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Highlights 

• This paper focuses on building new tempered sequence spaces. 

• The directed preserving generator (𝑑. 𝑝. 𝑔.) is used to compose some new tempered sequence spaces. 

• The basic properties of these new tempered sequence spaces are obtained. 
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Abstract 

In this paper, we will introduce tempered 𝜈-sequence spaces generated by directed preserving 

generator 𝜈. After building the spaces, we investigate and show tempered 𝜈-sequence spaces are 

Banach spaces. In addition, we also find that there is an isomorphism between tempered 𝜈-

sequence spaces and the classical one. The direct implication is that some tempered 𝜈-sequence 

spaces have a Schauder basis. 
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1. INTRODUCTION 

 

The notion of tempered sequence spaces appears firstly in [1], where the authors propose the solution of an 

infinite differential equation. The simplest Cauchy problem of an infinite system to describe this situation 

is 

 

𝜉𝑛
′ (𝑡) = 𝜉𝑛(𝑡) 

 

with the initial condition 

 

𝜉𝑛
′ (0) = 0 

 

where 𝑡 ∈ [0, 𝑇]. We easily see that the solution to the above problem is 

 

𝑥(𝑡) = (𝜉𝑛(𝑡)) = (𝑛𝑒𝑡)𝑛∈ℕ. 
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Therefore, 𝑥 does not belong to any classical sequence space. However, we can find a positive sequence 

such that 𝑥 belong to one of the classical sequence spaces. This sequence is called tempering sequence. To 

see this, set the tempering sequence as 𝜁 = (𝜁𝑛) = (
1

𝑛3), then  

sup
𝑛

{𝜁𝑛|𝜉𝑛|: 𝑛 = 1,2, … } = sup
𝑛

{
1

𝑛3
|𝑛𝑒𝑡|: 𝑛 = 1,2, … } 

                                     = sup
𝑛

{
𝑒𝑡

𝑛2
: 𝑛 = 1,2, … }. 

Letting 𝑛 → ∞, we get lim
𝑛

{sup {
𝑒𝑡

𝑛2}} < ∞. Thus 𝜁𝑥 = (𝜁𝑛𝜉𝑛)𝑛∈ℕ is bounded. In this way, Banaś and 

Krajewska introduce the following set  

 

ℓ∞
𝜁

= {𝑥 = (𝜉̇𝑛)
𝑛∈ℕ

: (𝜁𝑛̇𝜉̇𝑛)  𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑} 

 

which later is extended to the other sequence spaces (see [2]). 

 

These new types of sequence spaces can be used to solve the Cauchy problem for ordinary differential 

equations and fractional ones [3-7]. The first difference between tempered sequence spaces and traditional 

ones is that they are more abstract since they are defined in terms of the growth rate of sequences of 

functions rather than their pointwise behavior [8]. The second difference is the involving concept of 

measure of noncompactness, i.e., the mathematical tools to quantify the degree of noncompactness of a set 

[2, 7]. Measures of noncompactness are not typically used in the study of classical sequence spaces. 

 

On the other hand, Grossman and Katz proposed an alternative field that is generated by a special function 

𝛼. A function 𝛼: ℝ(ℂ) → ℝ(ℂ) is called a generator function if it is a one-one function [9]. Using this 

generator, one can translate the classical field to a new field with properties that differ from the classical 

one. The authors introduce new non-Newtonian calculi calculus based on this new field (cf. [10]). Later, 

many studies used this generator to introduce concepts in normed spaces (see [11-15]). 

