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ABSTRACT

Let M be a Wintgen ideal submanifold of dimension n in a real space form R"" ™ (k) of dimension
(n +m) and of constant curvature k:, n >4, m > 1. We determine necessary and sufficient conditions

for M to be a submanifold satisfying pseudo-symmetry type curvature conditions of the form: the
derivation-commutator R - C — C - R (resp., the tensors R - C and C - R) formed by the Riemann-

Christoffel curvature tensor R and the Weyl conformal curvature tensor C' of )M, and some
Tachibana tensors formed by the metric tensor g, the Ricci tensor Ricc and the tensors R and C

of M are linearly dependent.
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1. Preliminaries

1.1. Pseudo-symmetry type curvature conditions

Let M = M™ be a connected n-dimensional, n > 4, Riemannian manifold of class C*°. Further, let V be its

Levi-Civita connection and X (M) the Lie algebra of vector fields on M. We define on M the endomorphisms

X AaY and R(X,Y) of X(M) by

(X AaY)Z = AY, Z)X — A(X, Z)Y,
R(X,Y)Z =VxVyZ —-VyVxZ— Vix 1%,

respectively, where XY, Z € X(M) and A is a symmetric (0, 2)-tensor on M. The Ricci tensor Ricc, the Ricci
operator S, the scalar curvature x and the endomorphism C(X,Y) of (M, g) are defined by

Ricc(X,Y) = tr{Z — R(Z, X)Y}

g(SU, V) = Rice(U, V) Zg (B;,U)V,E;), k=trS,

n
C(X,Y)Z = R(X,Y)Z = —— (X A, SY +SX A, Y - %X N Y)Z,
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respectively, where X,Y,Z,U,V € X(M) and {Ek};c(; ., is a local orthonormal tangent framefield. The
Riemann-Christoffel tensor R and the Weyl conformal curvature tensor C of M are defined by

R(X,Y,Z,W) = g (R(X,Y)Z,W),
C(X’ Y, Z, W) =g (C(Xv Y)Zv W) s

respectively, where X, Y, Z, W € X(M). Let A and B be the (0, 2)-tensors; their Kulkarni-Nomizu product A A B
is defined by
(AAB)(X1, X2 X,Y) = A(X1,Y)B(X2, X) + A(Xz, X)B(X1,Y)
— A(X1, X)B(X3,Y) — A(X2,Y)B(X1, X),

where XY, X3, Xy € X(M). Now the tensor C can be expressed in the form

1 K
=R—- ——gARi ————gAg.
C=R n_Qg/\ icc + 2(n—1)(n—2)g g
Let A be a symmetric (0, 2)-tensor and 7" a (0, k)-tensor, k > 1 ; we define the (0, k£ + 2)-tensors R - T'and Q(A, T')
by
(R-T)(X1,Xo,....Xi; X,)Y)=(R(X,)Y) -T)(Xq,...,Xg)
=-T(R(X,Y) X1, Xo,..., Xk)
=T (XlaX2> B Xk717R(X7 Y)Xk?) ’
QA -T)(X1,Xa,..., Xi; X,Y)= (X A2 Y) - T)(Xq,...,Xk)
7T((X ANa Y)Xla X27 s 7Xk)
— . —T(Xl,Xg,...,Xk_l,(X Na Y)Xk),
respectively, where XY, X, X5,..., X,, € X(M). If we set in the above formulas T'= R, T = Ricc, T = C,
A = g or A = Ricg, then we obtain the tensors: R- R, R - Ricc, R - C, Q(g, R), Q(g,Ricc), Q(g,C), Q(g, g A Ricc),
Q(Rice, R) and Q(Ricc, C). Similarly we define the tensors: C' - R, C' - C'and C - Ricc. The derivation-commutator
R-C — C - Rreads (see, e.g., [20, 28])

(n72)(R-C’fC’-R):Q<Riccf%g,R)fg/\(R'Ricc)JrP,

where the (0, 6)-tensor P is defined by

P(X1, X2, X3, X4 X,Y) = g(X, X1)R(S(Y), X2, X3, X4) — g(Y, X1) R(S(X), X2, X3, X4)
+ 9(X, X2) R(X1,S(Y), X3, X4) — g(Y, X2) R(X1, S(X),, X3, X4)
+ 9(X, X3)R(X1, X2, 5(Y), Xa) — g(Y, X3)R(X1, X2,5(Y), X4)
+9(X, Xy) R(Xy, X5, X3, 5(Y)) — g(Y, Xy) R(Xy, X, X3, 5(X)),

X,Y, X1, X2, X3, X4 € X(M).

