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Abstract. In this paper, we introduce the classes of α and strictly-α sem-

inearrings and establishes some of their properties, mostly in relation to the

possession of a mate function. Then we get the criterion for an α-seminearring

to become a strictly-α seminearring. We also obtain a complete characterisa-

tions of α and strictly-α seminearrings and proved certain results for α and

strictly-α seminearrings via certain unique classes of seminearrings.
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1. Introduction

In the literature, the notion of seminearrings was firstly introduced in [18] (in

a German version “Fasthalbring”). However, only a very special type of semin-

earrings was considered in [18] and the question arisen whether a more general

theory of seminearrings can be developed and the results in [9] make it clear that

such a theory was developed by expanding the existing theories of nearrings and

semirings. Indeed, they have studied some fundamental properties of seminear-

rings and introduced various notions of ideals. Later, Albert Hoogewijs studied

embeddings and I-congruences of seminearrings [8]. Weinert has made some sig-

nificant contributions to seminearrings [20,21,22] and also studied non-associate

seminearrings towards the contributions to seminearfields and seminearrings as or-

dered algebras. The theory was further enhanced by S. A. Huq [10], Javed Ahsan

[1] and Tim Boykett [6]. For example, applications and investigations we further

refer to [9,20]. Semigroup sets (Γ,+) and its mapping with absorbing zero respect

to M(Γ), addition is pointwise and composition of mapping is the obvious exam-

ple of seminearring. The role of seminearring structure applied in many places

of theoretical computer science, viz. algebra communicating processes, theory of

automata and also seen in semigroup mapping and reversible computation models.

Nowadays research in the group theory is quite intense. The theory of group is a



140 G. MANIKANDAN, R. PERUMAL AND P. MADHUSOODHANAN

meeting point of various extensions of algebraic theories. This work is an attempt

to extend the classical results of group theory to seminearrings. We consider the

following group theoretic facts.

Let (S, .) be a group, H and K be any two subgroups of S. Then (i) HK is a

subgroup of S iff HK = KH and (ii) H is normal in S if and only if xH = Hx for

all x in S. Now it is quite natural for us to extend these concepts to seminearrings

and we have named α-seminearring and strictly α-seminearring. In this paper, the

notions of α and strictly-α seminearrings are introduced and we discuss some of

their properties with respect to the possession of a mate function.

This paper comprises four sections. Section 2 review some basic results and

definitions about seminearrings. In Section 3, we define α and strictly-α seminear-

rings and give some results concerning such seminearrings. In Section 4, we obtain

a complete characterisations of α and strictly-α seminearrings. We also furnish

certain results obtained through the special structures of seminearrings.

2. Preliminaries

We consider some basic terminologies and the results related to seminearrings

are used in subsequent sections.

According to [8,17] a (right or left distributive) seminearring is defined to be an

algebra (R,+, .) such that (R,+) and (R, .) are semigroups and (a+ b)c = ac+ bc

holds for all a, b, c in R. If for all a ∈ R, a ·0 = 0 ·a = 0 and a+0 = 0+a = a, then

R is zero absorbing. All along this paper, R always denotes a right seminearring

with zero absorbing.

Non-empty subset I of R is a right (respectively left) ideal of R if (i) l + a ∈
I ∀ l, a ∈ I and (ii) l · r ∈ I (r · l ∈ I) ∀ l ∈ I, r ∈ R. An ideal is a both left as

well as a right ideal of R [1].

Suppose seminearring R has non-empty subsets P and Q, then all finite sums

set PQ is of the form
∑

pkqk with pk ∈ P and qk ∈ Q. That is,
∑

prk(
∑

rkp) is

a sum of all elements of pR(Rp) for every p ∈ R. The fact that seminearring R is

right distributive implies Rp = {rp : r ∈ R}. Therefore pR(Rp) is a right(left) ideal

of R. The ideal pR(Rp) is called the principal right(left) ideal. In particular, if the

non-empty set is singleton {p}, then pR(Rp) is respectively the principal right(left)

ideal generated by p [2]. An ideal I of a seminearring R is called a K-ideal of R if

for any a, m ∈ R, there exist g, k ∈ I such that a+m+ g = k +m+ a [11].

