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Öz 
Boussinesq Denklemleri (BSQ) bu makalenin odak noktasıdır. İlk 
olarak, nonlineer evolüsyon denklemlere çoklu soliton çözümler 
oluşturmak için kullanılan Hirota'nın D operatörüne ilişkin temel 
bir genel bakış sunuyoruz. Daha sonra dördüncü dereceden BSQ 
ile ilgili bazı detaylar veriliyor ve bir soliton çözüm bulmak için 
Hirota Direct yöntemini kullanıyoruz. Hirota'nın bilineer 
yaklaşımı aynı zamanda nonlineer evolüsyon denklem olan 
altıncı dereceden Boussinesq benzeri denklem sınıfını çözmek 
için de kullanılır. Sonuçlar, bu yaklaşımın tam integre edilebilirlik 
gerektirdiğini doğrulamıştır.  
 
Anahtar Kelimeler: Hirota Direct Metod; Boussinesq Denklemleri; 

Soliton Çözümler; Mathematica 12.

Abstract 
Boussinesq Equations (BSQ) are the focus of this article. First, we 
provide a basic overview of Hirota's D operator, which is used to 
build multi-soliton solutions for equations involving nonlinear 
evolution. After that, some details regarding fourth-order BSQ 
are provided, and we use Hirota's direct method to find a one-
solution solution. Hirota's bilinear approach is also used to solve 
a class of sixth-order Boussinesq-like equations with nonlinear 
evolution. The outcomes verified that this approach requires 
complete integrability.  
 
 

Keywords: Hirota Direct Metod; Boussinesq Denklemleri; Soliton 
Çözümler; Mathematica 12. 

  

 

1. Introduction 

Complete integrable and partially integrable nonlinear 

evolution equations have historically piqued the interest 

of mathematicians and physicists more than other partial 

differential equations. The seminal contributions to 

soliton theory are the discovery made by J. Scott Russell 

in 1844 and the subsequent method developed by Hirota 

in 1980. Of all the soliton equations, Korteweg de Vries' 

equation from 1895 has gained the most notoriety and 

significance. Zabusky and Kruskal found the other 

numerically for the KdV equation (1965), which Lax 

subsequently proved analytically (1968). By using inverse 

scattering transformation (IST), the multisoliton solutions 

of KdV were discovered (Gardner et al. 1967 and Kay and 

Moses 1956). Later on, a broad class of equations was 

addressed by the application and generalization of this 

method (Zakharov et al. 1972 and Ablowitz et al. 1974).  

Following all of these advancements, in 1971–1972, 

Hirota created his bilinear approach for creating soliton 

solutions. A specialized method called the Hirota direct 

method is applied to soliton equations, integrable 

systems, and nonlinear partial differential equations in 

particular. Since its introduction, it has developed into a 

potent tool for figuring out the precise soliton solutions 

to integrable equations. The approach is very helpful in 

comprehending how solitons behave. These solitons, 

which are able to move without changing their form or 

energy, are found in a variety of physical systems, 

including water waves, plasma phenomena, and optical 

fibers. 

In this research, fourth-order BSQ and a category of 

nonlinear sixth-order Boussinesq-like equations, referred 

to as nonintegrable equations, are treated using Hirota's 

bilinear method. After Hirota (1973,1980,2004) 

developed this well-known analytical technique, other 

writers such as Matsuno (1984) and Nakamura (1979) 

used it to solve nonlinear evolution equations precisely. 

The inverse dispersion transform (Ablowitz and Segur, 

1981) and Whitham's method (1984), which is used to 

find regular solutions by such function, is the other known 

techniques. In fluid dynamics, the behavior of 

indestructible, turbulent flows in a relatively thin layer of 

fluid is described by the partial differential equation 

known as the Boussinesq equation. It bears the name 

Joseph Valentin Boussinesq (1877), a French 

mathematician and physicist from the 19th century who 

made a substantial contribution to the field of fluid 

mechanics research. He created an equation to describe 
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the locations of horizontally stagnant homogenous water. 

