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 In all Global Navigation Satellite Systems (GNSS) applications, the determination of the 
satellite orbits is an important task. In this study, we present the equations given in the 
Interface Specification Document of GPS and the Runge-Kutta method in the computation of 
the position P, velocity V, and acceleration A of the GPS satellites using the broadcast 
ephemeris. The definition of the differential equation describing the GPS satellite's motion has 
enabled us to introduce the Runge-Kutta method in the GPS orbit computation; this method 
uses the initial conditions determined in this study from the Keplerian elements provided in 
the broadcast ephemeris files. The Lagrange interpolation method is used for comparison of 
the results, where the vectors P, V, and A are estimated using the precise ephemeris.  The 
difference not exceeding 2.4 m was obtained in the X, Y, and Z axes during seven days on the 
position of the GPS satellite number 9 tested in this study. In velocity and acceleration, the 
difference is about a few mm/s and mm/s2, respectively. 
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1. Introduction  

 
GNSS stands for Global Navigation Satellite System; it 

is a general term describing any satellite constellation. 
The most well-known and widely used GNSS is the Global 
Positioning System (GPS), developed and operated by the 
United States. The objectives of GPS are the 
instantaneous determination of position, velocity, and 
precise time in the World Geodetic System 84 (WGS84) 
[1, 2]. 

GLONASS is the Russian system, which stands for 
Globalnaya Navigazionnaya Sputnikovaya Sistema, or 
Global Navigation Satellite System, it is one of the GNSS 
systems [3]. GLONASS uses the PZ-90 (Parametry Zemli 
1990 or Parameters of the Earth 1990) as a reference 
coordinate system [4]. 

There are also other global and regional GNSS 
systems, such as BeiDou China’s system, the Galileo 
system of the European Union, the Navic (Navigation 
with Indian Constellation) system of India, and the QZSS 
(Quasi-Zenith Satellite System) system of Japan. 

The computation of satellite positions is a 
fundamental task in all GPS positioning software [5]. The 
determination of a GPS position begins with the 
determination of the GPS satellite's coordinates in orbit; 

these coordinates are used for a combined use of the GPS 
and GLONASS observations [6, 7]. 

In the GPS positioning technique, the data used for the 
determination of the PVA (Position, Velocity, 
Acceleration) of satellites can come in the form of a 
broadcast or a precise ephemeris [5]. 

In the ICD-GLONASS (Interface Control Document-
GLONASS) [4], the authors presented the Runge-Kutta 
method for the determination of the PVA using the initial 
conditions provided in the GLONASS broadcast 
ephemerides file. In [3, 6, 7] the authors used the Runge 
Kutta method in the computation of the GLONASS 
satellite orbits. In these papers, several Runge Kutta 
orders were used. 

In the ISD (Interface Specification Documents-GPS) 
[2], the authors presented the equations of the PVA 
computation from the GPS broadcast ephemerides file. 
The ISD-GPS are technical documents that define the 
specifications for signals, messages, and interfaces 
within GPS systems [8]. In [5,6], the authors used the 
equations given in the IS-GPS document in the 
computation of the position; in Remondi [9], the author 
presents the derivation of the position equations 
(velocity); and in Thompson et al. [10], the authors 
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present the acceleration equation of the satellite's 
motion.  

The main objective of this manuscript is the 
introduction of the Runge-Kutta method in the 
computation of the orbits (Position, Velocity, and 
Acceleration) using the Keplerian elements transmitted 
in the broadcast files. 

The methodology used in the estimation and 
comparison between the positions (P), velocities (V), and 
accelerations (A) of the GPS satellites computed from the 
broadcast and precise ephemeris is as follows: 

1-The equations given in the ISD noted IS-GPS 
Algorithm. This algorithm is applied when the Toe (Time 
of ephemerides) is equal to Tc (Time of Computation). 

2-The Runge-Kutta integration method; this method 
is used when the Toe and Tc are different. The Runge 
Kutta method requires the initial conditions to compute 
the PVA vectors of the GPS satellites in orbit. In this study, 
these initial conditions (P0; V0; A0) were computed from 
the Keplerian elements provided in the broadcast 
ephemeris file using the IS-GPS Algorithm. 

