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ABSTRACT

Fractional integral-type inequalities, dynamic equations, integral operators and variable expo-
nents have an important place in time scales theory and harmonic analysis. Our main goal in 
this study is to obtain the multivariable fractional Hardy-type integral inequality using a new 
version of Jensen’s inequality for super-quadratic and sub-quadratic functions on time scales 
with variable exponents.
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INTRODUCTION

Firstly, we can inform readers about the historical devel-

opment of Hardy inequality as follows. The discrete Hardy 

inequality was proved the following by G.H. Hardy [1]. Let 

(bm) be a sequence of non-negative real numbers and for c 

> 1, , then

(1)

The classical Hardy inequality was proved the following 

by G.H. Hardy [2]. If gc  is integrable, then we have

(2)

for c > 1 and g ≥ 0. 
Later, inequality (2) has been generalized the following 

by G.H. Hardy [3]. If g integrable on (0, ∞), then we have

(3)

(4)
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for c > 1 and g(t) > 0. 
Hardy and Littlewood [4] demonstrated the following 

discrete versions of inequalities (3) and (4). Let c > 1, if (bn) 
is a sequence of non-negative terms, then we obtain

  
(5)

  
(6)

where M is a non-negative constant. 
Oguntuase and Persson [5] presented a number of 

Hardy-type inequalities on time scales using super-quadra-
ticity technique which is based on the application of Jensen 
dynamic inequality. Fabelurin et al. [6] proved a new Jensen 
inequality for multivariate super-quadratic functions. For 
some recent developments of Hardy-type integral inequal-
ities on time scales and related results we refer interested 
reader to the book [7].

Fractional Hardy-type integral inequalities also play an 
important role in time scales. Let Hβ and  be the frac-
tional Hardy operator and its adjoint on  (0, ∞), 

  
(7)

where 0 ≤ β < 1   (for details see [8]). When β = 0 , we 
denote H0 as H and  as . Hardy [9-11] established the 
following Hardy integral inequalities

  
(8)

and

  
(9)

where
 

. Heinig et al. [12] proved the fol-

lowing n-dimensional fractional order Hardy-type integral 
inequality. Let  1 < q < ∞, n ≥ 1. If γq > 1 , then we have 

  
(10)

where  and Dn-1  is the unit sphere in .
Dyda [13] proved the following fractional order Hardy-

type integral inequality.

Let  be an open set and let 
. For 0 < β, q < ∞  and for all 

, then

  
(11)

where k = k(S, β, n, q) and k < ∞  is a constant that 
depends only on S, β, n, q

Loss and Sloane [14] have proved the following frac-
tional Hardy inequality

  
(12)

for convex domain  and 1 < β < 2 , where  

 is the best constant, B is 
the Euler beta function, and Ck(S)  denotes the class of all 
continuous functions  with compact support in 
S. Dyda [15] proved the following fractional Hardy-type 
integral inequality.

Let 1 < β < 2, a < b  and . For for all 
 the following inequality is provided.

  
(13)

Bogdan and Dyda [16] proved the follow-
ing Hardy-type inequality in the half-space 

. If  , then 
we have 

  
(14)

where  

Sloane [17] established the following a fractional Hardy-
Sobolev-Maz’ya inequality.

Let  be the 
upper half-space, and let D be a domain in  with non-
empty boundary. Then, there exists a fractional Hardy 
inequality on  which states that there exists  so 
that for all 

  
(15)

where 1 ≤ 𝑞 < ∞, 0 < 𝛽 < 𝑞 and 𝛽 ≠ 1.
Dyda and Frank [18] demonstrated the following a frac-

tional version of the Hardy-Sobolev-Maz’ya inequality.
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Let  𝑑 ≥ 2, 2 ≤ 𝑞 < ∞ and 𝑡 ∈ (0,1) with 1 < 𝑞𝑡 < 𝑑. There 
is a constant Θ𝑑,𝑞,𝑡 > 0 such that

  
(16)

for all open 𝐷 ⊊ ℝ𝑑  and for all 𝑓 ∈ 𝑊0
𝑡,𝑞(𝐷) , where 

𝑝 = 𝑑𝑞/(𝑑 − 𝑞𝑡) .
Edmunds et al. [19] established the following fractional 

Hardy-type inequalities. Let 0 < 𝑡 < 1 be such that  , 
where 1 < 𝑝, 𝑞 < ∞ . Assume that 𝐷 ∈ ℝ𝑑  a bounded domain 
for d > 2 , whose complement is (t,p)  locally uniformly fat 
with constants 𝛾, 𝑠0. Then, for all 𝑓 ∈ 𝐶0