Both the nonlinearity and the wave dispersion in 

shallower waters are taken into account in the equation. 

It is particularly useful for modeling wave propagation 

and wave-structure relationships in geophysics, 

oceanography, and engineering. Cushman-Roisin (1994) 

provides a general introduction to geophysical fluid 

dynamics. It covers a range of geophysical fluid dynamics 

topics as well as applications of Boussinesq equations. 

Anderson (2011) concentrates on computational fluid 

dynamics basics. The book covers foundational concepts 

and stresses contemporary computational techniques 

along with subjects like the Boussinesq equation.  
 

2. Hirota's D Operator and Bilinear Form 

A novel direct technique for building multi-soliton 

solutions to  integrable nonlinear evolution equations  

was presented by Hirota in 1971. This approach is 

predicated on the partial differential equation's Hirota 

bilinear form, which converts it into a system of bilinear 

equations. The original partial differential calculation can 

be precisely solved using bilinear equations. If its aim is 

constructing soliton solutions it can say that Hirota's 

direct method is the best way and it can say this method 

is the fastest in producing results. Hirota introduced the 

method defined as a formula in which a and b are non-

negative integers and which is called Hirota derivative by 

using the D operator. The D operator is a bilinear 

operator. The "D" operator in the Hirota method is 

typically used in integrable systems and plays a specific 

role in such contexts, often acting as a derivative operator 

with respect to a time or space variable. On the other 

hand, the "D" operator in fractional calculus represents 

an operator for derivatives at non-integer orders. The key 

difference lies in their respective applications and 

mathematical properties. Hirota’s D operator can be 

defined as: 
 

DX
a Dt

b(f. g) = (
∂

∂x
−

∂

∂x′
)

a
(

∂

∂t
−

∂

∂t′
)

b
f(x, t)g(x′, t′)|x′=x,t′=t. (1)    

In this method, we transform new variables so we can 

obtain a soliton solution more easily. Multisoliton 

solutions can be derived by many other methods for 

example Inverse Scattering Transform (IST) and Darboux 

Transformation. IST is powerful but more complicated.; 
 

1. For 𝑎 = 0 and 𝑏 = 1, 

𝐷𝑡(𝑓. 𝑔) = 𝑓𝑡𝑔 − 𝑓𝑔𝑡.  (2) 

2. For 𝑎 = 1 and 𝑏 = 1, 

𝐷𝑥𝐷𝑡(𝑓. 𝑔) = 𝑓𝑥𝑡𝑔 − 𝑓𝑥𝑔𝑡 − 𝑓𝑡𝑔𝑥 + 𝑓𝑔𝑥𝑡. (3) 

 

NOTE: 

DxDt(f. g) = DtDx(f. g). 

and generally  

𝐷𝑥
𝑎𝐷𝑡

𝑏(𝑓. 𝑔) = 𝐷𝑡
𝑏  𝐷𝑥

𝑎(𝑓. 𝑔).    

 

3. For 𝑎 = 1 and 𝑏 = 0, 

𝐷𝑥(𝑓. 𝑔) = 𝑓𝑥𝑔 − 𝑓𝑔𝑥 . (4) 

4. For 𝑎 = 2 and 𝑏 = 0, 

𝐷𝑥
2(𝑓. 𝑔) = 𝑓𝑥𝑥𝑔 − 2𝑓𝑥𝑔𝑥 + 𝑓𝑔𝑥𝑥  .   (5) 

5. For 𝑎 = 3 and 𝑏 = 0, 

  𝐷𝑥
3(𝑓. 𝑔) = 𝑓𝑥𝑥𝑥𝑔 − 3𝑓𝑥𝑥𝑔𝑥 + 3𝑓𝑥𝑔𝑥𝑥 − 𝑓𝑔𝑥𝑥𝑥  .  (6) 

6. For 𝑎 = 4 and 𝑏 = 0, 

𝐷𝑥
4(𝑓. 𝑔) = 𝑓𝑥𝑥𝑥𝑥𝑔 − 4𝑓𝑥𝑥𝑥𝑔𝑥 + 6𝑓𝑥𝑥𝑔𝑥𝑥 −

4𝑓𝑥𝑔𝑥𝑥𝑥 + 𝑓𝑔𝑥𝑥𝑥𝑥 . (7) 

 

Theorem 1: 

 

𝐷𝑥
𝑎(𝑓. 𝑔) = (−1)𝑎  𝐷𝑥

𝑎(𝑔. 𝑓). 