3-The Lagrange interpolation method to compute the 
polynomial of position using the X, Y, and Z coordinates 
of the GPS satellites provided in the precise ephemerides 
file. The first and second derivations of the position 
polynomial give the polynomials of velocity and 
acceleration, respectively.  

The broadcast and precise ephemerides of the GPS 
satellite number 9, registered between January 8 and 14, 
2023, are used to get the PVA of this satellite using the IS-
GPS Algorithm, the Runge Kutta integration method, and 
the Lagrange interpolation method. These ephemerides 
are produced by the International GNSS Service (IGS) and 
downloaded from the Crustal Dynamics Data 
Information System (CDDIS) database.  The application 
date corresponds to the GPS week number 2244.  

This paper is organized according to the following 
sections: Section 2 describes the PVA computation by the 
IS-GPS Algorithm and the Runge-Kutta method using the 
Keplerian elements provided in the broadcast 
ephemerides file. Section 3 describes the PVA estimation 
by the Lagrange interpolation method using the 
coordinates of the GPS satellites provided in the precise 
ephemerides file. In Section 4, a comparison and 
discussion of the results application are given. Finally, a 
summary of the conclusions is given. 

 
2. PVA computation from broadcast ephemeris 

data 
 

2.1. Broadcast ephemeris data  
 

The broadcast ephemeris is the Keplerian elements 
transmitted by the GPS satellite to the user every two 
hours and referenced to the time of ephemeris (Toe). 

Figure 1 shows an example of the GPS broadcast 
ephemeris file of GPS SV 9. This figure is taken from the 
navigation message and has been modified. 

According to [11-14], the parameters given in Figure 
1 and needed in the computation of PVA are: 

- 𝑇𝑜𝑒: Reference time of ephemeris (sec of GPS 
week). 

- √𝑎: Square root of the semi-major axis (sqrt(m)). 
- 𝑀0: Mean anomaly at the reference time (radians). 
- ∆𝑛: Mean motion difference from the computed 

value (radians/sec). 
- 𝑒: Eccentricity. 
- 𝑤 (Omega): Argument of perigee (radians). 
- 𝑖0: Inclination angle at reference time Toe (radians).  
- 𝑖̇ (IDOT): Rate of inclination angle (radians/sec). 
- 𝐶𝑢𝑐: Amplitude of the cosine harmonic correction 

term   to the argument of latitude (radians). 
- 𝐶𝑢𝑠: Amplitude of the sine harmonic correction 

term to the argument of latitude (radians).  
-𝐶𝑟𝑐 : Amplitude of the cosine harmonic correction 

term to the orbit radius (meters).  
-𝐶𝑟𝑠 : Amplitude of the sine harmonic correction term 

to the orbit radius (meters).  
-𝐶𝑖𝑐 : Amplitude of the cosine harmonic correction 

term to the angle of inclination (radians). 
-𝐶𝑖𝑠 : Amplitude of the sine harmonic correction term 

to the angle of inclination (radians).  
-Ω0 OMEGA0: Longitude of the ascension node of the 

orbit plane at the weekly epoch (radians).    
- Ω̇ OMEGA DOT: Rate of right ascension 

(radians/sec).  
 

 
Figure 1. Broadcast ephemeris data of GPS SV 9. 
 

 
2.2. IS-GPS algorithm  

 
The position, velocity, and acceleration at time (Tc) 

are computed as given in the following sections: 
 

2.2.1. Positions of the GPS satellites (P)  
 

The positions are computed by using the equations 
given in [2, 14-16]; 

-Compute mean motion (Equation 1): 
 

n0 = √µ/a
3 (1) 
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Where; 𝜇 = 3.986005 × 1014𝑚3/𝑠2 is the 
gravitational constant  
-Time from ephemeris reference epoch (Equation 2): 

 
tk = t − Toe (2) 

 
-Corrected mean motion (Equation 3):  

 
n = n0 + ∆n (3) 

 
-Mean anomaly (Equation 4): 

 
Mk = M0 + ntk (4) 

