Neural Network 

for Respiratory Sound Classification. In Artificial Neural 

Networks and Machine Learning–ICANN 2018: 27th 

International Conference on Artificial Neural Networks, 

Rhodes, Greece, October 4-7, 2018. Springer International 

Publishing. p. 208–217.  

17. Ma, Y., Xu, X., Yu, Q., Zhang, Y., Li, Y., Zhao, J., & Wang, 

G. LungBRN: A Smart Digital Stethoscope for Detecting 

Respiratory Disease Using bi-ResNet Deep Learning 

Algorithm. 2019 IEEE Biomedical Circuits and Systems 

Conference (BioCAS), 2019. IEEE. p. 1-4. 

18. Ngo, Pham, L., Nguyen, A., Phan, B., Tran, K., & Nguyen, 

T. (2021). Deep Learning Framework Applied For 

Predicting Anomaly of Respiratory Sounds. 2021 

International Symposium on Electrical and Electronics 

Engineering (ISEE). IEEE. p. 42-47. 

19. Acharya, J., & Basu, A. Deep Neural Network for 

Respiratory Sound Classification in Wearable Devices 

Enabled by Patient Specific Model Tuning. IEEE 

Transactions on Biomedical Circuits and Systems, 2020. 

14(3): p. 535-544. 

20. Serbes, G., Ulukaya, S., & Kahya, Y. P. An Automated Lung 

Sound Preprocessing and Classification System Based 

OnSpectral Analysis Methods. In Precision Medicine 

Powered by pHealth and Connected Health: ICBHI 2017, 

Thessaloniki, Greece, 18-21 November 2017. Springer 

Singapore. p. 45-49. 

031                    Hakki and Serbes, International Advanced Researches and Engineering Journal 08(01): 020-032, 2024 



        Hakki and Serbes, International Advanced Researches and Engineering Journal 08(01): 020-032, 2024 
 

 

 

21. Demir, F., Sengur, A., & Bajaj, V. Convolutional neural 

networks based efficient approach for classification of lung 

diseases. Health Information Science and Systems, 2019. 

8(1): 4.  

22. Demir, F., Ismael, A. M., & Sengur, A. Classification of 

lung sounds with CNN model using parallel pooling 

structure. IEEE Access, 2020. 8: p. 105376-105383. 

24. Asatani, N., Kamiya, T., Mabu, S., & Kido, S. Classification 

of respiratory sounds using improved convolutional 

recurrent neural network. Computers & Electrical 

Engineering, 2021. 94: 107367.  

25. Fan, C.-Y., Liu, C.-P., Wang, K.-C., Jhan, J.-H., Wang, Y.-

C. F., & Chen, J.-C. Face Feature Recovery via Temporal 

Fusion for Person Search. ICASSP 2020 - 2020 IEEE 

International Conference on Acoustics, Speech and Signal 

Processing. 2020, IEEE. p. 1893-1897.  

26. Liu, R., Cai, S., Zhang, K., & Hu, N. Detection of 

Adventitious Respiratory Sounds based on Convolutional 

Neural Network. 2019 International Conference on 

Intelligent Informatics and Biomedical Sciences (ICIIBMS). 

2019, IEEE. p. 298-303. 

27. Perna, D., & Tagarelli, A. Deep Auscultation: Predicting 

Respiratory Anomalies and Diseases via Recurrent Neural 

Networks. 2019 IEEE 32nd International Symposium on 

Computer-Based Medical Systems (CBMS). 2019, IEEE. p. 

50-55. 

28. Zulfiqar, R., Majeed, F., Irfan, R., Rauf, H. T., Benkhelifa, 

E., &amp; Belkacem, A. N. Abnormal respiratory sounds 

classification using deep CNN through Artificial Noise 

addition. Frontiers in Medicine, 2021. 8: 714811.  

29. Nguyen, T., &amp; Pernkopf, F. Lung sound classification 

using co-tuning and stochastic normalization. IEEE 

Transactions on Biomedical Engineering, 2022. 69(9): p. 

2872–2882.  

30. Saraiva, A., Santos, D., Francisco, A., Sousa, J., Ferreira, N., 

Soares, S., &amp; Valente, A. Classification of respiratory 

sounds with convolutional neural network. Proceedings of 

the 13th International Joint Conference on Biomedical 

Engineering Systems and Technologies. 2020, Science and 

Technology Publications. p. 138-144. 

31. Ntalampiras, S., & Potamitis, I. Automatic acoustic 

identification of respiratory diseases. Evolving Systems, 

2020. 12(1): p. 69-77. 

32. Krishnan, S. Advanced Analysis of Biomedical Signals. 

Biomedical Signal Analysis for Connected Healthcare, 

2021: p. 157–222.  

33. Li, L., Wu, Z., Xu, M., Meng, H. M., & Cai, L. Combining 

CNN and BLSTM to Extract Textual and Acoustic Features 

for Recognizing Stances in Mandarin Ideological Debate 

Competition. In Interspeech, 2016. p. 1392-1396. 

34. Hakki, L., & Serbes, G. Wheeze Events Detection Using 

Convolutional Recurrent Neural Network. In 2023 

Innovations in Intelligent Systems and Applications 

Conference (ASYU), Sivas, Turkiye, 2023. IEEE. p. 1-6. 

 

 

 

032 

23. ER, M. B. Akciğer Seslerinin Derin öğrenme i̇le 

siniflandirilmasi. Gazi Üniversitesi Fen Bilimleri Dergisi 

Part C: Tasarım ve Teknoloji, 2020. 8(4): p. 830–844. (In 

Turkish). 