 

Theorem 2: 

 

𝐷𝑥
𝑎𝐷𝑡

𝑏(𝑓. 𝑔) = (−1)𝑎+𝑏𝐷𝑥
𝑎  𝐷𝑡

𝑏(𝑔. 𝑓).    

 

Theorem 3: 

 

𝐷𝑥
𝑎(𝑓. 1) = 𝜕𝑥

𝑎𝑓. 

 

So  𝐷𝑥(𝑓. 1) = 𝑓𝑥, 𝐷𝑥
2(𝑓. 1) = 𝑓𝑥𝑥  and 

𝐷𝑥
3(𝑓. 1) = 𝑓𝑥𝑥𝑥, 𝐷𝑥𝐷𝑡(𝑓. 1) = 𝑓𝑥𝑡. 

 

Theorem 4: 

 

𝐷𝑥
𝑎(1. 𝑔) = (−1)𝑎𝜕𝑥

𝑎𝑔. 

 

So  𝐷𝑥(1. 𝑔) = −𝑔𝑥, 𝐷𝑥
2(1. 𝑔) = 𝑔𝑥𝑥  and 

𝐷𝑥
3(1. 𝑔) = −𝑔𝑥𝑥𝑥, 𝐷𝑥𝐷𝑡(1. 𝑔) = 𝑔𝑥𝑡 . 

 

7. If  𝑔 = 𝑓 and for  𝑎 = 1,2,3,4 we get 

 

𝐷𝑥(𝑓. 𝑓) = 0,  (8) 

𝐷𝑥
2(𝑓. 𝑓) = 2(𝑓𝑥𝑥𝑓 − 𝑓𝑥

2),  (9) 

         𝐷𝑥
3(𝑓. 𝑓) = 0,  (10) 

𝐷𝑥
4(𝑓. 𝑓) = 2(𝑓𝑥𝑥𝑥𝑥𝑓 − 4𝑓𝑥𝑥𝑥𝑓𝑥 + 3𝑓𝑥𝑥

2 ),     (11) 

𝐷𝑥𝐷𝑡(𝑓. 𝑓) = 2(𝑓𝑥𝑡𝑓 − 𝑓𝑥𝑓𝑡).  (12) 
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Theorem 5:  If 𝑎 is odd 𝐷𝑥
𝑎(𝑓. 𝑓) = 0. 

 

Theorem 6: If 𝑎 + 𝑏 is odd 𝐷𝑥
𝑎𝐷𝑡

𝑏(𝑓. 𝑓) = 0. 
 

Theorem 7: For   𝜑𝑖 = 𝑘𝑖𝑥 + 𝑤𝑖𝑡 + 𝛾𝑖  and 𝛾𝑖  is real for 

(𝑖 = 1,2,3, … ) and 𝑒𝜑1 , 𝑒𝜑2  are exponential 

functions. So 
 

𝐷𝑥𝐷𝑡(𝑒𝜑1 . 𝑒𝜑2) = (𝑘1 − 𝑘2)(𝑤1 − 𝑤2)𝑒𝜑1+𝜑2   , (13) 

𝐷𝑥
𝑎(𝑒𝜑1 . 𝑒𝜑2) = (𝑘1 − 𝑘2)𝑎 .                                 (14) 

 

Proof: From result of (3) we can see 
 

𝐷𝑥𝐷𝑡(𝑒𝜑1 . 𝑒𝜑2) = (𝑘1𝑤1 − 𝑘1𝑤2 − 𝑘2𝑤1 + 𝑘2𝑤2)𝑒𝜑1+𝜑2 , 

                   = (𝑘1 − 𝑘2)(𝑤1 − 𝑤2)𝑒𝜑1+𝜑2 . 

easiliy.  