A Riemannian manifold (17, g) is said to be semi-symmetric (see [47]) if R - R = 0 on M. An extension form
for semi-symmetric manifolds are the pseudo-symmetric manifolds. A Riemannian manifold (), g) is said to
be pseudo-symmetric (see [16, 20]) if at every point of M the tensors R - R and Q(g, R) are linearly dependent,
which means that there exists a function Ly on the set Uz = {z € M ’ R— (k/(2n(n —1)))g A g # 0ata} such
that

R-R=LrQ(g,R) (1.1)
on Ug. Every semi-symmetric manifold is pseudo-symmetric. The converse is not true (see, e.g., [14, Corollary
3.2 (i)]). Pseudo-symmetric manifolds also are called pseudo-symmetric (in the sense of Deszcz) or Deszcz
symmetric spaces (see, e.g., [10, 13, 48, 50, 51, 52]).

A Riemannian manifold (M, g) is said to be Weyl-semi-symmetric (see [16, 20]) if

R-C=0

on M. An extension form for Weyl-semi-symmetric manifolds are the Weyl pseudo-symmetric manifolds. A
Riemannian manifold (M, g) is said to be Weyl-pseudo-symmetric (see [16, 20]) if at every point of M the
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tensors R-C and Q(g,C) are linearly dependent, which means that there exists a function L on the set
Uc={x € M |C+#0atz} such that
R-C=LcQ(g,C) (1.2)

on Uc. It is obvious that every pseudo-symmetric manifold is Weyl-pseudo-symmetric. The converse is not
true.
A Riemannian manifold ()M, g) is said to be a manifold with pseudo-symmetric Weyl tensor (see [16, 17, 20])
if at every point of M the tensors C - C' and Q(g,C) are linearly dependent, which means that there exists a
function L on the set Ug such that
C.C=1Q(g,0) (1.3)

on Uc. Every Chen ideal submanifold in a space of constant curvature is a manifold with pseudo-symmetric
Weyl tensor [22, 27, 28, 32].

A Riemannian manifold (M, g) is said to be Ricci-pseudo-symmetric (see [16, 20, 30]) if at every point of M
the tensors R - Ricc and Q(g, Ricc) are linearly dependent, which means that there exists a function LR;.. on

the set U = {# € M | Ricc — (x/n)g # 0 at 2} such that
R - Rice = LyioQ(g, Ricc) (1.4)

on URjcc- Every Cartan hypersurface M in the sphere S"*!, n =6, 12 or 24, is a non-pseudo-symmetric,
Ricci-pseudo-symmetric with non-pseudo-symmetric Weyl tensor hypersurface [33] (see also [31]). We also
mention that Ricci-pseudo-symmetric manifolds also are called Ricci pseudo-symmetric in the sense of Deszcz,
or simply Deszcz Ricci-symmetric (see, e.g., [10]).

A Riemannian manifold (M, g) is said to be Ricci-Weyl-pseudo-symmetric (see [16, 20]) if at every point of
M the tensors R - C' and Q(Ricc, C') are linearly dependent, which means that there exists a function L’ on the
setU = {z € M | Q(Ricc,C) # 0 at 2} such that

R-C = L'Q(Ricc, C) (1.5)

on U. It is obvious that every semi-symmetric manifold (R - R = 0) satisfies (1.5) with L' = 0.

We refer to [18] (see also [19, 21]) for a recent survey on manifolds satisfying (1.1)—-(1.5) and other conditions
of this kind. Such conditions are called pseudo-symmetry type curvature conditions. It seems that (1.1) is the
most important condition of that family of curvature conditions (see [17, 23, 24, 25, 28, 38, 39, 48, 49, 50, 51, 52]).

We also refer to [19] (see also [20]) for a survey of results on semi-Riemannian manifolds (M, ¢) and in
particular, hypersurfaces in spaces of constant curvature or Chen ideal submanifolds in Euclidean spaces,
satisfying pseudo-symmetry type curvature conditions of the form: the derivation-commutator R-C — C - R,
formed by the tensors R and C, and a finite sum of the Tachibana tensors of the form (A, T) are linearly
dependent, where A is a symmetric (0, 2)-tensor and T a generalized curvature tensor. Conditions of this kind
belong to the family of curvature conditions called generalized Einstein metric conditions [19, 20, 26, 30].