An element x of a seminearring R is called distributive if for all p, q ∈ R, x(p+

q) = xp+xq. The set of all distributive elements of R is denoted by Rd. We say that

R is distributive if R = Rd. A seminearring R is called distributively generated,
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or d.g. seminearring for short, if R contains a multiplicative subsemigroup D of

distributive elements which generates (R,+), [19]. A subseminearring of the direct

product
∏

k∈K

Rk of a family {Rk | k ∈ K} (where K is an index set) of seminearrings

is called a subdirect product of the Rk’s if every projection map πk (restricted to

R) is onto. An element a ∈ R is said to be idempotent if a2 = a. (We denote by

E, the set of all idempotents of R). A ring R is regular (von Neumann) if ∀ a ∈ R,

∃ r ∈ R ∋ a = ara.

In the literature, regular rings were studied extensively. The concept has been

naturally extended to fewer axioms of algebraic structures namely nearrings as well

as seminearrings. The element z in R, x = xzx is not necessary to be unique.

The “mate function” concept arises as a result of this and introduced in [12]. A

mate function is a self-map f : R → R such that a = af(a)a ∀ a ∈ R. Then f

is a mate function for R and f(a) is called a mate of a. R admits mate functions

iff it is regular. A mate function f of R is known as a mutual mate function if

f(a)=f(a)af(a) ∀ a ∈ R. We refer to each of a and f(a) as a mutual mate of each

other [12].

The following special seminearring structures are extended from nearrings to

seminearrings. R is said to be a P (r,m) seminearring if xrR = Rxm ∀ x ∈ R,

where r,m are positive integers [4,15]. A seminearring R is a Pk seminearring (P ′
k

seminearring) if xkR = xRx (Rxk = xRx) ∀ x ∈ R, where k is a positive integer. In

particular R is said to be a P2 seminearring (P ′
2 seminearring) if x2R = xRx (Rx2 =

xRx) ∀ x ∈ R [5,16]. R is a left-duo seminearring if every left ideal of R is two-sided

[3,13,14].

Remark 2.1. [11] If I is an ideal of R, then R/I denotes the set of all congruence

classes, that is, R/I = {s+ I : s ∈ R}.

Theorem 2.2. [11] Consider a seminearring R with a K-ideal I. Then R/I is

defined where (h+ I) + (m+ I) = h+m+ I and (h+ I).(m+ I) = hm+ I.

Remark 2.3. By expanding the definition of a ring, the notions of seminearring

isomorphisms, epimorphisms, homomorphisms and so on are defined. The following

outcomes have been obtained:

(i) g : R → R/I is a seminearring epimorphism if I is a K-ideal of R. As a result,

the homomorphic image of R is R/I.
(ii) If g : R → R/I is the canonical epimorphism, then (R/I)/(J/I) = (R/J) for

all K-ideals J of R containing I.
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Remark 2.4. (i) If there exists k ∈ K such that the projection map πk is an

isomorphism, a subdirect product of seminearrings {Rk | k ∈ K} is considered

trivial.

(ii) R is considered subdirectly irreducible if R is not isomorphic to a non-trivial

subdirect product of seminearrings.

Remark 2.5. If seminearring is a subdirect product Rk’s (k ∈ K), then homomor-

phic images are Rk’s of R (under the projection maps πk), [7].

Theorem 2.6. (i) Every seminearring is isomorphic to a subdirect product of a

seminearrings which is subdirectly irreducible.

(ii) Every d.g. seminearring is a d.g subdirect product of d.g. subdirectly irre-

ducible d.g. seminearrings.

Proposition 2.7. When R admits a mate function f , then Rz = Rf(z)z and

zf(z)R = zR ∀ z ∈ R.

Proof. We observe that Rz = Rzf(z)z ⊆ Rf(z)z ⊆ Rz and hence Rz = Rf(z)z.