From the results (4), (5), (6) 
 

𝐷𝑥(𝑒𝜑1 . 𝑒𝜑2) = (𝑘1 − 𝑘2)𝑒𝜑1+𝜑2 ,  (15) 

𝐷𝑥
2(𝑒𝜑1 . 𝑒𝜑2) = (𝑘1

2 − 2𝑘1𝑘2 + 𝑘2
2)𝑒𝜑1+𝜑2 , 

                          = (𝑘1 − 𝑘2)2𝑒𝜑1+𝜑2 , (16) 

𝐷𝑥
3(𝑒𝜑1 . 𝑒𝜑2) = (𝑘1

3 − 2𝑘1𝑘2 + 𝑘2
2)𝑒𝜑1+𝜑2 , 

                          = (𝑘1 − 𝑘2)3𝑒𝜑1+𝜑2 ,  (17) 

and generally; 

 

𝐷𝑥
𝑎(𝑒𝜑1 . 𝑒𝜑2) = (𝑘1 − 𝑘2)𝑎𝑒𝜑1+𝜑2 , 

 

by using this results we get above equalties; 

 

8. 𝐷𝑥𝐷𝑡(𝑒𝜑1 . 𝑒𝜑1) = 0. 

9. 𝐷𝑥
𝑎(𝑒𝜑1 . 𝑒𝜑1) = 0. 

 

Definition: Partial differential equation 

𝐹(𝑢, 𝑢𝑡 , 𝑢𝑥, 𝑢𝑥𝑥 , … ) = 0 should be used to Express it, 

such that, using the dependent variable transformation 

𝑢 = 𝑢(𝑓), the corresponding bilinear form is expressed as 

𝐵(𝑓. 𝑓) = 0. Next, we consider perturbation expansion as 

the equation for a solution, in which ε is an arbitrarily 

small parameter and f is bounded by  𝑥 and 𝑡. 

 

𝑓 = 1 + ∑ 𝜀𝑖𝑓𝑖
∞
𝑖=1  . (18) 

 

An approximative solution would be provided by this 

expansion. But when dealing with a bilinear equation 

𝐵(𝑓. 𝑓) = 0, the right value of f1 is selected to truncate 

the infinite expansion with a finite number of terms, 

providing an exact solution. It obtain if it write 𝑓. 𝑓 and 

take 𝑓0 = 1.  

 

𝑓. 𝑓 = (1 + 𝜀𝑓1 + 𝜀2𝑓2 + ⋯ )(1 + 𝜀𝑓1 + 𝜀2𝑓2 + ⋯ ) 

         = 1.1 + 𝜀(𝑓1. 1 + 1. 𝑓1) + 𝜀2(𝑓2. 1 + 𝑓1. 𝑓1 + 1. 𝑓2)

+ ⋯ 
 

Converting to 𝐵(𝑓. 𝑓) = 0 and gathering the 𝜀1 powers 

we possess, 
 

𝜀0: 𝐵(1.1) = 0 , 

𝜀1: 𝐵(𝑓1. 1 + 1. 𝑓1) = 0, 

                               𝜀2: 𝐵(𝑓2. 1 + 𝑓1. 𝑓1 + 1. 𝑓2) = 0, 

⋮   

             𝜀𝑛: 𝐵 (∑ 𝑓𝑛−𝑘. 𝑓𝑘

𝑛

𝑘=0

) = 0. 