1.2. Submanifolds in space forms

Throughout all sections of the present paper, let M = M™ be a connected Riemannian manifold of class C*°
of dimension n in a real space form R"*"(k) of dimension (n + m) and of constant curvature k, n > 4, m > 1.

On R™™(k), we denote by § and V respectively the Riemannian metric and the corresponding Levi-
Civita connection. On the submanifold M, the induced Riemannian metric and the corresponding Levi-Civita
connection on M will be denoted by g, V. We will write as X, Y, ... the tangent vector fields on M, and as &, 7,
... the normal vector fields on M.

The well-known formulae of Gauss and Weingarten are given by

VxY = VxY +h(X,Y),
Vxé=Vxé— A,

respectively, whereby V+ is the normal connection induced in the normal bundle of M in R"*™(k), h is the
second fundamental form of the submanifold M and A is the shape operator or the Weingarten map on M
with respect to the normal vector field £. We have

g(Ag(X%Y) =9 (g,h(X, Y))7
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or still N
WX Y) =) g(Aa(X),Y)a,
a=1
whereby {{a},c (1, ) 18 any local orthonormal normal framefield on M in R"+™ (k) and A, = A,

The mean curvature vector field of M in R"+™ (k) is defined by

ZhEHE %i tr Ay) &a,
a=1

whereby {FE,} ny 18 any local orthonormal tangent framefield on M, and {a} my is any local

sed{l,...,
orthonormal normal framefield on M in R™*™(k) and its length H =
R ().

The submanifold M in R™t™ (k) is totally geodesic when h = 0. M is totally umbilical when h = g H 1t

aed{l,...,
is the mean curvature of M in

- = - =
is minimal when H=0, or equivalently, when its squared mean curvature function H*> = § ( H,H ) vanishes

identically. M is pseudo-umbilical when the mean curvature vector field H determines an umbilical normal
direction on M in R"*™(k), i.e. when Aﬁ = xId, whereby Id stands for the identity operator on 7'M and x is

some real function on M.
Let R denote the induced Riemann-Christoffel curvature corresponding to the induced Levi-Civita
connection V on M. Then according to the equation of Gauss

R(X,Y,Z,W) = § (h(X,W)A(Y, Z) — h(X, Z)h(Y, W) + k (g(X, W)g(¥, Z) - g(X, Z)g(Y. W),

where XY, Z, W are tangent vector fields in M.
Let « be the scalar curvature function of M in R"*™ (k) ; we have

k(p) =Y K (p, Ei(p) A E;(p))

i<j

where K (p, E;(p) A E;(p)) is the sectional curvature of M at a point p € M for the plane section ¢ = E;(p) A
E;(p) in T,M (where {E;(p), E;(p)} is independent). By inf(K) we will further denote the function inf(K) :
M — Rwhich attains to p € M the minimal value inf(K)(p) of all sectional curvatures of M at p. The normalized
scalar curvature of (M, g) is defined as follows

= 2T > R(E:, Ej,Ej, E),
1<j

whereby {ES}SG{L”.)”
By the equation of Ricci, the normal curvature tensor R* of M in R"*™(k), i.e., the curvature tensor of the

y is any local orthonormal tangent framefield on M.

normal connection V+ of M in R (k), is defined as follows
RE(XYi6,m) = § (VAVHE = VEVRE = Vi yjon) = 9 (e 4, X)), (1.6)

whereby [A¢, A,)] = Ac A, — Ay Ae.
The normalized scalar normal curvature p* of (M, g) in R”*m( ) is given as follows

PJ_ n—l ZZR Ela jagongﬁ)?

i<j a<pf

whereby {E} o ag{l,..

orthonormal normal framefield on M in R"*™ (k). One can remark that p- = 0 if and only if Rt =0, which
means that the normal connection is flat. This follows from (1.6) and as it was already observed by E. Cartan

(see [1]), is equivalent to the simultaneous diagonalisability of all shape operators A, of M in R"*+™ (k).