∞(𝐷),

  
(17)

where constant 𝑘 depends on 𝑡, 𝑑, 𝑝, 𝑞, 𝛾, 𝑠0 and 
𝑑𝑖𝑎𝑚(𝐷). Ihnatsyeva et al. [20] proved the following frac-
tional order Hardy inequalities. Let 0 < 𝑡 < 1, 1 < 𝑞 < ∞ 
satisfy 0 < 𝑡𝑞 < 𝑑, and let Ω ⊂ ℝ𝑑 be an open set. Suppose 
that there exist 𝑑 − 𝑡𝑞 < 𝛾 ≤ 𝑑 and 𝐶0 > 0, 𝑘 ≥ 1 such that

  (18)

Then Ω admits an (𝑡, 𝑞)-Hardy inequality, where frac-
tional (𝑡, 𝑞)-Hardy inequality is

  
(19)

In this study we prove the multivariable fractional 
Hardy-type integral inequality using new version Jensen’s 
inequality for multivariable super-quadratic and sub-qua-
dratic functions on time scales. 

Now let’s give the concepts of time scales to prove our 
results.

MATHEMATICAL BACKGROUND

The founder of time scales calculus is German math-
ematician Stefan Hilger [21]. For a quarter century, inte-
gral-type inequalities and dynamic equations in time scales 
have gained a very important place in the scientific world. 

In this section, we will give some concepts that will be 
necessary for us to prove our results (for details [22-27]). 
A time scale 𝕋 is an arbitrary non-empty closed subset of 
real numbers ℝ. The (0, ∞)𝕋 is denoted by (0, ∞) ∩ 𝕋. The 
mappings 𝜎, 𝜌: 𝕋 → 𝕋 defined by 𝜎(𝑡) = inf{𝑠 ∈ 𝕋: 𝑠 > 𝑡}, 
𝜌(𝑡) = sup{𝑠 ∈ 𝕋: 𝑠 > 𝑡}, for 𝑡 ∈ 𝕋. Respectively, 𝜎(𝑡) is for-
ward jump operator and 𝜌(𝑡) is backward jump operator. If 

𝜎(𝑡) > 𝑡, then 𝑡 is right-scattered and if 𝜎(𝑡) = 𝑡, then 𝑡 is 
called right-dense. If 𝜌(𝑡) < 𝑡, then 𝑡 is left-scattered and if 
𝜌(𝑡) = 𝑡, then 𝑡 is called left-dense. Let two mappings 𝜇, 𝜗: 
𝕋 → R+ such that 𝜇(𝑡) = 𝜎(𝑡) − 𝑡, 𝜗(𝑡) = 𝑡 − 𝜌(𝑡) are called 
graininess mappings. 

If  𝕋 has a left-scattered maximum 𝑚, then 𝕋𝑘 = 𝕋 − 
{𝑚}. Otherwise 𝕋𝑘 = 𝕋. Briefly

 

by the same way

 

Assume that  h: 𝕋 → R is a function and let 𝑡 ∈ 𝕋𝑘(𝑡 ≠ 
𝑚𝑖𝑛𝑇). If h is ∆ − differentiable at point 𝑡, then h is con-
tinuous at point 𝑡 and if h is left continuous at point 𝑡, 𝑡 is 
right-scattered, then h is ∆ − differentiable at point 𝑡

 

Let 𝑡 is right-dense. If  h is ∆ − differentiable at point 𝑡 
and  then

 

If h is ∆ − differentiable at point 𝑡, then h𝜎(𝑡) = h(𝑡) + 
𝜇(𝑡)h∆(𝑡). If 𝕋 = ℝ, then h∆(𝑡)(𝑡) = h′(𝑡). If 𝕋 = ℤ , then 
h∆(𝑡) reduces to ∆h(𝑡). 

The set of all rd-continuous functions is denoted by  
Crd(𝕋). Let h: 𝕋 → R and hσ: 𝕋 → R  by hσ (t) = h(σ(t))  for all 
𝑡 ∈ 𝕋, i.e., hσ = h o σ and let h: 𝕋 → R and hσ: 𝕋 → R by hσ (t) 
= h(ρ(t)) for all 𝑡 ∈ 𝕋, i.e., hσ = h o ρ . 

The Hilger derivative (also delta derivative) h∆(𝑡) is 
defined as follows.