 
-Eccentric anomaly: Kepler’s equation of eccentric 
anomaly solved by iteration [13, 16, 17] (Equation 5): 
 

Ek = Mk + esinEk (5) 
 

-True anomaly (Equation 6): 
 

k = arctan(sink/cosk) (6) 
 

Where: sink =
(√1−e2sinEk)

(1−ecosEk)
       and  cosk =

(1−ecosEk)

(cosEk−𝑒)
 

 
-Argument of latitude (Equation 7): 
 


k
= k +w (7) 

 
-Argument of latitude correction (Equation 8): 

 
uk = Cussin2k + Cuccos2k (8) 

 
-Radius correction (Equation 9): 
 

rk = Crssin2k + Crccos2k (9) 
 

-Inclination correction (Equation 10): 
 

ik = Cissin2k + Ciccos2k (10) 
 

-Corrected argument of latitude (Equation 11): 
 

uk = 
k
+ uk (11) 

 
-Corrected radius (Equation 12): 
 

rk = 𝑎(1 − 𝑒𝑐𝑜𝑠𝐸𝑘) + rk (12) 
 

-Corrected inclination (Equation 13): 
 

ik = i0 + ik + 𝑖̇(𝐼𝐷𝑂𝑇)𝑡𝑘 (13) 
 
-Position in the orbital plane (Equation 14): 

 

{
xk
′ = rkcosuk
yk
′ = rksinuk

 (14) 

 
 
 

-Corrected longitude of the ascending node (Equation 
15): 
 

k = 0 + (̇−e
̇ )tk −e

̇ Toe (15) 

 

Where:  e
̇ = 7.2921151467 × 10−5 𝑟𝑎𝑑/𝑠̇  is the 

Earth’s rotation rate. 
-Earth-fixed geocentric satellite coordinates (Equation 
16):  
 

𝑃⃗ = {

Xk = xk
′ cosk − yk

′ cosiksink            

Yk = xk
′ sink + yk

′ cosiksink             

Zk = yk
′ sinik                                              

 (16) 

 
2.2.2. Velocities of the GPS satellites (V)  

  
The velocities are computed by taking the time 

derivative of the position equations [2,9]: 
-Eccentric anomaly rate (Equation 17): 

 
E𝑘̇ = n 1 − ecosE𝑘⁄  (17) 

 
-True anomaly rate (Equation 18): 

 

k̇ = E𝑘̇√1 − 𝑒
2 1 − ecosE𝑘⁄  (18) 

 
-Corrected Inclination angle rate (Equation 19): 

 

(
di𝑘
dt
) = i̇(IDOT) + 2k̇(𝐶𝑖𝑠𝑐𝑜𝑠2k − 𝐶𝑖𝑐𝑠𝑖𝑛2k) (19) 

 
-Corrected argument of latitude rate (Equation 20):  

 
uk̇ = k̇ + 2k̇(𝐶𝑢𝑠𝑐𝑜𝑠2k − 𝐶𝑢𝑐𝑠𝑖𝑛2k) (20) 

 
-Corrected radius rate (Equation 21): 

 
𝑟k̇ = e × asinE𝑘̇ + 2k̇(𝐶𝑟𝑠𝑐𝑜𝑠2k − 𝐶𝑟𝑐𝑠𝑖𝑛2k) (21) 
 

-Longitude of ascending node rate (Equation 22): 
 

̇k = Ω̇ −e
̇  (22) 

 
-Velocity in the orbital plane (Equation 23): 

 

{
ẋk
′ = ṙkcosuk − 𝑟𝑘𝑢̇𝑘𝑠𝑖𝑛𝑢𝑘
ẏk
′ = ṙksinuk + 𝑟𝑘𝑢̇𝑘𝑐𝑜𝑠𝑢𝑘

 (23) 

 
-Earth's fixed geocentric velocity satellite (Equation 24): 

 

𝑉⃗ =

{
 
 

 
 