.ny is any local orthonormal tangent framefield on M, and {{.} m} s any local
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1.3. Wintgen ideal submanifolds satisfying some pseudo-symmetry type curvature conditions

In classical differential geometry, for a surface M? in a Euclidean 3-space E?, the well-known Euler inequality
is given by
K < H?,

whereby K is the intrinsic Gauss curvature of M? and H? is the extrinsic squared mean curvature of M? in
E3, at once follows from the fact that K = ki1ky and H = %(kl + ko) whereby k; and k, denote the principal
curvatures of M? in E3. Obviously, K = H? everywhere on M? if and only the surface M? is totally umbilical
in 3, i.e. k; = ko at all points of M?, or still, by a theorem of Meunier, if and only M? is a part of a plane E?
or of a round sphere S? in E3. P. Wintgen (see [54]), in the late 19 seventies, proved that the Gauss curvature K
and the squared mean curvature H? and the normal curvature K+ of any surface M? in E* always satisfy the
inequality
K<H’>-K"

and that actually the equality if and only if the curvature ellipse of M? in E* is a circle. We recall that the ellipse
of curvature at a point p of M? is defined as

5, = {h(X,X) ‘ X e T,Mand | X|| = 1} .

The ellipse of curvature is the analogue of the Dupin curvature of an ordinary surface in E?.

B. Rouxel in [43] and V. Guadalupe and L. Rodriguez in [36] extended Wintgen’s inequality to surfaces of
arbitrary codimension in real space forms R**™(¢) with m > 2. Also, B.-Y. Chen extended Wintgen’s inequality
in [6, 8] to surfaces in a pseudo-Euclidean 4-space Ej(c) with a neutral metric.

In 1999, P. ]. De Smet, F. Dillen, L. Verstraelen and L. Vrancken proved in [15] the Wintgen inequality

p<H?—pt+k

for all submanifolds M™ of codimension 2 in all real space forms, whereby p is the normalised scalar curvature
of the Riemannian manifold M, and whereby H? and p*, are the squared mean curvature and the normalized
normal scalar curvature of M in the ambient space, respectively, characterizing the equality in terms of the

shape operators of M" in R"*2?(k). And in [15] they proposed a conjecture of Wintgen inequality for general
Riemannian submanifolds in real space forms, which was later well-known as the DDVV conjecture. This
conjecture was proven to be true by Z. Lu (see [40]), and by J. Ge and Z. Tang (see [34, 35]) independently. In
[10], B.-Y. Chen provided a comprehensive survey on developments in Wintgen inequality and Wintgen ideal
submanifolds, we also refer to the recent article of G.-E. Vilcu [53, Chapter 7].

The main purpose of the present article is to study the so-called Wintgen ideal submanifolds. The following
theorem of J. Ge and Z. Tang (see [34, 35]) and Lu (see [40]) states the Wintgen inequality for submanifolds

M = M™ of any codimension m > 1 in a real space form R"*"™(k), and characterizes its equality case. As it is
stated in [34], it concerns a basic general optimal inequality between likely the most primitive scalar valued
geometric quantities that can be defined on submanifolds as intrinsic invariant it involves the scalar curvature
and as extrinsic invariants it involves the scalar normal curvature and the squared mean curvature.

Theorem A. (see [11,34,35,40]) Let M = M"™ be a submanifold of codimension m in a real space form R"*™(k),
n >4 and m > 2. Then _

(*) PSHQ_PL+IC’
and in (x) actually the equality holds if and only if, with respect to some suitable adapted orthonormal frame

{E;, &} on M in R"*™(k), the shape operators are given by

a p 0 0 b+p 0 0 --- 0 c 00 0
v oa 0 0 0 b—p O 0 0 ¢c O 0
Ay=[0 0 a 0, 4, = 0 0 b 01, A43=(0 0 ¢ - O
Do : oo : (1.7)
0 0 O a 0 0 0 b 0 0 O c
Ay=...= A, =0.

where a, b, c and 1 are real functions on M. [
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Definition 1.1. The submanifold M in R™+™ (k) which satisfy the equality
(F) p=H>—p"+k
in the Wintgen’s general inequality (x) is called a Wintgen ideal submanifold. In such case, the frames {E;, &, }

in which the shape operators assume the forms of (1.7) will further be called the Choi-Lu frames, and the
corresponding tangent E; E»-planes will be called the Choi-Lu planes of M in R" ™™ (k).

From [13] (see also [29, 42]) we recall the following results.