There exists a neighborhood V of t such that

  (20)

for all ε > 0 and s, t ∈ V.
Suppose that H: 𝕋 → R is defined by ∆ − antiderivative 

of h: 𝕋 → R, then H∆ = h(𝑡)  holds for all 𝑡 ∈ 𝕋. We define the 
Cauchy ∆ −integral of h by

 

for  s, t ∈ V. If  a, b ∈ 𝕋  and u, v ∈ Crd(𝕋), then

 
(21)



Sigma J Eng Nat Sci, Vol. 41, No. 2, pp. 415−422, April, 2023418

Suppose that 𝑓, 𝑔: ℝ → ℝ is continuously Hilger 
(delta) differentiable, then 𝑓 ∘ 𝑔: ℝ → ℝ  is Hilger (delta) 
differentiable

 
(22)

If 𝑓, 𝑔 satisfy the conditions of [23, Theorem 1.90], then  
𝑓 ∘ 𝑔: 𝕋 → ℝ is Hilger differentiable and there exists d in the 
real interval [𝑥, 𝜎(𝑥)] such that

  (23)

If 𝑔, ℎ: 𝕋 → ℝ  continuous real-valued functions,  𝑎. 𝑏 ∈ 
𝑇, 𝑝 > 1 and , then

  
(24)

Lemma 1. (Fubini’s Theorem, [24]) Let (𝛷, 𝑁, 𝜋∆) 
and (𝛹, 𝑀, 𝛾∆) be measure spaces in time scales. If 𝛬: 
𝛷 × 𝛹 → ℝ is a  integrable function, then 

 exists for any  and 
 exists for ,

  
(25)

The following Lemma 2 and Lemma 3 express the new 
version of Jensen’s inequality. For details, see [6].

Lemma 2. Let α > 0 and a, b, j ∈ 𝕋  be such that  0 ≤ a 
< b ≤ j.

D1) If α > 1, then

  
(26)

D2) If α < 1, then

  
(27)

Lemma 3. Let 𝑑 ∈ N. If  0 ≤ 𝑥𝑘 ≤ 𝑦𝑘 for 𝑘 ∈ [1, 𝑑], then

   
(28)

Definition 1 (Jensen’s inequality [23, Theorem 6.17]). 
Let a, b ∈ 𝕋 with a < b , and suppose 𝐼 ⊂ ℝ is an interval. If  
Φ ∈ 𝐶(𝐼 , ℝ) is convex and 𝑓 ∈ 𝐶𝑟𝑑([𝑎, 𝑏 ], 𝐼 ) , then

  
(29)

Moreover, M. Anwar et al. [28] demonstrated some 
results of Jensen’s inequality for several variables.

Theorem 1. [6]Let (𝛷, 𝑁, 𝜋∆) and (𝛹, 𝑀, 𝛾∆) be measure 
spaces in time scales. Assume that 𝑉 ⊂ ℝ𝑑 is a closed convex 
set and 𝛺 ∈ 𝐶(𝑉 , ℝ) is convex. Furthermore, let 𝑚: 𝛷 ×  𝛹 →
𝑅 be non-negative function such that 𝑚(𝑥1, . ) is 𝛾∆- integra-
ble function. Then

  
(30)

holds for all functions 𝑔: 𝛹 → 𝑉 , where 𝑔𝑘(𝑥2) is 𝜋∆2 -inte-
grable for all 𝑘 ∈ {1, … , 𝑑} and

 denote the d-tuple

  
(31)

Subsequently, we use the following notations.
(K1) 𝛷 = 𝛹 = [𝑎, 𝐽) = [𝑎1, 𝑗1) ∩ 𝕋 × … × [𝑎𝑑, 𝑗𝑑) ∩ 𝕋, 

where 𝑎𝑘 < 𝑗𝑘 for  𝑎𝑘, 𝑗𝑘 ∈ [0, ∞].
(K2) 𝑎 < 𝑏  if componentwise 𝑎𝑘 < 𝑏 𝑘, 𝑘 ∈ {1, … , 𝑑}.
(K3) 𝑚: [𝑎, 𝐽) × [𝑎, 𝐽) → 𝑅 + is such that

 
that is

where 𝑥1 = 𝑥11, … , 𝑥1𝑑 and 𝑥2 = 𝑥21, … , 𝑥2𝑑.

(K4) 𝛺 (𝑓) = 𝑓𝑞, 𝑞 > 1.