Similarly, zR = zf(z)R. □

Proposition 2.8. Let f be a mate function for R. Then every left ideal A of R is

idempotent.

Proof. Let A be a left ideal of R. Then RA ⊆ A. Therefore A2 = AA ⊆ RA ⊆ A.

Also for any a in A, a = af(a)a = a(f(a)a) ∈ A(RA) ⊆ AA = A2 and hence A is

idempotent. □

3. α and strictly-α seminearrings

In this section we give the precise definition of an α and strictly-α seminearring

and illustrate this concept with suitable examples.

Definition 3.1. R is called an α-seminearring if all the left ideals of seminearring

R commute with one another i.e., (Rx)(Ry) = (Ry)(Rx) ∀ x, y ∈ R.

Definition 3.2. A seminearring R is called a strictly-α seminearring if every left

ideals Rx of R commutes with every element of R i.e., y(Rx) = (Rx)y ∀ x, y ∈ R.

Example 3.3. R = {0, v1, v2, v3} is given by

+ 0 v1 v2 v3

0 0 v1 v2 v3

v1 v1 0 v3 v2

v2 v2 v3 0 v1

v3 v3 v2 v1 0

. 0 v1 v2 v3

0 0 0 0 0

v1 0 v1 0 v1

v2 0 0 0 0

v3 0 v1 0 v1
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this seminearring is an α-seminearring as well as a strictly-α seminearring.

Example 3.4. R = {0, v1, v2, v3, v4} is given by

+ 0 v1 v2 v3 v4

0 0 v1 v2 v3 v4

v1 v1 v1 v2 v4 v4

v2 v2 v2 v2 v4 v4

v3 v3 v4 v4 v3 v4

v4 v4 v4 v4 v4 v4

. 0 v1 v2 v3 v4

0 0 0 0 0 0

v1 0 v1 v1 v1 v1

v2 0 v1 v2 v2 v2

v3 0 v1 v2 v2 v2

v4 0 v1 v4 v4 v4

then (R,+, ·) is an α-seminearring but not a strictly-α seminearring.

Proposition 3.5. The following hold in a strictly-α seminearring R.

(i) R is a P ′
2 seminearring.

(ii) If y ∈ Rd, then yM = My for all ideals M of R.

(iii) If R = Rd, then R is left-duo.

Proof. (i) As R is a strictly-α seminearring, y(Rx) = (Rx)y ∀ x, y ∈ R. Taking

y = x, we get xRx = Rx2 and (i) follows.

(ii) We have M =
∑

x∈M

Rx. If y ∈ Rd, then yM = y(
∑

x∈M

Rx) =
∑

x∈M

y(Rx) =∑
x∈M

(Rx)y = (
∑

x∈M

Rx)y = My and (ii) follows.

(iii) Suppose R has any ideal M . For any y ∈ R(= Rd). (ii) implies My = yM ⊆
RM ⊆ M . This yields MR ⊆ M . Thus M is a right ideal of R. Hence R is

left-duo. □

Proposition 3.6. If R is a strictly-α seminearring, then it is an α-seminearring.

Proof. As R is a strictly α-seminearring, we have y(Rx) = (Rx)y ∀ x, y ∈ R. Let

a, b ∈ R and for r ∈ R,

(ra)Rb ⊆ RaRb ⇒ (Rb)ra ⊆ RaRb ⇒ RbRa ⊆ RaRb (1)

In a similar fashion,

(rb)Ra ⊆ RbRa ⇒ (Ra)rb ⊆ RbRa ⇒ RaRb ⊆ RbRa. (2)

From (1) and (2), we get RaRb = RbRa and the desired result follows. □

The converse of the above Proposition 3.6 is not valid, i.e., an α-seminearring

need not be a strictly-α seminearring. The seminearring in Example 3.4 comes in

handy to justify this assertion. It is worth noting that this seminearring admits

mate function.
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Proposition 3.7. If R is a strictly-α (an α) seminearring, then any homomorphic

image of R is also a strictly-α (an α) seminearring.