Theorem B. A Wintgen ideal submanifold M = M" of dimension n > 4 and of codimension m in a real space
form R™™ (k) (m > 2) is a Deszcz symmetrical Riemannian manifold if and only if M is totally umbilical (with
Deszcz sectional curvature L = 0), or, M is a minimal or pseudo-umbilical submanifold (with L = k+H 2)
of this space form R™™(k). O

Theorem C. A Wintgen ideal submanifold M = M™ of dimension n > 4 and of codimension m in a real space
form R™™ (k) (m > 2) is Deszcz symmetric if and only if M is Deszcz Ricci-symmetric. [

Theorem D. Let M = M" be a Wintgen ideal submanifold of dimensionn > 4 and of codimensionm > 2 in a

real space form R+ (k). Then M is a Riemannian manifold with a pseudo-symmetric conformal Weyl tensor
c.0O

Theorem E. Let M = M" be a Wintgen ideal submanifold of dimension n > 4 and of codimension m > 2 in a
real space form R"*™ (k).

(i) M is conformally flat if and only if M is a totally umbilical submanifold in R™+™ (k) (and, hence, M is a real
space form).

(ii) If M is not a conformally flat submanifold, then M has a pseudo-symmetric conformal Weyl tensor C' and
the corresponding function is given by

n—3

Le = (n—1)(n—2)

</<;fn(nf 1)ian).

where k is the scalar curvature of M. ]
We also refer to [12, 41, 44, 45, 46] for further results on Wintgen ideal submanifolds.

2. Main results on Wintgen ideal submanifolds

2.1. Main results

In the paper we investigate Wintgen ideal submanifolds M = M™ in real space forms R (k), n>3,m>1,
satisfying the following pseudo-symmetry type curvature conditions:

(i) the tensor R - C' and the Tachibana tensor Q(g, R) (resp., the tensor Q(g,C), Q(g, g A Ricc), Q(Ricc, R), or
Q(Ricc, C)) are linearly dependent;

(ii) the tensor C - R and the Tachibana tensor Q(g, R) (resp., the tensor Q(g, C), Q(g, g A Ricc), Q(Ricc, R), or
Q(Ricc, C)) are linearly dependent;

(iii) the derivation-commutator R-C — C - R, formed by the tensors R and C, and the Tachibana tensor
Q(g, R) (resp., the tensor Q(g,C), Q(g, g A Ricc), Q(Rice, R), or Q(Ricc, C)) are linearly dependent.

In this subsection we present our main results.

Theorem 2.1. Let M = M" be a Winigen ideal submanifold of codimension m in a real space form R™™(k), n > 4

and m > 2. If k > 0, then M is Weyl-semi-symmetric if and only if M is totally umbilical in R"+™ (k) (and hence M is
conformally flat). O

Theorem 2.2. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"+™(k), n > 4 and
m > 2. If k <0, then M is Weyl-semi-symmetric if and only if (i) either M is totally umbilical in R"*™ (k) (and hence
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M is conformally flat), (ii) or with respect to some suitable adapted Choi-Lu frames {E;, o} on M in R"*™ (k), the shape
operators are given by

0 wu O 0 w0 0 0 c 0 0
p 0 0 0 0 —u 0 0 0 ¢ 0
A, =]0 00 0 ay=]0 0 0 - 0| 4,=[00 ¢ - 0
’ e T (2.1)
0 0 O 0 0 0 O 0 0 0 O c
Ay=...= A, =0,
where c, p are real functions on M such that u # 0 and ¢® = —Fk. In this second case, M is a minimal or pseudo-umbilical

submanifold in R"*™ (k). O

Corollary 2.1. Let M = M" be a Wintgen ideal submanifold of codimension m in a real space form R"*™(k), n > 4
and m > 2. If k = 0, then M is Weyl-semi-symmetric if and only if (i) either M is totally umbilical in R"*™ (and hence
M is conformally flat), (ii) or with respect to some suitable adapted Choi-Lu frames {E;, &, } on M in R™*™, the shape
operators are given by

0 u 0 0 L 0 0 - 0
g 00 0 0 —p 0 -+ 0

A, =|0 00 0 4,=]0 0 0 - 0of
' Lo L . 2.2)
000 - 0 0 0 0 0

Ay=A;=...=A, =0,

where yu is a real function on M such that i # 0. In this second case, M is minimal in R**™. [

Theorem 2.3. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"*™(k), n > 4 and
m > 2. Then
C-R=0

if and only if M is totally umbilical in R™*™ (k) (and hence M is conformally flat). O
Theorem 2.4. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"+™ (k), n > 4 and
m > 2. Then