Remark 1. For d = 1 , Theorem 1 yields the inequality

  

(32)

NON-LINEAR MULTIVARIATE FRACTIONAL 
HARDY-TYPE INTEGRAL INEQUALITIES ON TIME 
SCALES

In this section, we will state and prove our main 
theorems.
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Theorem 2. Let two functions 𝑞, ∝: [𝑎, 𝑏 ] ∩ 𝕋 → R  be 
defined by

  (33)

where 0 ≤ 𝑎 < 𝑏  < ∞  and let fractional Hardy-type 
integral operator  for 𝛽 ∈ [0,1).  
Furthermore, suppose that 0 ≠ 𝑞0, 𝑞1 ∈ R  are such that 𝑞0, 
𝑞1 < 0 or 𝑞0 < 0, 𝑞1 ≥ 1 or 𝑞0 ≥ 1, 𝑞1 < 0 or 𝑞0, 𝑞1 ≥ 1. If  𝑔: 
[𝑎, 𝜀] → Ris non-negative delta (∆, Hilger) integrable and 𝑔 ∈
𝐶𝑟𝑑([𝑎, 𝜀], ℝ for which 

  (34)

then

  

(35)

where J0 = 0 if b ≥ ε (so that  ) and  

  

(36)

If q(x) ∈ (0,1], then (35) holds in the reverse direction.
Proof. Case 1. Let b ≥ ε. If we apply Jensen’s inequality 

with Lemma 1 and Lemma 2, then we have

   

(37)

Herewith, (35) is proved.
Case 2. Let b ≤ ε. If we apply Jensen’s inequality with 

Lemma 1, then we have

 

(38)

If we use Lemma 2 and Lemma 3, then we obtain

  

(39)

Herewith, if we combine the two cases, then we com-
plete the proof of Theorem 2.

Remark 2. Let two functions 𝑞, ∝: [𝑎, 𝑏 ] ∩ 𝕋 → ℝ  be 
defined by
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and 𝛽 = 1  where 0 ≤ a < b < ∞ , then inequality (35) in 
Theorem 2 is reduced to the multivariate Hardy-type inte-
gral inequality.

Example 1. Let two functions 𝑞, ∝: [0,1] ∩ 𝕋 → ℝ  be 
defined by

  

If we take d = 1, 𝛽 = 1, then inequality (11) in Theorem 
2 is reduced to Hardy-type integral inequality.

  
(40)

where, J0 = 0   if  1 ≥ ε and 

 

Our next theorem deals with the adjoint of the frac-
tional Hardy-type integral operator .

Theorem 3. Let two functions 𝑞, ∝: [𝑎, 𝑏 ] ∩ 𝕋 → ℝ be 
defined by

  (41)

where 0 ≤ a < b < ∞ and let fractional adjoint Hardy-type 
integral operator  for 𝛽 ∈ [0,1). 
Furthermore, suppose that 0 ≠ 𝑞0, 𝑞1 ∈ R are such that 𝑞0, 𝑞1 
< 0 or 𝑞0 < 0, 𝑞1 ≥ 1 or 𝑞0 ≥ 1, 𝑞1 < 0 or 𝑞0, 𝑞1 ≥ 1. If  𝑔: [𝑎, 
𝜀] → ℝ is non-negative delta (∆, Hilger) integrable and 𝑔 ∈
𝐶𝑟𝑑([𝑎, 𝜀], ℝ for which 

  

(42)

Then

 

(43)

where J0 = 0 if b ≥ ε (so that ) and 

  
(44)

If , then (43) holds in the reverse direction.
Proof. Case 1. Let b ≥ ε. If we apply Jensen’s inequality 

with Lemma 1, then we find that

 

(45)

Case 2. Assume that b ≤ ε. The proof of this case is com-
pletely similar to the proof of the second case of Theorem 
2. The reader can easily show it. Hereby, if we combine the 
two cases, then we complete the proof of Theorem 3.

Remark 3. Let two functions  be 
defined by

 

and β = 1 where 0 ≤ a < b < ∞, then inequality (43) in 
Theorem 3 is reduced to the adjoint multivariate Hardy-
type integral inequality.

Example 2. Let two functions  be 
defined by

                                                         

If we take d = 1, β = 1 , then inequality (43) in Theorem 
3 is reduced to the adjoint Hardy-type integral inequality.

  
(46)

where J0 = 0   if  1 ≥ ε and 

  
(47)
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CONCLUSION 

Inequalities and dynamic equations are one of the most 
studied topics by scientists in almost every discipline. Because 
they shed light on the solution of many problems in science 
branches other than mathematics. For example; quantum 
mechanics, physical problems, wave equations, heat trans-
fer, optical problems and economic problems [29-40]. That 
is, they have multidisciplinary features. However, the most 
study area of integral inequalities and dynamic equations 
is undoubtedly mathematics. Many properties of fractional 
integral inequalities have been demonstrated by mathema-
ticians. For more detailed information, we refer to the refer-
ences. In this article, we obtained the multivariate fractional 
Hardy-type integral inequality using the new version Jensen’s 
inequality in Lemma 2 and Lemma 3. In this study, we used 
the multi-variable Cartesian version. We are currently work-
ing on a multi-variable polar version. This method used can 
also be applied to different operators and inequalities.
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