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1. INTRODUCTION

The Konhauser biorthogonal polynomials Y (x; k) are defined by the generating relation (see, for example, [11], p.

432)
Zya(x k)t"—(l—t) exp{ [1—(1—:)_7]]}

where, @ > —1, k is a positive integer.

It is from (1.1) that [11],
Yok = 1,2 Z( 1)1()(”““),

i=0 j=0
where (1), denotes the Pochhammer symbol defined (in terms of gamma function) by
ra+v -
Ay = ——— (1eC\Z
D I (1€ C\Z)
1, if v =0; 1 € C\{0}
A+ D..A+n-1), ifv=neN; 1eC

and Z; denotes the set of nonpositive integers and I'(4) is the familiar Gamma function.
These polynomials have the following generating relation [11]:

n=0
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i(”; ) Yo, (k) = (1—1) "% exp {x[1-a-nT | va[xa-n7 4].

(1.1)

(1.2)

(1.3)
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In addition, we have the following relationships between the Konhauser biorthogonal polynomials Y (x; k) and

Srivastava-Singhal polynomials GV (x,1,1,k) and the Laguerre polynomials L) [11]:

Y, (x; 1)
Y2 (x; k)

LY(x),
KGO (x,1,1,k).

A few of Konhauser biorthogonal polynomials Y} (x; k) defined by (1.1) and (1.2) are:

e = 1,
Pl = —x+a+1,
1
Yi(x1) = E(xz—x(20+4)+az+3a/+2),
1
Yi(l) = 6[—x3 +3x% (@ +3) = 3x(a® +5a + 6) + &’ + 6% + 11a + 6].

The graphs of these polynomials (up to (n, k) = (2, 1) in special case a = 0, 1,2, 3,4 are shown below:

n=2 and k=1
140 T T T
a=0
120 | a=1| 4
a=2
— a=3
1DD [ {\:4 T

20 i L i L L i L i i
-10 B -5 -4 <2 0 2 4 6 8 10

FiGure 1. Y¢(x;1) = 1 (x® = xQa +4) + ® + 3 +2), x€[-10,10]

2. GENERATING FUNCTIONS

In this section, we give a theorem about the addition formula for Konhauser biorthogonal polynomials:

Theorem 2.1. We have

n
Yoot 4 k) = Y, (s DY (03 k).

m=0

2.1
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Proof. Replacing a by a1 + a» + 1 and x by x| + x, in (1.1), we obtain

(ay+ap+2)

-0 T expl{n +m)[1-(1-n7]}

0
Z Y,‘l"“””(xl + x2; k)"
n=0

= (1- t)i(%ﬂ) exp(xl [1 —-(1- t)%D

(1= 1" F exp (n[t-a-n7])

= D YR Y Ve sk
n=0 m=0

(e

> i Yt (e k) Y2 (a3 o) £

n=0 m=0

= i Zn: Yol (x1; k) Yo2 (xp; k) .

n=0 m=0

From the coeflicients of #* on the both sides of the last equality, one can get the desired result. O

The main object of this paper to study different properties of the Konhauser biorthogonal polynomials Y’ (x; k). Var-
ious families of multilinear and multilateral generating functions, miscellaneous properties and also some special cases
for these polynomials are given. Nowadays, there are a lot of works related to Konhauser biorthogonal polynomials
theory and its applications (see, [12, 13, 15]).

3. BILINEAR AND BILATERAL GENERATING FUNCTIONS

In this section, we derive several families of bilinear and bilateral generating functions for the Konhauser biorthogo-
nal polynomials Yy (x; k) which are generated by (1.1) and given explicitly by (1.2) using the similar method considered
in (see, [1-3,6-10, 14]).

We begin by stating the following theorem.

Theorem 3.1. Corresponding to an identically non-vanishing function Q,(y1, ...,y,) of r complex variables yy, ..., y,
(r € N) and of complex order u, s, let

00

Mg Ot 33 0) 1= D gk 01, sy (g # 0)

k=0
and
[n/p]
Oy (X5 Y1, s Yy €) 1= Z Yy (5 Wk (V1 -onr yE.
k=0
Then, for p € N, we have
i . —(a+1) -1
D00 (w2 = (=0 expfx[1 = (1= 07|} At o) 3.1
n=0

provided that each member of (3.1) exists.

Proof. For convenience, let S denote the first member of the assertion (3.1) of Theorem 3.1. Then,

oo [n/p]

S = Z(; ; Ak Y (6 Qg (91 wees y I TP
par e
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Replacing n by n + pk, we may write that

S = D0 2w Vi k1 ey
n=0 k=0
= Z Yy (o uyt” Z Ak V15 s YOI
n=0 k=0
e+l B
= (1=« exp{x[l —(1-0w ]}A”M(yl,...,y,;n)
which completes the proof. O

By using a similar idea, we also get the next result immediately.