R-C-C-R=0

if and only if M is totally umbilical in R™ ™ (k) (and hence M is conformally flat). O

Theorem 2.5. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"*™(k), n > 4
and m > 2. If k > 0, then the tensors R - C and Q(g, R) are linearly dependent if and only if M is totally umbilical in

R"™*™ (k) (and hence M is conformally flat). O

Theorem 2.6. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"*™(k), n > 4 and
m > 2. If k <0, then the tensors R - C and Q(g, R) are linearly dependent if and only if (i) either M is totally umbilical

in R"*™ (k) (and hence M is conformally flat), (ii) or with respect to some suitable adapted Choi-Lu frames {E;, &y} on

M in R"*™(k), the shape operators are given by

0 u 0 0 L 0 0 0 c 0 0
L 0 0 0 0 - 0 - 0 0 c 0 - 0
A =0 0 0 0| Ay,=|0 0 0 v 0 4, |00 c - 0Of
o . S . S (2.3)
0 0 O 0 0 0 O 0 0 00 c
Ag=...= A, =0,
where ¢, y are real functions on M such that u # 0 and ¢ = —k. Moreover, M is Weyl-semi-symmetric, and, in the

second case, M is a minimal or pseudo-umbilical submanifold in R"*™ (k). O
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Corollary 2.2. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"*™(k), n > 4 and
m > 2. If k = 0, then the tensors R - C and Q(g, R) are linearly dependent if and only if (i) either M is totally umbilical
in R"*™ (and hence M is conformally flat), (ii) or with respect to some suitable adapted Choi-Lu frames {E;,&.} on M
in R™*™, the shape operators are given by

0 p 0 -~ 0 L 0 0 0
L 00 - 0 0 —u 0 0

A, =|0 00 0 4,=|0 0 0 of
: T : .. (2.4)
000 -~ 0 0 0 0 -+ 0

Ay =Ay=...= A, =0,

where p is a real function on M such that  # 0. In this second case, M is minimal in R™*™. O

Theorem 2.7. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"*™(k), n > 4 and

m > 1. Then the tensors C' - R and Q(g, R) are linearly dependent if and only if M is totally umbilical in R"*™ (k) (and
hence M is conformally flat). O

Theorem 2.8. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"*™ (k), n > 4 and
m > 2. If k > 0, then the tensors R - C — C - R and Q(g, R) are linearly dependent if and only if M is totally umbilical

in R™*™ (k) (and hence M is conformally flat). O

Theorem 2.9. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"*™ (k), n > 4 and
m > 2. If k <0, then the tensors R - C — C - R and Q(g, R) are linearly dependent if and only if (i) either M is totally

umbilical in R"*" (k) (and hence M is conformally flat), (ii) or with respect to some suitable adapted Choi-Lu frames

{E;, &0} on M in R™™(k), the shape operators are given by

0 u 0 0 L 0 0 0 ¢ 0 0
L 0 0 0 0 —p O 0 0 ¢ 0
A, =|0 00 0 4,=]0 0 o Of 4,=[0 0 ¢ - 0]
: e . (2.5)
0 0 O 0 0 0 0 0 0 0 O c
A4:.. == mZO,
where ¢, p are real functions on M such that p # 0 and ¢* = —k. Moreover,
2(n —3)p?
RC-C-R=——7——7"7"— R);
(n_l)(n_z)Q(g, )

and, in the second case, M is a minimal or pseudo-umbilical submanifold in R™*™ (k). O

Corollary 2.3. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R*+™(k), n > 4
and m > 2. If k = 0, then the tensors R-C — C - R and Q(g, R) are linearly dependent if and only if (i) either M is
totally umbilical in R™*™ (and hence M is conformally flat), (ii) or with respect to some suitable adapted Choi-Lu frames
{E;, &0} on M in R™*™, the shape operators are given by

0 pu 0 0 g 0 0 - 0
p 00 0 0 —p 0 -+ 0

A, =]0 00 0| 4,0 0 0 -+ 0
: o Do : (2.6)
000 -~ 0 0 0 0 - 0

Ay=A;=...=A, =0,

where yu is a real function on M such that . # 0. In this second case, M is minimal in R**™. O
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Theorem 2.10. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"*™(k), n > 4
and m > 1. Then the tensors R - C and Q(g, C') are linearly dependent if and only if (i) either M is totally umbilical in