𝑋̇𝑘 = −𝑥𝑘

′ Ω̇𝑘𝑠𝑖𝑛Ω𝑘 + 𝑥̇𝑘
′ 𝑐𝑜𝑠Ω𝑘 − 𝑦̇𝑘

′ 𝑠𝑖𝑛Ω𝑘𝑐𝑜𝑠𝑖𝑘  

  −𝑦𝑘
′ (Ω̇𝑘𝑐𝑜𝑠Ω𝑘𝑐𝑜𝑠𝑖𝑘 − (𝑑𝑖𝑘 𝑑𝑡⁄ )𝑠𝑖𝑛Ω𝑘𝑠𝑖𝑛𝑖𝑘) 

𝑌̇𝑘 =  𝑥𝑘
′ Ω̇𝑘𝑐𝑜𝑠Ω𝑘 + 𝑥̇𝑘

′ 𝑠𝑖𝑛Ω𝑘 + 𝑦̇𝑘
′ 𝑐𝑜𝑠Ω𝑘𝑐𝑜𝑠𝑖𝑘    

    −𝑦𝑘
′ (Ω̇𝑘𝑠𝑖𝑛Ω𝑘𝑐𝑜𝑠𝑖𝑘 + (𝑑𝑖𝑘 𝑑𝑡⁄ )𝑐𝑜𝑠Ω𝑘𝑠𝑖𝑛𝑖𝑘)

𝑍̇𝑘 = 𝑦̇𝑘
′ 𝑠𝑖𝑛𝑖𝑘 + 𝑦𝑘

′ (𝑑𝑖𝑘 𝑑𝑡⁄ )𝑐𝑜𝑠𝑖𝑘                             

 (24) 

 
2.2.3. Accelerations of the GPS satellites (A) 
 

The accelerations are computed by taking the time 
derivative of the velocity [2,10] (Equation 25): 
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𝐴 =

{
 
 
 
 

 
 
 
 𝑋̈𝑘 = −𝜇

𝑋𝑘

𝑟𝑘
3 + 𝐹 [(1 − 5 (

𝑍𝑘
𝑟𝑘
)
2

) (
𝑋𝑘
𝑟𝑘
)]         

+2𝑌̇𝑘Ω̇𝑒 + 𝑋𝑘Ω̇𝑒
2  

𝑌̈𝑘 = −𝜇
𝑌𝑘

𝑟𝑘
3 + 𝐹 [(1 − 5 (

𝑍𝑘
𝑟𝑘
)
2

) (
𝑌𝑘
𝑟𝑘
)]          

−2𝑋̇𝑘Ω̇𝑒 + 𝑌𝑘Ω̇𝑒
2  

𝑍̈𝑘 = −𝜇
𝑍𝑘

𝑟𝑘
3 + 𝐹 [(3 − 5 (

𝑍𝑘
𝑟𝑘
)
2

) (
𝑍𝑘
𝑟𝑘
)]         

 (25) 

 
Where:F = (3 2⁄ )𝐽2(𝜇 𝑟𝑘

2⁄ )(𝑅𝑒 𝑟𝑘⁄ )2 ;  
𝐽2 = 0.0010826262 is the second-order harmonic 

coefficient; 𝑅𝑒 = 6378137.0𝑚 is the WGS 84 Earth 
equatorial radius. 
 
2.3. Runge-Kutta (R-K) method 
   

The high accuracy that is nowadays required in the 
computation of satellite orbits can only be achieved by 
using numerical methods for the solution of the equation 
of motion [16]. Among these methods; the Runge-Kutta 
integration method, originally presented by Carl Runge 
(1856–1927) in 1895 and Wilhelm Kutta (1867–1944) in 
1901 [17]. Runge-Kutta method is particularly easy to 
use and may be applied to a wide range of different 
problems [14]. 

In this section, we present the Runge-Kutta method as 
an alternative solution for the PVA computation of the 
GPS satellites using the broadcast ephemerides. 

Equation 25 is a second-order differential equation 
describing the motion of the GPS satellites in orbit. This 
equation is transformed into a first-order differential 
Equation (26) and can be resolved numerically by the 
Runge-Kutta method [3, 4, 16, 18]. 
 