 

in which 𝐵 represents a bilinear operator and 

 𝑓0 = 1 for a certain positive integer 𝑛. We can write; 
 

𝑓1 = ∑ 𝑒𝜑𝑖

𝑁

𝑖=1

 

 

Thus, we obtain a one-soliton solution by using 𝜀1, a two-

soliton solution by using 𝜀2,  and an N-soliton solution by 

using 𝜀𝑁. 

Soliton solutions are obtained by; 

1. Logarithmic Transformation 

2. The Rational Conversion. 

3. The Arctan Conversion. 

in the bilinear Hirota method. Even though the answer 

isn't always obvious, you can still write an equation in 

bilinear form using the sum of bilinears. For KdV class 

equations, logarithmic transformation is typically used. 

 

3. Boussinesq Equation (BSQ) 

The most widely used versions for simulating shallow 

water waves are the fourth-order extension of the 

classical Boussinesq equation and its variant. An 

expansion of the classical Boussinesq equation that takes 

higher-order dispersive effects into account is the fourth-

order Boussinesq equation. It is used to more accurately 

model wave behavior in specific shallow water systems. 

As it write for the equation; 

 

𝑢𝑡𝑡 − 𝑢𝑥𝑥 − 3𝑢𝑥𝑥
2 − 𝑢𝑥𝑥𝑥𝑥 = 0.  (19) 

We search for the logarithmic transformation of the 

equation. Boussinesq equation (BSQ) is the name of this 

equation. Generally, this equation is expressed as a 

formula; 
 

utt + γuxx + βuxx
2 + αuxxxx = 0. 
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When 𝛼 is positive, it is recognized as the good BSQ; if it 

is negative, it is classified as the bad BSQ. Here, we use 

the Hirota Direct method to find the soliton solution of 

the bad BSQ of (19), in which 𝑢 = 𝑢(𝑥, 𝑡) and the 

boundary condition 𝑢 → 0 as |𝑥| → ∞. The form contains 

the solution to the equation. Equation has the solution in 

the form   𝑢 = 2(𝑙𝑛𝑓)𝑥𝑥  in which 𝑓𝑥, 𝑓𝑥𝑥, 𝑓𝑡 , … → 0 as 

|𝑥| → ∞. Let ∅ = 𝑙𝑛𝑓 then 𝑢 = 2∅𝑥𝑥 . If it substitute into 

(19) it obtain 

 

2∅𝑥𝑥𝑡𝑡 − 2∅𝑥𝑥𝑥𝑥 − 12(∅𝑥𝑥
2 )𝑥𝑥 − 2∅𝑥𝑥𝑥𝑥𝑥𝑥 = 0. 

After twice integrating this equation, we get;  

2∅𝑡𝑡 − 2∅𝑥𝑥 − 12∅𝑥𝑥
2 − 2∅𝑥𝑥𝑥𝑥 = 0. (20) 

For ∅ = 𝑙𝑛𝑓; 

 ∅𝑡𝑡 =
𝑓𝑡𝑡𝑓−𝑓𝑡

2

𝑓2  ,  

∅𝑥𝑥 =
𝑓𝑥𝑥𝑓 − 𝑓𝑥

2

𝑓2
 , 

∅𝑥𝑥𝑥𝑥 =
𝑓𝑥𝑥𝑥𝑥

𝑓
− 4

𝑓𝑥𝑓𝑥𝑥𝑥

𝑓2 + 12
𝑓𝑥

2𝑓𝑥𝑥

𝑓3 − 3
𝑓𝑥𝑥

2

𝑓2 − 6
𝑓𝑥

4

𝑓4 .  

