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Highlights
« This paper focuses on building new tempered sequence spaces.
« The directed preserving generator (d.p. g.) is used to compose some new tempered sequence spaces:
« The basic properties of these new tempered sequence spaces are obtaineds
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sequence spaces and the classical one. The direct implication is that some tempered v-sequence

spaces have a Schauder basis.
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1. INTRODUCTI®ON
The notien.of tempered sequence spaces appears firstly in [1], where the authors propose the solution of an
infinite differential equation. The simplest Cauchy problem of an infinite system to describe this situation
is
En(t) = &n(t)
with the initial condition
$n(0) =0

where t € [0, T]. We easily see that the solution to the above problem is

x(t) = (fn(t)) = (net)nEN-
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Therefore, x does not belong to any classical sequence space. However, we can find a positive sequence
such that x belong to one of the classical sequence spaces. This sequence is called tempering sequence. To

see this, set the tempering sequence as { = ({,,) = (%) then

1
sup{¢,|é,:n =1,2,...} = sup {—3|net|:n =12, }
n n n

= el =1,2
_SlT,llp nz.n— V2, e

t
Letting n — oo, we get li1£n {sup {%}} < oo, Thus {x = ({,én)nen is bounded. In this way, Bana$ and
Krajewska introduce the following set

fgo = {x = (én)neN: ({nfn) is bounded}
which later is extended to the other sequence spaces (see [2]).

These new types of sequence spaces can be used to solve the Cauchygproblem for ordinary differential
equations and fractional ones [3-7]. The first difference between temperedsequence spaces and traditional
ones is that they are more abstract since they are defined in terms of the growth rate of sequences of
functions rather than their pointwise behavior [8]. The second difference is thesinvolving concept of
measure of noncompactness, i.e., the mathematical tools to quantify the'degree of noncompactness of a set
[2, 7]. Measures of noncompactness are not typically used in the study of classical sequence spaces.

On the other hand, Grossman and Katz proposed an alternative field'that is generated by a special function
a. A function a: R(C) —» R(C) is called a generator function if it'is a one-one function [9]. Using this
generator, one can translate the classical field to'a new field with properties that differ from the classical
one. The authors introduce new non-Newtanian calculi calculus based on this new field (cf. [10]). Later,
many studies used this generator to introduce’concepts in normed spaces (see [11-15]).

Recently, Rohman and Eryilmaz J16] built a generator called a directed preserving generator (d.p.g.)
which has stronger properties thanithe previous.one. A function v: R — R is called d. p. g. if it satisfies: (1)
injective and continue; (2) for any a, b€ R with'a < b, we have v(a) < v(b) in ,R;and (3) forany a,b €
R, there exists v(c) € R suchithat v(ap<(c) and v(b) < v(c). The last condition of d.p. g. ensures
that the new field generated by ad. p. g. is going to infinity. Later, the author introduced a notion v-normed
spaces based on this fieldand gaveiseme basic properties of these spaces. In this paper, we will discuss
new tempered sequence spacesbased on this.p. g. v.

2. TEMPERED v-SEQUENCE SPACES

In this section, we will introduce sequence spaces vcg : Vc(, and m’»’g over the field ,R. Before going

further; let’X be theset of all v-real valued sequences, i.e.
X = {x = (én)nEN: é,€ JRforallne N}.

Let{ = (), ., e @ v-real-valued sequence such that ¢, > 0 and ¢4 < ¢y, foralln € N and later ¢ will
be called a tempering sequence. If we define

W= {x = (én)nEN € X: (b, > (')},

then the arithmetic of R and the continuity of d.p.g. v (see [15]) together imply that forany y = (11,,)nen €

vcg , we have
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Ax + y = (/1(113;71) + (Znnn) = A((nfn) + (Znnn) 1’0
and hence Ax +y € vcg . Therefore, vcg is a linear space.

Theorem 2.1. vcg is a normed space under the norm defined as

il il cgﬁn (én) 0 = sup{Cniéniin=1.2,..}.
v v n

Proof. Letx = (0,0, ...), then l x Il __¢= sup{¢,0]: for all n} = 0. Conversely, let il x i , = 0. Since ¢
vto n v*to
is a positive sequence, then x = (0,0, ... ). Therefore, l x i _¢= 0 if and only if x is a zero'sequence.
vto
On the other hand, using the preliminary result in [15],

I Ax il ¢= sup{¢niAéni})
veo o n N 4
= [Alsup{¢alénl} = JAT 01 x i, <
n vso
and the triangle inequality in ,R ([5], Lemma 3.1) gives
” Xty " cgi Sup{Znién‘i'f]ni}
v n
< sUp{@Rignl+Calinl} N x il cHly 1l e
n v=o v&o
The last two results show that vcg Is a normed’space. m

Theorem 2.2. ch is a Banach space.

Proof. Let xk = (E'l(k), (0 g0, ) be a Cauchy sequence in ,c5. For a fixed n, € N denote the nth

term of each x* as f,(l’;) Since x* isi@Cauchy 'sequence, for any & > 0 there exists N € N such that for
every j,k = N, we have

. LY . > [¥s k : : )i . 3
I x* =7 I vc§= sup {(nolfflo)_fr(lj(l)l} <€

- (K)

No

) is a Gauchy,sequence in ,R. The completeness of ,R implies that ( ,(1';)) converges to

a number, say, éno & ,R. Since ny was arbitrary, if we apply this process for all n € N, then x* € vcg is

a convergent sequencerSet x = (£,&,,&;, ... ) and assume the x* converges to x. Since x*,x — x¥ € ,¢{

and vcg is'a linear space, we see that x = x — x* + x* and hence x € vcg. The proof is complete. m

and hence (

If we define
vcz = {x = (én)neN € X: ({nfn) converges to a finite limit}

And

A = {x = (én)neN € X: (¢,&,) is a bounded sequence},

then, in a similar way as in vcg space, one can see that vcf and vt’go are normed spaces under the
supremum norm, that is
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il o= (&) 1 ¢ = sup{lpiéniin=12,..}.
V* oo V* o0 n