Proof. Let R and R′ be two seminearrings and we define a map g : R → R′ a

seminearring epimorphism. Assumption of a, b, r′ ∈ R′ where onto of g, ∃ x, y, r in

R with a = g(x), b = g(y) and r′ = g(r).

br′a = g(y)g(r)g(x)

= g(yrx)

= g(r1xy) (since yrx ∈ y(Rx) = (Rx)y ⇒ yrx = r1xy for some r1 ∈ R)

= g(r1)g(x)g(y)

= r′1ab (where r′1 = g(r1) ∈ R′)

∈ (R′a)b.

So bR′a ⊆ (R′a)b.

Similarly, (R′a)b ⊆ b(R′a). Thus (R′a)b = b(R′a).

Therefore R is strictly-α seminearring.

Next we assume that a, b, s′1, s
′
2 ∈ R′. Hence onto g, ∃ x, y, s1, s2 ∈ R, a = g(x),

b = g(y) and s′1 = g(s1) and s′2 = g(s2). Now s′1as
′
2b = g(s1)g(x)g(s2)g(y)

= g(s1xs2y)

= g(s2ys1x) (since s1xs2y ∈ RxRy = RyRx ⇒ s1xs2y = s2ys1x; s1, s2 ∈ R)

= g(s2)g(y)g(s1)g(x)

= s′2bas
′
1 (where s′1 = g(s1), s

′
2 = g(s2) ∈ R′)

∈ R′aR′b.

So R′aR′b ⊆ R′bR′a.

Similarly, R′bR′a ⊆ R′aR′b. Thus R′bR′a = R′aR′b.

Hence R is an α-seminearring. □

As a consequence of Proposition 3.7 we obtain the following:

Theorem 3.8. If R is an α (a strictly-α) seminearring, then R is isomorphic to a

subdirect product of an α (a strictly-α) seminearring which is subdirectly irreducible.

Proof. By Theorem 2.6, we have R to be isomorphic to a subdirect product of a

seminearrings say Ri and every Ri subdirectly irreducible therefore homomorphic

image of seminearring R, πi. The remaining proof follows by Proposition 3.7. □

Theorem 3.9. If an α (a strictly-α) seminearring has an ideal I, then R/I is also

an α (strictly-α) seminearring.

Proof. R/I is a homomorphic image of R by the canonical-homomorphism and

the needed result is got from Proposition 3.7. □
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4. Main results

Proposition 4.1. Let R be a strictly-α seminearring with mate function. Then

every ideal of R is also a strictly-α seminearring with mate function.

Proof. Suppose f is a mate of R, and that A is a two-sided ideal. Let a, b, c ∈ A.

Since R is a strictly-α seminearring, then

bca ∈ bRa = Rab = Raf(a)ab ⊆ Aab

since A is two-sided. Similarly,

cab ∈ Rab = bRa = bRaf(a)a ⊆ bAa.

Therefore bAa = Aab, and A is a strictly-α seminearring.

We observe that, as A is an ideal, the mutual mate function g : A → A defined

by g(a) = f(a)af(a), for a ∈ A, serves as a mate function for A and the result is

achieved. □

We shall now give a complete characterisation of α-seminearrings.

Theorem 4.2. Suppose f is a mate of R. Then the seminearring R is an α-

seminearring if and only if Rx ∩Ry = RxRy ∀ x, y ∈ R.

Proof. Let R be an α-seminearring has a mate function. Given principal left ideals

Rx and Ry, their intersection Rx ∩ Ry is also a left ideal, and so by Proposition

2.8, Rx ∩Ry is idempotent. Hence

Rx ∩Ry = (Rx ∩Ry)2 ⊆ RxRy.

Now, RxRy ⊆ Ry, and since R is an α-seminearring, RxRy = RyRx ⊆ Rx.

Hence RxRy ⊆ Rx ∩Ry, and therefore RxRy = Rx ∩Ry.