{
 
 
 
 
 

 
 
 
 
 

Ẋ = Vx                                                                                    

Ẏ = Vy                                                                                    

Ż = Vz                                                                                    

𝑉̇𝑥 = −
𝜇

𝑟3
𝑋 + 𝐹 (1 −

5𝑍2

𝑟2
)𝑋 + Ω̇𝑒

2𝑋 + 2Ω̇𝑒𝑉𝑦              

𝑉̇𝑦 = −
𝜇

𝑟3
 𝑌 + 𝐹 (1 −

5𝑍2

𝑟2
)𝑌 + Ω̇𝑒

2𝑌 − 2Ω̇𝑒𝑉𝑥              

𝑉̇𝑧 = −
𝜇

𝑟3
 𝑍 + 𝐹 (3 −

5𝑍2

𝑟2
)𝑍                                                      

 (26) 

 
Equation 26 has the general form: 𝑌̇ = 𝐹(𝑡, 𝑌) and the 

resolution by the fourth-order R-K method is given in [3, 
13, 16] by (Equation 27): 

 
𝑌𝑖+1 = 𝑌𝑖 + (𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4) 6⁄  (27) 

 
The coefficients 𝐾𝑖 are: 
 

{
 

 
𝐾1 = 𝑓(𝑡𝑛, 𝑌𝑛)                              

𝐾2 = 𝑓(𝑡𝑛 + ℎ/2, 𝑌𝑛 + 𝐾1/2)   

𝐾3 = 𝑓(𝑡𝑛 + ℎ/2, 𝑌𝑛 + 𝐾2/2)   

𝐾4 = 𝑓(𝑡𝑛, 𝑌𝑛)                               

  ℎ is the integration step.                

 
The initial conditions required by the Runge-Kutta 

method are the position (P0), the velocity (V0), and the 
acceleration (A0) determined using the IS-GPS Algorithm 
at time Toe when (Toe ≠ 𝑇𝑐).   

For the computation of the GPS satellite PVA vectors 
by using the R-K integration method, the Equation 27 
becomes (Equation 28): 
 

𝑌 =

{
 
 
 
 

 
 
 
 
𝑋𝑖+1 = 𝑋𝑖 + (𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4) 6⁄

𝑌𝑖+1 = 𝑌𝑖 + (𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4) 6⁄

𝑍𝑖+1 = 𝑍𝑖 + (𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4) 6⁄
     

𝑉𝑥𝑖+1 = 𝑉𝑥𝑖 + (𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4) 6⁄

𝑉𝑦
𝑖+1 = 𝑉𝑦𝑖 + (𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4) 6⁄

𝑉𝑧𝑖+1 = 𝑉𝑧𝑖 + (𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4) 6⁄

𝐴𝑥𝑖+1 = 𝐴𝑥𝑖 = 𝐴𝑥0
𝐴𝑦

𝑖+1 = 𝐴𝑦𝑖 = 𝐴𝑦0
𝐴𝑧𝑖+1 = 𝐴𝑧𝑖 = 𝐴𝑧0

                                          

  (28) 

 
More information about the application of this 

method for GLONASS satellites is given in [3, 4, 18]. 
 
3. PVA computation from precise ephemeris data 
 
3.1.  Precise Ephemeris Data  
 

The coordinates of all GPS satellites are given in 
precise ephemeris data (predicted, rapid, and final) 
produced by various agencies [5, 14, 19]. 

Figure 2 shows an example of a GPS precise 
ephemeris file corresponding to the GPS week number 
2244. This figure is taken from the precise file and has 
been modified. 

 

 
Figure 2. Precise ephemeris data of GPS SV 9. 

 
According to [20], the parameters given in Figure 2 

are the X, Y, and Z coordinates of the GPS satellites in. The 
format of the precise ephemeris is SP3 (Standard Product 
3), proposed in 1989 by Remondi [20]. 
 
3.2. Lagrange Interpolation  
 

In this section, we present the Lagrange interpolation 
method used in the PVA estimation of the GPS satellites 
using precise ephemeris, and thereafter compare our 
results from the R-K method. 

Lagrange interpolation is the most commonly used 
because of its ease of implementation and accuracy in the 
interpolation of precise orbits. 