 

Recently, Rohman and Eryılmaz [16] built a generator called a directed preserving generator (𝑑. 𝑝. 𝑔.) 
which has stronger properties than the previous one. A function 𝜈: ℝ → ℝ is called 𝑑. 𝑝. 𝑔. if it satisfies: (1) 

injective and continue; (2) for any 𝑎, 𝑏 ∈ ℝ with 𝑎 ≤ 𝑏, we have 𝜈(𝑎) ≤̇ 𝜈(𝑏) in ℝ𝜈 ; and (3) for any 𝑎, 𝑏 ∈

ℝ, there exists 𝜈(𝑐) ∈ ℝ𝜈  such that 𝜈(𝑎) ≤̇ 𝜈(𝑐) and 𝜈(𝑏) ≤̇ 𝜈(𝑐). The last condition of 𝑑. 𝑝. 𝑔. ensures 

that the new field generated by a 𝑑. 𝑝. 𝑔. is going to infinity. Later, the author introduced a notion 𝜈-normed 

spaces based on this field and gave some basic properties of these spaces. In this paper, we will discuss 

new tempered sequence spaces based on this . 𝑝. 𝑔. 𝜈. 

 

2. TEMPERED 𝝂-SEQUENCE SPACES  

 

In this section, we will introduce sequence spaces 𝑐0
𝜁

𝜈 , 𝑐
𝜁

𝜈 , and ℓ𝑝̇
𝜁

𝜈  over the field ℝ𝜈 . Before going 

further, let 𝑋 be the set of all 𝜈-real valued sequences, i.e. 

 

𝑋 = {𝑥 = (𝜉̇𝑛)
𝑛∈ℕ

: 𝜉̇𝑛 ∈ ℝ𝜈  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ ℕ}. 

 

Let 𝜁 = (𝜁𝑛̇)
𝑛∈ℕ

 be a 𝜈-real-valued sequence such that 𝜁𝑛 >̇ 0̇ and 𝜁𝑛̇+1 ≤̇ 𝜁𝑛̇ for all 𝑛 ∈ ℕ and later 𝜁 will 

be called a tempering sequence. If we define 

 

𝑐0
𝜁

𝜈 = {𝑥 = (𝜉̇𝑛)
𝑛∈ℕ

∈ 𝑋: 𝜁𝑛̇𝜉̇𝑛

𝜈
→ 0̇}, 

 

then the arithmetic of ℝ𝜈  and the continuity of d.p.g. 𝜈 (see [15]) together imply that for any 𝑦 = (𝜂̇𝑛)𝑛∈ℕ ∈

𝑐0
𝜁

𝜈 , we have  
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𝜆̇𝑥 + 𝑦 = (𝜆̇𝜁𝑛̇𝜉̇𝑛) + (𝜁𝑛̇𝜂̇𝑛) = 𝜆̇(𝜁𝑛̇𝜉̇𝑛) + (𝜁𝑛̇𝜂̇𝑛)
𝜈
→ 0̇ 

 

and hence 𝜆̇𝑥 + 𝑦 ∈ 𝑐0
𝜁

𝜈 . Therefore, 𝑐0
𝜁

𝜈  is a linear space.  

 

Theorem 2.1.  𝑐0
𝜁

𝜈  is a normed space under the norm defined as 

 

∥̇ 𝑥 ∥̇
𝑐0

𝜁
𝜈

=̇∥̇ (𝜉̇𝑛) ∥̇
𝑐0

𝜁
𝜈

=̇ sup
𝑛

{𝜁𝑛̇ |̇𝜉̇𝑛 |̇: 𝑛 = 1,2, … }. 

 

Proof. Let 𝑥 = (0̇, 0̇, … ), then ∥̇ 𝑥 ∥̇
𝑐0

𝜁
𝜈

=̇ sup
𝑛

{𝜁𝑛̇ |̇0̇|̇: 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛} =̇ 0̇. Conversely, let ∥̇ 𝑥 ∥̇
𝑐0

𝜁
𝜈

=̇ 0̇. Since 𝜁 

is a positive sequence, then 𝑥 = (0̇, 0̇, … ). Therefore, ∥̇ 𝑥 ∥̇
𝑐0

𝜁
𝜈

=̇ 0̇ if and only if  𝑥 is a zero sequence. 