Conversely, if RxRy = Rx ∩Ry for all x, y, then

RxRy = Rx ∩Ry = RyRx

and so R is an α-seminearring. □

Theorem 4.3. Suppose f is a mate of a seminearring R. Then the seminearring

R is left-duo iff it is a P1 seminearring.

Proof. We first observe that a left-duo seminearring for the “only if” part. Since

a left ideal Rz of R, for each z ∈ R, it also becomes a right ideal of R which implies

(Rz)R ⊆ Rz. For every r ∈ R, ∃ some r′ ∈ R ∋ zr = (zf(z)z)r = z(f(z)zr) = zr′z.

Thus zR ⊆ zRz. Obviously, the reverse inclusion, namely zRz ⊆ zR always holds.

Subsequently, we got zR = zRz ∀ z ∈ R. For the “if” part, let I be a left
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ideal of R. Thus by the definition RI is a subset of I. For each h ∈ I, we get

hR = hRh = (hR)h ⊆ RI ⊆ I. As such IR ⊆ I and the result is achieved. □

Theorem 4.4. If a seminearring R is admitting a mate function f , then the fol-

lowing are equivalent:

(i) R is a left-duo seminearring.

(ii) R is a P1 seminearring.

(iii) I1 ∩ I2 = I1I2 ∀ left ideals (I1 & I2) of R.

Proof. (i) =⇒ (ii) By the proof of Theorem 4.3, it follows.

(ii) =⇒ (iii) Suppose z ∈ I1 ∩ I2. Then z = zf(z)z = z(f(z)z) ∈ I1 ∩ I2. Thus

I1 ∩ I2 ⊆ I1I2.
Now let r = hm ∈ I1I2 with h ∈ I1 and m ∈ I2. We have r = hm ∈ hR = hRh

and therefore r = hth (where t in R) = h(th) ∈ hI1. Since hI1 ⊆ I1, we have

r ∈ I1. This ensures that I1I2 ⊆ I1.
Again as r = hm ∈ RI2 ⊆ I2, we see that I1I2 ⊆ I2. Collecting all these pieces,

we get I1I2 ⊆ I1 ∩ I2, then (iii) follows.

(iii) =⇒ (i) Let I1 be a left ideal of R and let I2 = R. So (iii) implies that

I1R = I1 ∩R = I1, hence I1 is a right ideal, this implies (i). □

Proposition 4.5. If f is a mate function of an α-seminearring R, then R is a

left-duo seminearring.

Proof. Let x ∈ R and for y in R, xy = xf(x)xy = xf(x)xf(x)xy (since xf(x) ∈
E) = x(f(x)x)(f(x)xy) ∈ x(RxRy) = x(RyRx) (since R is a α-seminearring)⊆
xRx ⇒ RyRx ⊆ R(Rx) ⊆ (Rx). Thus xR ⊆ xRx. But obviously xRx ⊆ xR.

Hence xR = xRx ∀ x ∈ R. Now the desired fact is proved from Theorem 4.3. □

Proposition 4.6. Let R be a seminearring admitting mate functions. Then R is

an α-seminearring if and only if it is a left-duo seminearring.

Proof. “Only if” part follows from Proposition 4.5 and “if” part is a consequence

of Theorem 4.2 and Theorem 4.4. □

We conclude this paper as we discuss one more situation under which an α-

seminearring becomes a left-duo seminearring.

Proposition 4.7. If an α-seminearring has a right identity e, then it is a left-duo

seminearring.
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Proof. Suppose R has any left ideal A. Then A =
∑
x∈A

Rx. Now RxR = RxRe =

ReRx = RRx ⊆ Rx. Hence AR = (
∑
x∈A

Rx)R = (
∑
x∈A

RxR) ⊆
∑
x∈A

Rx = A. Hence

AR ⊆ A and the needed result is achieved. □

5. Conclusion and future work

Motivation for these classes of seminearrings stems from the elementary group-

theoretic facts. This yields to develop more classes of seminearrings with the help

of group-theoretic facts. In the future, the ideas that need further consideration

will lead to a significant piece of seminearrings theory.
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