Upon substituting into (20), we arrive at; 

 

(𝑓𝑡𝑡𝑓 − 𝑓𝑡
2) − (𝑓𝑥𝑥𝑓 − 𝑓𝑥

2) − (𝑓𝑥𝑥𝑥𝑥 − 4𝑓𝑥𝑓𝑥𝑥𝑥 + 3𝑓𝑥𝑥
2 ) = 0   (21) 

By using (8), we can obtain bilinear form; 

 

(𝐷𝑡
2 − 𝐷𝑥

2 − 𝐷𝑥
4)(𝑓. 𝑓) = 0. (22) 

To find a one-soliton solution, let's take  

𝐵 = 𝐷𝑡
2 − 𝐷𝑥

2 − 𝐷𝑥
4 and find 𝜀1 by perturbation 

expansion. Let's look at the BSQ 𝐵(𝑓. 𝑓) = 0 in bilinear 

form. We are now attempting to solve (22) in terms of 

(18). By replacing (18) with (22) and matching the 

coefficients of powers 𝜀, we can obtain; 

 

ε1 = f1,tt − f1,xx − f1,xxxx = 0.  (23) 

For 𝑁 = 1, 𝑓1 = 𝑒𝜑1 where 𝜑1 = 𝑘1 𝑥 + 𝑤1𝑡 + 𝛾1. If we 

substitute 𝑓1 = 𝑒𝜑1  into (23) we get 

 (𝑤1
2 − 𝑘1

2 − 𝑘1
4)𝑒𝜑1 = 0,  𝑤1 = √𝑘1

2 + 𝑘1
4 

(𝑘1 ≠ 0).  So we can write     

𝑓 = 1 + 𝑒
𝑘1𝑥+√𝑘1

2+𝑘1
4+𝛾1 . Then for  

𝑓 = 1 + 𝑒𝜑1 , 𝑓𝑥 = 𝑘1𝑒𝜑1 and 𝑓𝑥𝑥 = 𝑘1
2𝑒𝜑1. 

In perturbation expansion by getting 𝜀2 we may choose 

𝑓2 = 0 and we may choose 𝑓𝑖 = 0 𝑖 ≥ 2. We can set        

𝜀 = 1 without loss of generality. Thus we have 

𝑢(𝑥, 𝑡) = 2𝑘1
2

𝑒𝜑1

(1 + 𝑒𝜑1)2
 

              =
1

2
𝑘1

2(sech
𝜑1

2
)2 

 

Figure 1: Figure of the BSQ equation’s one-soliton solution for 

𝛾 = 0.11, 𝑘 = −0.86 and 𝑤 = −0.92. 

This is the one-soliton solution for the BSQ equation. In 

this way we can get multisoliton solutions. 

4.Sixth Order Boussinesq Equation 

Nonlinear sixth-order generalized Boussinesq equation is 

known as not completely integrable. Hirota's Direct 

Method is a well- known method which can help one to 

obtain exact solutions of completely integrable 

equations. If a nonlinear partial differantial equation can 

be expanded to the simple bilinear form 

𝐵(𝐷𝑥 , 𝐷𝑡)(𝑓. 𝑔) = 0 where 𝐵 is a exponential or 

polynomial function and 𝐷 is the Hirota’s bilinear 

differantial operator then we can obtain N-soliton 

solution for this nonlinear equation. 

In this work we look for the equation which is called sixth-

order Boussinesq equation; 
 

𝑢𝑡𝑡 − 𝑢𝑥𝑥 − 3𝑢𝑥𝑥
2 − 𝑢𝑥𝑥𝑥𝑥 − 𝜇𝑢𝑥𝑥𝑥𝑥𝑥𝑥 = 0,  (24) 

where 𝜇 is a positive parameter. For 𝜇 = 0, we can easily 

see that it is a bad Boussinesq equation.  

Sixth-order Boussinesq equation is expressed in the form 

of  

𝑢𝑡𝑡 − 𝛼𝑢𝑥𝑥 − 𝛽𝑢𝑥𝑥
2 − 𝛾𝑢𝑥𝑥𝑥𝑥 − 𝐾2𝑢𝑥𝑥𝑥𝑥𝑥𝑥 = 0. 

by Daripa(2002). 

There, we take the bilinear transformation of (24) and 

simplify it into a bilinear equation and a residual equation. 