The polynomial Pm(x) of order (n − 1) that passes 
through the (n) points is given by [1, 12, 21]: 
 

Pm(x) = ∑ f(ai).
n
i=0 Li(X)  where  Li(x) = ∏ (

X−ai

ai−aj
)n

j=0 ,j≠i  
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To interpolate the X-coordinates of a GPS satellite at a 
given time (t), the Lagrange polynomial formula becomes 
(Equation 29): 

 

Pm(x) = X1
(t − t2)(t − t3)… (t − tn)

(t1 − t2)(t1 − t3)… (t1 − tn)
+ ⋯ (29) 

 
The Pm (y) and Pm(z) Lagrange polynomials of the Y 

and Z coordinates are formed in the same way.  
The Lagrange polynomials of P, V and A can be written 

as (Equation 30-32): 
 

3.2.1. Lagrange polynomial of P: 
 

Pm(𝑃) = {

Pm(X) = 𝐴1t
13+. . . 𝐴14

Pm(Y) = 𝐵1t
13+. . . 𝐵14

Pm(Z) = 𝐶1t
13+. . . 𝐶14 

      (30) 

 
3.2.2. Lagrange polynomial of V (derivation of 

𝐏𝐦(𝑷)):  
 

Pm(𝑉) = {

Pm(Vx) = 13𝐴1t
12+. . . 𝐴13             

Pm(Vy) = 13𝐵1t
12+. . . 𝐵13            

Pm(Vz) = 13𝐶1t
12+. . . 𝐶13           

 (31) 

 
3.2.3. Lagrange polynomial of A (derivation of 

𝐏𝐦(𝑽)): 
 

Pm(𝐴) =

{
 

 
Pm(A𝑥) = 156𝐴1t

11 +⋯𝐴12
Pm(A𝑦) = 156𝐵1t

11 +⋯𝐵12 

Pm(A𝑧) = 156𝐶1t
11 +⋯𝐶12

 

  (32) 

 

4. Application: Broadcast and precise PVA of GPS 
satellites computation 

 

4.1. Data sources and PVA estimation steps 
 

In this application, the vectors of positions P, 
velocities V, and accelerations A of the GPS satellite 
number 9 are computed and compared using the 
broadcast and precise files. 

The data used are the broadcast and precise 
ephemerides of the GPS satellite number 9 between 
January 8 and 14, 2023. This data, produced by IGS and 
downloaded from (https://cddis.nasa.g/) corresponds 
to the GPS week number 2244. 

In the Figure 3 and 4, we present the broadcast and 
precise orbits of the GPS satellite number 9 between 
January 8 and 14, 2023.  

The computational steps from the broadcast and 
precise ephemeris of the P, V, and A are given in the 
Figure 5. 

 

5. Results and discussion 
 

The positions of the GPS satellite number 9 in the 
orbital plane (Equation 14) computed by the IS-GPS 
Algorithm during the GPS week number 2244 are shown 
in Figure 6. 

The Lagrange polynomial functions 
Pm(X), Pm(Y), Pm(Z) of January 14, 2023, computed 
between 09:15 and 12:30 are given in Figure 7. 

 
Figure 3. Broadcast orbits of SV 09 (7 days). 

 

 
Figure 4. Precises orbits of SV 09 (7 days). 

 
Table 1 gives an example of the differences between 

the R-K method and the Lagrange interpolation at 
10h00m00s on January 13, 2023. 

In the Table 1, the computation is carried out at time 
(Toe = 09h59m44s) using the IS-GPS algorithm and the 
ephemerides given in Figure 1. The results are used as 
initial conditions to determine the P, V, and A of the GPS 
satellite number 9 at time Tc = 10h00m00s by the Runge-
Kutta method. The Lagrange interpolation was applied at 
time (Tc) for the computation of V and A using P given in 
the precise ephemerides file (Figure 2). In this 
application, the differences between the Toe and Tc equal 
16 sec.  

 
 



International Journal of Engineering and Geosciences, 2024, 9(2), 256-263 
 

261 
 

Table 1. 3D Differences (Broadcast vs. Precise). 