On the other hand, using the preliminary result in [15], 

 

∥̇ 𝜆̇𝑥 ∥̇
𝑐0

𝜁
𝜈

=̇ sup
𝑛

{𝜁𝑛̇ |̇𝜆̇𝜉̇𝑛 |̇} 

                                                                                           =̇ |̇𝜆̇|̇ sup
𝑛

{𝜁𝑛̇ |̇𝜉̇𝑛 |̇} =̇ |̇𝜆̇|̇ ∥̇ 𝑥 ∥̇
𝑐0

𝜁
𝜈

  

 

and the triangle inequality in ℝ𝜈  ([5], Lemma 3.1) gives 

 

∥̇ 𝑥 + 𝑦 ∥̇
𝑐0

𝜁
𝜈

=̇ sup
𝑛

{𝜁𝑛̇ |̇𝜉̇𝑛+̇𝜂̇𝑛 |̇} 

                                                                                           ≤̇ sup
𝑛

{𝜁𝑛̇ |̇𝜉̇𝑛 |̇+̇𝜁𝑛̇ |̇𝜂̇𝑛 |̇} =̇∥̇ 𝑥 ∥̇
𝑐0

𝜁
𝜈

+̇∥̇ 𝑦 ∥̇
𝑐0

𝜁
𝜈

. 

 

The last two results show that 𝑐0
𝜁

𝜈  is a normed space. ∎ 

 

Theorem 2.2. 𝑐0
𝜁

𝜈  is a Banach space. 

 

Proof. Let 𝑥𝑘 = (𝜉̇1
(𝑘)

, 𝜉̇2
(𝑘)

, 𝜉̇3
(𝑘)

, … ) be a Cauchy sequence in 𝑐0
𝜁

𝜈 . For a fixed 𝑛0 ∈ ℕ denote the 𝑛0th 

term of each 𝑥𝑘 as 𝜉̇𝑛0

(𝑘)
. Since 𝑥𝑘 is a Cauchy sequence, for any 𝜀̇ >̇ 0̇ there exists 𝑁 ∈ ℕ such that for 

every 𝑗, 𝑘 ≥ 𝑁, we have 

 

∥̇ 𝑥𝑘 − 𝑥𝑗 ∥̇
𝑐0

𝜁
𝜈

=̇ sup {𝜁𝑛̇0
|̇𝜉̇𝑛0

(𝑘)
−̇𝜉̇𝑛0

(𝑗)
|̇} <̇ 𝜀̇ 

 

and hence (𝜉̇𝑛0

(𝑘)
) is a Cauchy sequence in ℝ𝜈 . The completeness of ℝ𝜈  implies that (𝜉̇𝑛0

(𝑘)
) converges to 

a number, say, 𝜉̇𝑛0
∈ ℝ𝜈 . Since 𝑛0 was arbitrary, if we apply this process for all 𝑛 ∈ ℕ, then 𝑥𝑘 ∈ 𝑐0

𝜁
𝜈  is 

a convergent sequence. Set 𝑥 = (𝜉̇1, 𝜉̇2, 𝜉̇3, … ) and assume the 𝑥𝑘 converges to 𝑥.  Since 𝑥𝑘 , 𝑥 − 𝑥𝑘 ∈ 𝑐0
𝜁

𝜈  

and 𝑐0
𝜁

𝜈  is a linear space, we see that 𝑥 = 𝑥 − 𝑥𝑘 + 𝑥𝑘 and hence 𝑥 ∈ 𝑐0
𝜁

𝜈 . The proof is complete. ∎ 

 

If we define  

𝑐
𝜁

𝜈 = {𝑥 = (𝜉̇𝑛)
𝑛∈ℕ

∈ 𝑋: (𝜁𝑛̇𝜉̇𝑛) 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 𝑡𝑜 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝑙𝑖𝑚𝑖𝑡} 

 

And 

 

ℓ∞
𝜁

𝜈 = {𝑥 = (𝜉̇𝑛)
𝑛∈ℕ

∈ 𝑋: (𝜁𝑛̇𝜉̇𝑛) 𝑖𝑠 𝑎 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒}, 

then, in a similar way as in 𝑐0
𝜁

𝜈  space, one can see that  𝑐
𝜁

𝜈  and ℓ∞
𝜁

𝜈  are normed spaces under the 

supremum norm, that is 
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∥̇ 𝑥 ∥̇
ℓ∞

𝜁
𝜈

=̇∥̇ (𝜉̇𝑛) ∥̇
ℓ∞

𝜁
𝜈

=̇ sup
𝑛

{𝜁𝑛̇ |̇𝜉̇𝑛 |̇: 𝑛 = 1,2, … }. 