Theorem 3.2. Corresponding to an identically non-vanishing function Q,(yi, ...,y,) of r complex variables yi, ..., y,
(r € N) and of complex order u, y,a, B let

[n/p]
. o LA - +HB+1 .
AZ,Z,w,ﬁ(xl F X2 U Yy s Yy B) 1= E akY:_fk (x1 + x2; Wi (V15 s YK,
k=0

where a; # 0, n, p € N and the notation [n/p] means the greatest integer less than or equal n/p.
Then, for p € N, we have
n_ [k/p]
DAYy Y (o (G, YT = AR e+ X231 Y1, Y15 2) (3.2)
k=0 =0

provided that each member of (3.2) exists.

Proof. For convenince, let T denote the first member of the assertion (3.2) of Theorem 3.2. Then, upon subsituting for
the polynomials Y (x; + x2; k) from the (2.1) into the left-hand side of (3.2), we obtain
n [k/p]

DU @y Yy (g (31 s )7

k=0 [=0
[Vl/P] n—pl

= DD vy s oYe GO,y
1=0 k=0

[’Z/P] n—pl

= Z a ZYﬁ_pl_k(xl;u)Yf(Xz;u) Qi V1, s Y7
=0 k=0

[n/r]

1
Z alYZ:ff (X1 + 223 Wit (V15 s )7
=0

T

np “ e .
A/.l,l//,a/,ﬁ(xl + x27 u’ y] LA} }’r, Z)'

O

Theorem 3.3. Corresponding to an identically non-vanishing function Q,(y1, ...,y,) of r complex variables yi, ..., y,
(r € N) and of complex order u, let

(e

Nppglxuwsyr, .., ysz] = Z aiY i (X Wi (V1 s V)T
i=0

where a; # 0 and
La] m+i
ep,p,q(}’h Vi3 2) = Z (i _ qj)an;u-pj(J’l, o Y7

J=0
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Then, for p,q € N; we have

—(a+mu+l)

DY (5 Gy, nyidf = (=07 0 explx[1-(1-07])
i=0

_1 t
XAp,p,q (x(l - ;u;)’l,-n,Yr;Z(]—_t)q) (3.3)
provided that each member of (3.3) exists.

Proof. For convenience, let H denote the first member of the assertion (3.3) of Theorem 3.3. Then,

o [i/q] .
m+1i .
H ) Z le(:m(x, u) Z (l - qj)a'igﬂ"'ﬂ/(yl’ ey )’r)Z]fl.
i=0 j=0

Replacing i by i + ¢j and then using (1.3), we may write that

N (m+i+q] o Civai
Ho= ), Z( i qJ)Yumw(x; 0t Qs pj (1 o Y1
i=0 j=0
[ (m+i+ )\, ; ,
= D, [Z( l. )mmw,(x; u)r]ajﬂwjm, e ¥
=0 \'i=0
= Z aj(l1-1 S exp {x [l —(1- t)TTI]}
=0
XY i [ (U= D% 1] Qs ey
= (1- t)w exp{x[l -(1- t)_T]]}
- " - !
Xzanm+q,~ [x(1 =07 ;u] Qu+pj(y1,...,yr)((l — r)q)j
=0
—(a+mu+1) =
= (- exp{x[l—(l—z‘)u]}
=1 t
XA (¥(1 = D07 30531,y ()
which completes the proof. O

4. SpeciAL CASES

When the multivariable function €,y (y1,....yr), kK € No, r € N, is expressed in terms of simpler functions of one
and more variables, then we can give further applications of the above theorems. We first set

Qg Ot e V) = WL (1, s )
in Theorem 3.1 , where the multivariable extension of the Lagrange-Hermite polynomials hL‘i‘w‘;z """ (X1, e xp) [4],
generated by

r

]_[ {0 = x;ehy} = Z R (xy, o, x) 2 (@ € C 5l < min {7 o2, 7). .1
j=1 n=0
We are thus led to the following result which provides a class of bilateral generating functions for the multivariable

extension of the Lagrange-Hermite polynomials hl(::‘w(,'f """ "’)(yl, ...,yr) and the Konhauser biorthogonal polynomials.

Corollary 4.1. If

[+

Aug Ot ¥ 0 1= D @iy, 3l (a0, oy e0),
k=0
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then, we have

oo [n/p] k

a Ry g +1) =l
D Y R Gyt = (=T expx[1 = (=07 A1y (D)
n=0 k=0

provided that each member of (4.2) exists.