R+ (k) (and hence M is conformally flat), (ii) or with respect to some suitable adapted Choi-Lu frames {E;, &, } on M

in R"*™(k), the shape operators are given by

0 p 0 -+ 0 L 0 0 0 c 0 0
L 0 0 - 0 0 —p 0 0 0 c 0
A=|0 00 0] 4]0 0 o0 0 A,—|0 0 ¢ 0]
A : (2.7)
000 -~ 0 0 0 0 0 00 0 c
Ag=...=A, =0,

where c and p are real functions on M such that p # 0. Moreover,

R-C=(k+c)Q(g.0):
and, in the second case, M is a minimal or pseudo-umbilical submanifold in R™* m(k). O

Theorem 2.11. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"*™(k), n > 4

and m > 1. Then the tensors C - R and Q(g, C) are linearly dependent if and only if M is totally umbilical in R" ™™ (k).
In this case, M is conformally flat. O

Theorem 2.12. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"*™(k), n > 4 and

m > 1. Then the tensors R - C — C - R and Q(g, C) are linearly dependent if and if M is totally umbilical in R (k).
In this case, M is conformally flat. O

Theorem 2.13. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"*™(k), n > 4
and m > 1. If k > 0, then the tensors R - C and (g, g A\ Ricc) are linearly dependent if and only if M is totally umbilical

in R"*™ (k) (and hence M is conformally flat). O

Theorem 2.14. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"t™(k), n > 4
and m > 1. If k < 0, then the tensors R - C and Q(g, g A Ricc) are linearly dependent if and only if (i) either M is totally

umbilical in R™*™ (k) (and hence M is conformally flat), (ii) or with respect to some suitable adapted Choi-Lu frames

{E;, &} on M in R"T™(k), the shape operators are given by

0 p 0 -~ 0 L 0 0 0 c 00 0
L 00 - 0 0 —pu 0 - 0 0 ¢ 0 0
A =000 0| 4]0 0 0 0 4|00 0
: S Co 7 T | (2.8)
o o0 0 --- 0 0O 0 O 0 0 0 O c
Ay =...=A4,, =0,
where c and y are real functions on M such that y # 0 and ¢* = k. Moreover, M is Weyl-semi-symmetric ; and, in the

second case, M is a minimal or pseudo-umbilical submanifold in R"*™ (k). O

Corollary 2.4. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"+™(k), n > 4
and m > 1. If k = 0, then the tensors R - C and Q(g, g A Ricc) are linearly dependent if and only if (i) either M is totally
umbilical in R"*™ (and hence M is conformally flat), (ii) or with respect to some suitable adapted Choi-Lu frames {E;, o }
on M in R™*™  the shape operators are given by

0 p 0 -+ 0 L 0 0 0

L 0 0 - 0 0 —u 0 - 0
A=|0 00 0| 4]0 0 0 - 0]

Lo : L . (2.9)

000 -+ 0 0 0 0 0

Ay =Ag...= A, =0,

where yu is a real function on M such that u # 0. In this second case, M is minimal in R**™. O
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Theorem 2.15. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"*™(k), n > 4

and m > 1. Then C - R and Q(g, g A Ricc) are linearly dependent if and only if M is totally umbilical in R"*™ (k) (and
hence M is conformally flat). O

Theorem 2.16. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"*™(k), n > 4

and m > 1. Then the tensors R - C' — C' - R and Q(g, g A Ricc) are linearly dependent M is totally umbilical in R™ ™ (k)
(and hence M is conformally flat). O

Theorem 2.17. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"*™(k), n > 4
and m > 1. If k > 0, then the tensors R - C and Q(Ricc, R) are linearly dependent if and only if M is totally umbilical in

R™*™ (k) (and hence M is conformally flat). O

Theorem 2.18. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"*™(k), n > 4
and m > 1. If k <0, then the tensors R - C and Q(Ricc,R) are linearly dependent if and only if (i) either M is totally

umbilical in R™"*™ (k) (and hence M is conformally flat), (ii) or with respect to some suitable adapted Choi-Lu frames