 

As in 𝑐0
𝜁

𝜈 , it is easy to show that 𝑐
𝜁

𝜈  and ℓ∞
𝜁

𝜈  are complete normed spaces. However, we will show the 

completeness of ℓ∞
𝛾

𝜈 . 

 

Theorem 2.3. ℓ∞
𝜁

𝜈  is a complete normed space. 

 

Proof. Let 𝑥𝑘 = (𝜉̇1
(𝑘)

, 𝜉̇2
(𝑘)

, 𝜉̇3
(𝑘)

, … ) be a Cauchy sequence in ℓ∞
𝜁

𝜈 , i.e., for each 𝑛 ∈ ℕ we have 

lim
𝑗,𝑘→∞

∥̇ 𝑥𝑘 − 𝑥𝑗 ∥̇
ℓ∞

𝜁
𝜈

=̇ lim
𝑗,𝑘→∞

{sup
𝑛

{𝜁𝑛̇ |̇𝜉̇𝑛
(𝑘)

−̇𝜉̇𝑛
(𝑗)

|̇}} =̇ 0̇. 

 

Thus, for any 𝜀̇ >̇ 0̇ there exists 𝑁 ∈ ℕ such that ∥̇ 𝑥𝑘 − 𝑥𝑗 ∥̇
ℓ∞

𝜁
𝜈

<̇ 𝜀̇ for all 𝑗, 𝑘 ≥ 𝑁. Hence, we can find 

𝑁0 ∈ ℕ such that for all 𝑗, 𝑘 ≥ 𝑁0 we get 

 

sup
𝑛

{𝜁𝑛̇ |̇𝜉̇𝑛
(𝑘)

−̇𝜉̇𝑛
(𝑗)

|̇} <̇ 𝜀̇
3̇

⁄  

 

and hence 𝜁𝑛̇ |̇𝜉̇𝑛
(𝑘)

−̇𝜉̇𝑛
(𝑗)

|̇ <̇ 𝜀̇
3̇

⁄  for all 𝑛 ∈ ℕ. Therefore, for a fixed 𝑛0 ∈ ℕ, the sequence of 𝜈-real numbers 

(𝜉̇𝑛0

(𝑘)
) = (𝜉̇𝑛0

(1)
, 𝜉̇𝑛0

(2)
, 𝜉̇𝑛0

(3)
, … ) is a Cauchy sequence in ℝ𝜈 . Since ℝ𝜈  is complete, this sequence converges 

to 𝜉̇𝑛0
∈ ℝ𝜈 , i.e. 

 

𝜁𝑛̇0
|̇𝜉̇𝑛0

(𝑘)
−̇𝜉̇𝑛0

|̇
𝜈
→ 0̇ 

 

whenever 𝑗 → ∞. Since 𝑛0 was arbitrary, for each 𝑛 we have  

 

𝜁𝑛̇ |̇𝜉̇𝑛
(𝑘)

−̇𝜉̇𝑛 |̇ <̇ 𝜀̇
3̇

⁄  

 

by letting 𝑗 → ∞. This result is true if we take the supremum over 𝑛 ∈ ℕ, i.e. 

 

sup
𝑛

{𝜁𝑛̇ |̇𝜉̇𝑛
(𝑘)

−̇𝜉̇𝑛 |̇} <̇ 𝜀̇
3̇

⁄  

 

for all 𝑘 ≥ 𝑁0.  Consequently 

 

lim
𝑘→∞

∥̇ 𝑥𝑘 − 𝑥 ∥̇
ℓ∞

𝜁
𝜈

=̇ 0̇ 

 

where 𝑥 = (𝜉̇𝑛)
𝑛∈ℕ

. This shows that 𝑥𝑘 converges to 𝑥. Since each 𝑥𝑘 ∈ ℓ∞
𝜁

𝜈 , for each 𝑘, there exists 

𝑀𝑘 ∈ ℝ𝜈  such that 𝜁𝑛̇ |̇𝜉̇𝑛
(𝑘)

|̇ ≤̇ 𝑀𝑘 for all 𝑛. Set 𝑀 =̇ max
𝑘

{𝑀𝑘: 𝑘 = 1,2, … }, then 

 