Remark 4.2. Using the generating relation (4.1) for the multivariable polynomials hL‘:‘w‘,’f”) (x1, ..., x,) and getting
ar =1,u =0,y =1, we find that

oo [n/p] s . r '

3 e @y y e = (=T exp x| - (=07 [ T{A - i) )

=0 k=0 j=1

where [{] < min{|y1 I, |y2|’1/2 s oo Iyrl’l/’} and |f| < 1.

If we set r = 1 and
Q;t+z//k(yl) = Y;;)_‘_l/,k(y] su)
in Theorem 3.2, we have the following bilinear generating functions for the Konhauser biorthogonal polynomials.

Corollary 4.3. If

[n/p]
1
Avh s+ syt = Y a4+ Y, 0w, (g # 0, gy € C)
k=0
then, we have
n_ [k/p]
alY k(.X],I/l) k— pl(xzau)Y +¢,l()’19”)z l“//(lﬁ(x] + XUy u; Z) (43)
k=0 =0

provided that each member of (4.3) exists.

Remark 4.4. Using (4.3) and taking a; = 1, u=0,¢y =1, p =1,z =1 we have
Z Z s Y (o3 )Y (1 ) Z k(xl,u)Z G )Y (1 1)

k=0 [=0
1
Z Yo, e )Y o+ yisu)
k=0
Ya+/5+w+2
n

(x1 + x2 + y15u).

If we set

r=1and Qy+pj(yl) = L(iﬁ)J(y)

in Theorem 3.3, where the classical Jacobi polynomials PLr )(y) is generated by [5],

> (@p) a+p
prﬁ W ="—U-t+p) A +t+p) P, {p= =21+, |p| <1}
p
n=0
we get a family of the bilateral generating functions for the classical Jacobi polynomials and the Konhauser biorthog-
onal polynomials as follows:

Corollary 4.5. If

Aupg i y;2] = D @Y, (s wPEE )7, (g # 0, me Ny, g,y € ©)
i=0

and

[i/a]
m+1
a2 = 3o (" sl 02

=0
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where i, p € N, then we have

(ry+m1 +1)

Z Y (6 )0 g (3 ) = (1= 1) exp{x[l—(l—r)’ff]}xA,,,,,,q(xa—t>%;u;y;z(1L_t>q) @.4)

provided that each member of (4.4) exists.

Furthermore, for every suitable choice of the coefficients a; (j € Ny), if the multivariable functions €., ;(y1, ..., ¥r),
r € N, are expressed as an appropriate product of several simpler functions, the assertions of Theorem 3.1, Theorem
3.2, Theorem 3.3 can be applied in order to derive various families of multilinear and multilateral generating functions
for the family of the Konhauser biorthogonal polynomials given explicitly by (1.2).

5. RECURRENCE RELATIONS

We now discuss some miscellaneous recurrence relations of the Konhauser biorthogonal polynomials Yy (x; k) given
by (1.1). By differentiating each member of the generating function relation (1.1) with respect to x and using

iiA(k,n) = izn:A(k,n—k),

n=0 k=0 n=0 k=0

we arrive at the following (differential) recurrence relation for the Konhauser biorthogonal polynomials Y} (x; k) given
explicitly by (1.1):

> %Yff (x; k) " (1=-n7F (1= -n7)exp{x[1 -1 -7]}
n=0

(1-a —z)’%)iyg(x;k)tﬂ
n=0

i Yo (k)= (1 =07 i YO (x; k) 1"

ZY"( k) — ZZ ’"Y" (k)

n=0 m=0

)ﬂl

By differentiating each member of the generating functlon relatlon (1.1) with respect to @, we have the following
another recurrence relation for these polynomials:

5 dror = (B

-0 0,
—T;Yn(x,k)t

—Y"( k) = Y (x1k) — Z mye  (x;k).

YO (x; k)t

s

%lg}

n=0 m=0
o n-1 .
AL
k m+ 1
n=1 m=0
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Finally, by differentiating each member of the generating function relation (1.1) with respect to ¢, we have the
following another recurrence relation for these polynomials:

00

DIHCL I (Q—Z])(l—ﬂ“”?"'exp{X[l—(l—t)’T"]}
n=1
_;_z (1- t)%—l exp {x[] -(1- 1)%]}(] _ t)_w
= —(QZ D A—8 (1—1) " F exp fx[1-a- t)%‘]}

+1

—;—z - l‘)%_k a- t)f% exp {x[l —-(1- t)_TI]}

D e w 1
= (a—z)zz(l)mﬁyﬁ()ﬁkﬁﬂm

n=0 m=0

o (1 +E) 1

SES(5) prene
n=0 p=0 p p:
D v S (1+k\ Yi,(xk)
(n+1)Yfl'+1(x;k)=w—Z) Yff_m(x;k)—fZ(%) LR by

m=0 p=0 r p:
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