Tc 
P 

cm 
V 

cm/s 
A 

cm/s2 
Methods of  

computation  
10h00m00s 183 0.016 0.0003 IS-GPS 

algorithm  
R-K method  
Lagrange 
interpolation 

 

 
Figure 5. Computational steps of PVA. 

 
During the GPS week number 2244, this process of 

combined use (IS-GPS Algorithm and the R-K method) is 
repeated 14 times (twice a day) for the GPS satellite 
number 9. The differences obtained between the R-K 
method and the Lagrange interpolation are illustrated in 
the Figure 8. 

The 3D-differences between the broadcast and the 
precise PVA computation in position varies between 
1.38 𝑚 and 2.54 𝑚 . In velocities the difference varies 
between 0.14  𝑚𝑚/𝑠 and 0.24 𝑚𝑚/𝑠, and in acceleration, 
the difference varies between   0.003 𝑚𝑚/𝑠2  and 
1.300 𝑚𝑚/𝑠2. 

Figure 9 shows the differences every two hours in 
position (dx, dy, and dz) between the broadcast and 
precise ephemerides results during the GPS week 
number 2244 of the satellite GPS number 9. 

The differences obtained from the broadcast and 
precise data seemed to be within a meter or so in position 

(dx,dy, dz) and do not exceed 2.4 𝑚 in the X, Y, and Z axes; 
the RMS is 1.66 𝑚 and the standard deviation is  0.19 𝑚.   

 

 
Figure 6. Position of SV 9 in the orbital plane. 

 

 
Figure 7.   Lagrange polynomial’s function Pm(P) of SV 

9. 
 

These differences are due to a number of factors, such 
as: 

- The accuracy of each type of ephemeris (broadcast 
and precise) affects the PVA result . 

-The accuracy of the methods used in computation: 
1- IS-GPS Algorithm (resolution of the Kepler 

equation). 
2- R-K method (order = 4 and integration step size = 

1 sec). 
3- Lagrange integration order (order of P(m) = 13), 

Figure 7 and Equations 30-32. 
-The difference between the reference of the 

broadcast ephemeris (Antenna Phase Center) and the 
reference of the precise ephemeris (Center of Mass). The 
determination of this offset using ANTEX files (ANTenna 
Exchange format) reduces these differences [13]. 
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- In Equations 25 and 26, the acceleration of the 
satellites due to the luni-solar perturbation is assumed to 
be null. This assumption gives less accurate position, 
velocity, and acceleration results. In the GLONASS 
system, these perturbations are transmitted in the 
broadcast ephemeris files and added as constant values 
in Equations 25 and 26. 
 

 
Figure 8. Differences (Broadcast vs. Precise) at 14 
epoch (R-K Method and Lagrange interpolation). 

 

 
Figure 9. Differences (Broadcast vs. Precise) at 84 

epoch (IS-GPS Algorithm, R-K Method and Lagrange 
interpolation). 

 

6. Conclusion  
 

In GNSS theory, the determination of the receiver 
position begins with the determination of the satellite 
position. 

This paper presents the IS-GPS Algorithm and the 
Runge-Kutta integration method for computing the 

position, velocity, and acceleration of the GPS satellites 
using the broadcast ephemerides data. In addition, we 
compared our results with the Lagrange interpolation 
method used in the estimation of the GPS satellite vectors 
P, V, and A using precise ephemeris data. 

The velocity and acceleration of satellites are 
important measures in several GPS applications. In this 
study, the velocity and acceleration of the GPS satellites 
are obtained by the derivation of the position equations 
(IS-GPS Algorithm), the integration of the differential 
equation of GPS satellite motion by the Runge-Kutta 
method, and derivation of the Lagrange polynomial. 

The introduction of the Runge-Kutta method in the 
computation of the position, velocity, and acceleration 
(PVA) of the GPS satellites as an alternative solution 
requires the determination of initial conditions from the 
Keplerian elements by the IS-GPS Algorithm. 

The difference obtained between the broadcast and 
the precise PVA computation does not exceed 2.4 m (X, Y, 
and Z axes) in the position of the GPS satellite number 9 
and a few millimeters in velocity and acceleration. 
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