𝜁𝑛̇ |̇𝜉̇𝑛 |̇ =̇ 𝜁𝑛̇ |̇𝜉̇𝑛
(𝑘)

+̇𝜉̇𝑛 −̇𝜉̇𝑛
(𝑘)

|̇ 
 

                                                                                   ≤̇ 𝜁𝑛̇ |̇𝜉̇𝑛
(𝑘)

|̇+̇𝜁𝑛̇ |̇𝜉̇𝑛 −̇𝜉̇𝑛
(𝑘)

|̇ <̇ 𝑀+̇ 𝜀̇
3̇

⁄    

 

and hence 𝑥 = (𝜉̇𝑛)
𝑛∈ℕ

 is a bounded sequence, i.e., 𝑥 ∈ ℓ∞
𝜁

𝜈 . This result completes the proof. ∎ 

 

It is well known that for 1 ≤ 𝑝 < ∞, ℓ𝑝 space is complete. When we transfer the real field to 𝜈-real field 

using . 𝑝. 𝑔. 𝜈, it is easy to see that 1̇ ≤̇ 𝑝̇ <̇ ∞, ℓ𝑝̇𝜈  spaces are Banach spaces (cf. [5], Theorem 5.4 for a 
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special 𝑑. 𝑝. 𝑔. 𝛼). As in the previous discussion, let 𝑥 be any 𝜈-real-valued sequence and 𝜁 be a tempering 

sequence. Define a set ℓ𝑝̇
𝜁

𝜈  as  

 

ℓ𝑝̇
𝜁

𝜈 = {𝑥 = (𝜉̇𝑛)
𝑛∈ℕ

: ∑ 𝜁𝑛̇
𝑝̇

∞

𝑛=1

|̇𝜉̇𝑛 |̇𝑝̇ <̇ ∞}, 

 

where 1̇ ≤̇ 𝑝̇ <̇ ∞. It is easy to see that the set ℓ𝑝̇
𝜁

𝜈  is a linear space. Define a norm on ℓ𝑝̇
𝜁

𝜈  space as 

 

∥̇ 𝑥 ∥̇
ℓ𝑝̇

𝜁
𝜈

=̇ (∑ 𝜁𝑛̇
𝑝̇

∞

𝑛=1

|̇𝜉̇𝑛 |̇𝑝̇)

1̇
𝑝̇⁄

, 

 

then ℓ𝑝̇
𝜁

𝜈  is a normed space. Clearly ∥̇ 𝑥 ∥̇
ℓ𝑝̇

𝜁
𝜈

=̇ 0̇ if and only if 𝑥 = (0̇, 0̇, 0̇, … ) and 

∥̇ 𝜆̇𝑥 ∥̇
ℓ𝑝̇

𝜁
𝜈

=̇ |̇𝜆̇|̇ ∥̇ 𝑥 ∥̇
ℓ𝑝̇

𝜁
𝜈

. Yet to be proved is the triangle inequality. By Lemma 3.3 in [5], 

 

∥̇ 𝑥 + 𝑦 ∥̇
ℓ𝑝̇

𝜁
𝜈

=̇ (∑ 𝜁𝑛̇
𝑝̇

∞

𝑛=1

|̇𝜉̇𝑛+̇𝜂̇𝑛 |̇𝑝̇)

1̇
𝑝̇⁄

 

                                                       ≤̇ (∑ 𝜁𝑛̇
𝑝̇

∞

𝑛=1

|̇𝜉̇𝑛 |̇𝑝̇)

1̇
𝑝̇⁄

+̇ (∑ 𝜁𝑛̇
𝑝̇

∞

𝑛=1

|̇𝜂̇𝑛 |̇𝑝̇)

1̇
𝑝̇⁄

 

               =̇∥̇ 𝑥 ∥̇
ℓ𝑝̇

𝜁
𝜈

+̇∥̇ 𝑦 ∥̇
ℓ𝑝̇

𝜁
𝜈

. 