The sixth-order term prevents a solon-type solution for 

the residual part. The sixth-order term, the dispersion 

term, enhances the basic structural instability of the 

Boussinesq equation. However, this term causes 

integrability to be lost. Here we use (24) in which 𝑢 =

𝑢(𝑥, 𝑡) and the boundary condition 𝑢 → 0 as  |𝑥| → ∞. 
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Equation has the solution in the form 𝑢 = 2(𝑙𝑛𝑓)𝑥𝑥  

where 𝑓𝑥, 𝑓𝑥𝑥 , 𝑓𝑡 , … → 0 as |𝑥| → ∞. Let ∅ = 𝑙𝑛𝑓 then 𝑢 =

2∅𝑥𝑥. If we substitute into (24) we obtain 
 

   2∅𝑥𝑥𝑡𝑡 − 2∅𝑥𝑥𝑥𝑥 − 12(∅𝑥𝑥
2 )𝑥𝑥 − 2∅𝑥𝑥𝑥𝑥𝑥𝑥

− 2𝜇∅𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = 0. 
 

If we integrate this equation two times we obtain 
 

∅𝑡𝑡 − ∅𝑥𝑥 − 6∅𝑥𝑥
2 − ∅𝑥𝑥𝑥𝑥 − 𝜇∅𝑥𝑥𝑥𝑥𝑥𝑥 = 0.   (25) 

For ∅ = 𝑙𝑛𝑓; 

 ∅𝑡𝑡 =
𝑓𝑡𝑡𝑓−𝑓𝑡

2

𝑓2   , 

∅𝑥𝑥 =
𝑓𝑥𝑥𝑓 − 𝑓𝑥

2

𝑓2
,  

∅𝑥𝑥𝑥𝑥 =
𝑓𝑥𝑥𝑥𝑥

𝑓
− 4

𝑓𝑥𝑓𝑥𝑥𝑥

𝑓2 + 12
𝑓𝑥

2𝑓𝑥𝑥

𝑓3 − 3
𝑓𝑥𝑥

2

𝑓2 − 6
𝑓𝑥

4

𝑓4 ,  

∅𝑥𝑥𝑥𝑥𝑥𝑥 =
𝑓𝑥𝑥𝑥𝑥𝑥𝑥

𝑓
− 6

𝑓𝑥𝑓𝑥𝑥𝑥𝑥𝑥

𝑓2
− 15

𝑓𝑥𝑥𝑓𝑥𝑥𝑥𝑥

𝑓2
 

                  +30
𝑓𝑥

2𝑓𝑥𝑥𝑥𝑥

𝑓3
+ 120

𝑓𝑥𝑓𝑥𝑥𝑓𝑥𝑥𝑥

𝑓3
− 10

𝑓𝑥𝑥𝑥
2

𝑓2
 

         +30
𝑓𝑥𝑥

3

𝑓3
− 120

𝑓𝑥
3𝑓𝑥𝑥𝑥

𝑓4
+ 360

𝑓𝑥
4𝑓𝑥𝑥

𝑓5
 

                   −270
𝑓𝑥

2𝑓𝑥𝑥
2

𝑓4 − 120
𝑓𝑥

6

𝑓6  . 

If we substitute into (25) we obtain 

(𝑓𝑡𝑡𝑓 − 𝑓𝑡
2) − (𝑓𝑥𝑥𝑓 − 𝑓𝑥

2) − (𝑓𝑥𝑥𝑥𝑥𝑓 − 4𝑓𝑥𝑓𝑥𝑥𝑥 + 3𝑓𝑥𝑥
2 ) 

−(𝑓𝑥𝑥𝑥𝑥𝑥𝑥𝑓 − 6𝑓𝑥𝑓𝑥𝑥𝑥𝑥𝑥 + 15𝑓𝑥𝑥𝑓𝑥𝑥𝑥𝑥 − 10𝑓𝑥𝑥𝑥
2 ) 

−𝑓2(𝑓𝑥𝑥𝑥𝑥𝑓 − 4𝑓𝑥𝑓𝑥𝑥𝑥 + 3𝑓𝑥𝑥
2 ) − 4(𝑓𝑥𝑥𝑓 − 𝑓𝑥

2)2 −

2
𝑓4

5
= 0.  (26) 