As in vcg, it is easy to show that VCZ and v{’i, are complete normed spaces. However, we will show the

completeness of ,£..
Theorem 2.3. Vfgo is a complete normed space.
Proof. Let x* = (51(") g, ¢(0, ) be a Cauchy sequence in ,#5,, i.e., for each n € N we have

A d | = i (CIRN10))
lim il x —x/ 0 Him {SUP{ZnIE ~n I}}

]—)OO v

Thus, for any ¢ > 0 there exists N € N such that || x* — x/ || 2 < éforall j,k >"N."Hence, we can find
N, € N such that for all j, k > N, we get

sup {40601 < ¥

and hence ¢ |E(k) E(J)| < €/, foralln € N. Therefore, for a fixed n50€ N, the sequgnce of v-real numbers
n 3 0

(f(k)) (E(l) f(z) 6(3), .- ) is a Cauchy sequence in ,R. Since, R is complete, this sequence converges
to g‘no € JR, ie.

T MY
whenever j — 0. Since n, was arbitrary, for.each'n we have
Gl =S ¥/
by letting j — oo. This result is true ifwe take the supremum over n € N, i.e.
sup (¢l -6 1} < /4
forall k = N,. Consequently
Jim ik i g 20

where %= (fn) . This shows that x* converges to x. Since each x* € %, for each k, there exists
M, € ,R'such that (n|6(k)| < M, forall n. Set M = m,?X{Mk:k =1,2,...}, then

Snlén | = Gulén” 60 <67
< Gl G IE <& < MY
and hence x = (én)nEN is a bounded sequence, i.e., x € vt’go. This result completes the proof. m

It is well known that for 1 < p < oo, £,, space is complete. When we transfer the real field to v-real field
using . p.g. v, it is easy to see that 1 < p < oo, vEp spaces are Banach spaces (cf. [5], Theorem 5.4 for a
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special d. p. g. a). As in the previous discussion, let x be any v-real-valued sequence and ¢ be a tempering
sequence. Define a set V{’g as

V‘Bg = {x = (én)nEN: Z an |‘>zn|p < OO},
n=1

where 1 < p < oo, It is easy to see that the set v{’g is a linear space. Define a norm on v#g space as

o s
i o= (Z Sn’ i&i‘") :
n=1

then vff-, is a normed space. Clearly flxil =0 if and only~ifigx = (0,0,0,..) and
vhp
i Ax il ,c=iAlllx il .. Yettobe proved is the triangle inequality. By Lémma 3.3 in [5],
v v

0 i
. . . s P A P
hx+yll VS <Z (n |En+77n|p>
vip —
< (Z & 18 ) <Z én |nn|p>
A o Hiyi o
oty TN
Theorem 2.4. ,,ffj, 1 < p < oo, is a complete normed space.
Proof. Let (x*) V#g be a Cauchy sequence. Given any ¢ > 0, there exists N, € N such that for all j, k >
No, ll x*¥ =/ Il ,¢< & Thus
vp
k
ch |f() (J)|p<£p
Since this is trueyfor each n, we see that for a fixed n,
k P
Cnolne ~Emy < €

whenewver j# > Ny. Hence, E(k) is a Cauchy sequence in ,R. The completeness of ,R implies the
J 0 kEN v

convergence,of (k) . Assume that E QA f . Since ny is arbitrary, by letting j — oo, we see that
No 0
Z &l 1600 24,17 < &9

whenever k > N,. This result implies that for each k, the sequence ( —En) is an element of v{’g.
neN

Put x = (fn)neN. Since for each k, x* = ( r(lk))nEN € v{’g, by Minkowski’s inequality for v-real scalars,
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(ixi v{,g)p = i & 1El?
nogl
2 ) e
n=1

. s D) s L Ps 2 (K)

< PP Y G 16 ERp
n=1 n=1

< M+EP

for a finite M € ,R. Therefore, x € v{’g. On the other hand,

o i
N N . p(k) p_‘
I —xi o= ) &M IEOP ) <
n=1

whenever k > N,, i.e., x* - x in vﬁg and so the proof is complete.

After discussing the tempered v- sequence spaces, it is natural t0 ask about the relation of these spaces with
the classical sequence spaces. Firstly, define a mapping T: ,£53— o by T(x) = T((fn)) = (¢nén)-
Take arbitrary x,y € vi’go, then

1T =T I &I T (&) -T(@) 1,

=" ({nfn) - ((nnn) " vloo

= Slflp{i(énén);(Znﬁn)i:n =12, }

= Slrllp{énién;ﬁni:n =12, }

=il (§n) = Gi) 1 ¢

=lx—yil .

In addition,
T(/ix + Y) = (A(n€n+6n77n)

= A((nfn) + ({nnn)
= AT(x) + T(y).

It is eaSy to see that T(x) # T(y) whenever x # y. These inspections show that T is an isometric
isomorphism.aThis result also true for vcg and ¢S, since both of them are closed subspaces of vfgo.
Similarly,'we can find an isometric isomorphism between vi’g and ,£p. Therefore, we can summarize the
following theerem.

Theorem 2.5. ¢, ¢, and vfg, 1 < p < oo, respectively are isometrically isomorphic with ¢y, ¢,
and 5.

It is well known that for 1 <p < oo, £, space has a Schauder basis. Recall that we can find a field
isomorphism between ,R and R [15], the following is an immediate consequence of the last theorem.

Corollary 2.6. v{’g space, 1 < p < oo, has a Schauder basis.
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