 

Theorem 2.4. ℓ𝑝̇
𝜁

𝜈 , 1̇ ≤̇ 𝑝̇ <̇ ∞, is a complete normed space. 

Proof. Let (𝑥𝑘) ⊂ ℓ𝑝̇
𝜁

𝜈  be a Cauchy sequence. Given any 𝜀̇ >̇ 0̇, there exists 𝑁0 ∈ ℕ such that for all 𝑗, 𝑘 ≥

𝑁0, ∥̇ 𝑥𝑘 − 𝑥𝑗 ∥̇
ℓ𝑝̇

𝜁
𝜈

<̇ 𝜀̇. Thus 

∑ 𝜁𝑛̇
𝑝̇

∞

𝑛=1

|̇𝜉̇𝑛
(𝑘)

−̇𝜉̇𝑛
(𝑗)

|̇𝑝̇ <̇ 𝜀̇𝑝̇. 

 

Since this is true for each 𝑛, we see that for a fixed 𝑛0 

 

𝜁𝑛̇0
|̇𝜉̇𝑛0

(𝑘)
−̇𝜉̇𝑛0

(𝑗)
|̇ <̇ 𝜀̇ 

 

whenever 𝑗, 𝑘 ≥ 𝑁0. Hence, (𝜉̇𝑛0

(𝑘)
)

𝑘∈ℕ
 is a Cauchy sequence in ℝ𝜈 . The completeness of ℝ𝜈  implies the 

convergence of (𝜉̇𝑛0

(𝑘)
). Assume that 𝜉̇𝑛0

(𝑘) 𝜈
→ 𝜉̇𝑛0

. Since 𝑛0 is arbitrary, by letting 𝑗 → ∞, we see that 

 

∑ 𝜁𝑛̇
𝑝̇

∞

𝑛=1

|̇𝜉̇𝑛
(𝑘)

−̇𝜉̇𝑛 |̇𝑝̇ <̇ 𝜀̇𝑝̇ 

 

whenever 𝑘 ≥ 𝑁0. This result implies that for each 𝑘, the sequence (𝜉̇𝑛
(𝑘)

−̇𝜉̇𝑛)
𝑛∈ℕ

 is an element of ℓ𝑝̇
𝜁

𝜈 . 

Put 𝑥 = (𝜉̇𝑛)
𝑛∈ℕ

. Since for each 𝑘, 𝑥𝑘 = (𝜉̇𝑛
(𝑘)

)
𝑛∈ℕ

∈ ℓ𝑝̇
𝜁

𝜈 , by Minkowski’s inequality for 𝜈-real scalars, 
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(∥̇ 𝑥 ∥̇
ℓ𝑝̇

𝜁
𝜈

)
𝑝̇

=̇ ∑ 𝜁𝑛̇
𝑝̇

∞

𝑛=1

|̇𝜉̇𝑛 |̇𝑝̇                                             

=̇ ∑ 𝜁𝑛̇
𝑝̇

∞

𝑛=1

|̇𝜉̇𝑛
(𝑘)

+̇𝜉̇𝑛−̇𝜉̇𝑛
(𝑘)

|̇𝑝̇ 

                    ≤̇ ∑ 𝜁𝑛̇
𝑝̇

∞

𝑛=1

|̇𝜉̇𝑛
(𝑘)

|̇𝑝̇+̇ ∑ 𝜁𝑛̇
𝑝̇

∞

𝑛=1

|̇𝜉̇𝑛−̇𝜉̇𝑛
(𝑘)

|̇𝑝̇ 

<̇ 𝑀+̇𝜀̇𝑝̇                                 
 

for a finite 𝑀 ∈ ℝ𝜈 . Therefore, 𝑥 ∈ ℓ𝑝̇
𝜁

𝜈 . On the other hand, 

 