By using (8) we can obtain bilinear form 

(𝐷𝑡
2 − 𝐷𝑥

2 − 𝐷𝑥
4 − 𝐷𝑥

6)(𝑓. 𝑓) = 0 .  (27) 

Additionally, a residual term  

𝑓2𝐷𝑥
4(𝑓. 𝑓) − 4(𝐷𝑥

2(𝑓. 𝑓))2 − 2
𝑓4

5
= 0. 

Let take 𝐵 = 𝐷𝑡
2 − 𝐷𝑥

2 − 𝐷𝑥
4 − 𝐷𝑥

6 and find 𝜀1 by 

perturbation expansion to find one-soliton solution. Let 

us consider the bilinear form 𝐵(𝑓. 𝑓) = 0. Now we try to 

find a solution of (27) in the form of (18). If we substitute 

(18) into (27) and equate coefficients of powers 𝜀 we 

obtain 

𝜀1 = 𝑓1,𝑡𝑡 − 𝑓1,𝑥𝑥 − 𝑓1,𝑥𝑥𝑥𝑥 − 𝑓1,𝑥𝑥𝑥𝑥𝑥𝑥 = 0. 

For 𝑁 = 1, 𝑓1 = 𝑒𝜑1 where 𝜑1 = 𝑘1 𝑥 + 𝑤1𝑡 + 𝛾1. If we 

substitute 𝑓1 = 𝑒𝜑1  into (28) we get 

 (𝑤1
2 − 𝑘1

2 − 𝑘1
4 − 𝑘1

6)𝑒𝜑1 = 0, 

  𝑤1 = √𝑘1
2 + 𝑘1

4 + 𝑘1
6  (𝑘1 ≠ 0).  So we can write     

𝑓 = 1 + 𝑒
𝑘1𝑥+√𝑘1

2+𝑘1
4+𝑘1

6 +𝛾1. Then for  

𝑓 = 1 + 𝑒𝜑1 , 𝑓𝑥 = 𝑘1𝑒𝜑1 and 𝑓𝑥𝑥 = 𝑘1
2𝑒𝜑1. 

In perturbation expansion by getting 𝜀2 we may choose 

𝑓2 = 0 and we may choose 𝑓𝑖 = 0 𝑖 ≥ 2. We can set       

𝜀 = 1 without loss of generality. Thus we have 

𝑢(𝑥, 𝑡) =
𝑒𝜑(−2𝑘6𝑒2𝜑(−26 cosh 𝜑 + cosh 2𝜑 + 33))

(𝑒𝜑 + 1)6
 

                −
𝑒𝜑𝑘4(𝑒𝜑+1)4−𝑒𝜑𝑘2(𝑒𝜑+1)4

(𝑒𝜑+1)6 +
𝑒𝜑𝑤2(𝑒𝜑+1)4

(𝑒𝜑+1)6 . 

one soliton solution by Mathematica 12. 

 

Figure 2: Figure representing the one-soliton solution for          

𝛾 = −1, 𝑘 = −0.5 and 𝑤 = 3 of sixth order  BSQ equation. 

5.Conclusions 

The classical Boussinesq equation and a class of nonlinear, 

incompletely integrable sixth-order Boussinesq-like 

equations are both subjected to the bilinear 

transformation. This study shows that some non 

integrable partial differential equations can be solved 

using this approach. If the linear terms of the independent 

functions are the same and there is a residual term in the 

bilinear form, the balance terms become possible. The 

figures are plotted to display the dinamical features of the 

solutions.   Mathematica has been used for presenting 

figures of solutions. It is possible to observe soliton 

solutions for appropriate values of 𝛾, 𝑘 and 𝑤. In 

mathematica, a dynamic drawing program, it is possible 

to visualize the travelling waves of the solution for 

different values of 𝛾.  
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