∥̇ 𝑥𝑘 − 𝑥 ∥̇
ℓ𝑝̇

𝜁
𝜈

=̇ (∑ 𝜁𝑛̇
𝑝̇

∞

𝑛=1

|̇𝜉̇𝑛
(𝑘)

−̇𝜉̇𝑛 |̇𝑝̇)

1̇
𝑝̇⁄

<̇ 𝜀̇ 

 

whenever 𝑘 ≥ 𝑁0, i.e., 𝑥𝑘 → 𝑥 in ℓ𝑝̇
𝜁

𝜈  and so the proof is complete. ∎ 

 

After discussing the tempered 𝜈- sequence spaces, it is natural to ask about the relation of these spaces with 

the classical sequence spaces. Firstly, define a mapping 𝑇: ℓ∞
𝜁

𝜈 → ℓ∞𝜈  by 𝑇(𝑥) = 𝑇 ((𝜉̇𝑛)) = (𝜁𝑛̇𝜉̇𝑛). 

Take arbitrary 𝑥, 𝑦 ∈ ℓ∞
𝜁

𝜈 , then 

 

∥̇ 𝑇(𝑥) − 𝑇(𝑦) ∥̇ ℓ∞𝜈
=̇∥̇ 𝑇 ((𝜉̇𝑛)) − 𝑇((𝜂̇𝑛)) ∥̇ ℓ∞𝜈

 

                               =̇∥̇ (𝜁𝑛̇𝜉̇𝑛) − (𝜁𝑛̇𝜂̇𝑛) ∥̇ ℓ∞𝜈
 

                                                    =̇ sup
𝑛

{|̇(𝜁𝑛̇𝜉̇𝑛)−̇(𝜁𝑛̇𝜂̇𝑛)|̇: 𝑛 = 1,2, … } 

                                       =̇ sup
𝑛

{𝜁𝑛̇ |̇𝜉̇𝑛−̇𝜂̇𝑛 |̇: 𝑛 = 1,2, … } 

                      =̇∥̇ (𝜉̇𝑛) − (𝜂̇𝑛) ∥̇
ℓ∞

𝜁
𝜈

 

           =̇∥̇ 𝑥 − 𝑦 ∥̇
ℓ∞

𝜁
𝜈

. 

In addition,  

𝑇(𝜆̇𝑥 + 𝑦) = (𝜆̇𝜁𝑛̇𝜉̇𝑛+̇𝜁𝑛̇𝜂̇𝑛) 

                            = 𝜆̇(𝜁𝑛̇𝜉̇𝑛) + (𝜁𝑛̇𝜂̇𝑛) 

                                                                                           = 𝜆̇𝑇(𝑥) + 𝑇(𝑦). 

 

It is easy to see that 𝑇(𝑥) ≠ 𝑇(𝑦) whenever 𝑥 ≠ 𝑦. These inspections show that 𝑇 is an isometric 

isomorphism. This result also true for 𝑐0
𝜁

𝜈  and 𝑐𝜁
𝜈 , since both of them are closed subspaces of ℓ∞

𝜁
𝜈 . 

Similarly, we can find an isometric isomorphism between ℓ𝑝̇
𝜁

𝜈  and ℓ𝑝̇𝜈 . Therefore, we can summarize the 

following theorem. 

 

Theorem 2.5.  𝑐0
𝜁

𝜈  , 𝑐𝜁
𝜈 , and ℓ𝑝̇

𝜁
𝜈 , 1̇ ≤̇ 𝑝̇ ≤̇ ∞, respectively are isometrically isomorphic with 𝑐0𝜈 , 𝑐𝜈 , 

and ℓ𝑝̇𝜈 .  

 

It is well known that for 1 ≤ 𝑝 < ∞, ℓ𝑝 space has a Schauder basis. Recall that we can find a field 

isomorphism between ℝ𝜈  and ℝ [15], the following is an immediate consequence of the last theorem. 

 

Corollary 2.6. ℓ𝑝̇
𝜁

𝜈  space, 1̇ ≤̇ 𝑝̇ ≤̇ ∞, has a Schauder basis. 
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