{E;, &} on M in R"*™(k), the shape operators are given by

0 u 0 0 L 0 0 0 c 00 0
©w 00 0 0 —u 0 0 0 ¢ 0 0
A, =|0 00 0 a,=]0 0 0 0 A4,=|0 0 ¢ -+ 0
’ o ’ e (2.10)
0 0 0 0 0 0 0 0 0 0 0 c
Ay=...=4,=0,
where ¢ and yu are real functions on M such that ju # 0 and ¢ = —k. Moreover, M is Weyl-semi-symmetric ; and, in the

second case, M is a minimal or pseudo-umbilical submanifold in R™"*™ (k). O

Corollary 2.5. Let M be a Wintgen ideal submanifold of codimension m in a real space form R"*™(k), n > 4and m > 1.
If k = 0, then the tensors R - C and Q(Rice,R) are linearly dependent if and only if (i) either M is totally umbilical in
R"™*™ (and hence M is conformally flat), (ii) or with respect to some suitable adapted Choi-Lu frames {E;,{,} on M in
R"™*™ the shape operators are given by

0 g 0 - 0 L 0 0 0
g 0 0 - 0 0 —p 0 0

A, =]0 00 0 4,=|0 0 0 of
: Coe c - (2.11)
000 -~ 0 0 0 0 - 0

Ay =Ag=...= A, =0,

where yu is a real function on M such that o # 0. In this second case, M is minimal in R**™. [

Theorem 2.19. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"+t™ (k), n > 4 and

m > 1. Then the tensors C - R and Q(Ricc, R) are linearly dependent if and only if M is totally umbilical in R"+™ (k)
(and hence M is conformally flat). [J

Theorem 2.20. Let M = M" be a Wintgen ideal submanifold of codimension m in a real space form R"+™(k), n > 4
and m > 1. Then the tensors R - C' — C - R and Q(Ricc, R) are linearly dependent if and only if M is totally umbilical in

R™*™ (k) (and hence M is conformally flat). O

Theorem 2.21. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"*™(k), n > 4
and m > 1. If k > O, then the tensors R - C and Q(Ricc, C') are linearly dependent if and only if M is totally umbilical in

R™*™ (k) (and hence M is conformally flat). O

Theorem 2.22. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"*™(k), n > 4
and m > 1. If k <0, then the tensors R - C and Q(Ricc,C) are linearly dependent if and only if (i) either M is totally
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umbilical in R™*™ (k) (and hence M is conformally flat), (ii) or with respect to some suitable adapted Choi-Lu frames

{E;, &} on M in R"T™(k), the shape operators are given by

0 4 0 -~ 0 L 0 0 0 c 0 0
g 0 0 - 0 0 —p 0 0 0 ¢ 0 0
A =0 00 0| 4]0 0 o0 0] A4,=|0 0 ¢ -+ 0
; S oo ’ Do | (2.12)
0 00 -~ 0 0 0 O 0 0 00 c
Ag=...= A, =0,
where ¢ and p are real functions on M such that p # 0 and ¢ = —k. Moreover, M is Weyl-semi-symmetric in R™™ (k) ;

and, in the second case, M is a minimal or pseudo-umbilical submanifold in R"*™ (k). O

Corollary 2.6. Let M be a Wintgen ideal submanifold of codimension m in a real space form R"*™(k), n > 4and m > 1.
If k =0, then the tensors R - C and Q(Rice,C) are linearly dependent if and only if (i) either M is totally umbilical in
R™*™ (and hence M is conformally flat), (ii) or with respect to some suitable adapted Choi-Lu frames {E;, £, } on M in
R™*™ the shape operators are given by

0 p 0 -~ 0 L 0 0 0
g 0 0 - 0 0 —p 0 0

A, =|0 00 0, 4,=]0 0 0 of,
Co : (2.13)
000 - 0 0 0 0 0

Ay =Ag=...= A, =0,

where yu is a real function on M such that i # 0. In this second case, M is minimal in R**™. [J

Theorem 2.23. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"*™(k), n > 4 and

m > 1. Then the tensors C - R and Q(Ricc, C) are linearly dependent if and only if M is totally umbilical in R+ (k)
(and hence M is conformally flat). O

Theorem 2.24. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"*™(k), n > 4
and m > 1. Then the tensors R - C' — C - R and Q(Ricc, C') are linearly dependent if and only if M is totally umbilical in

R+ (k) (and hence M is conformally flat). [

Theorem 2.25. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"t™(k), n > 4
and m > 1. Then the tensors R - C and Q(Ricc, g A Ricc) are linearly dependent if and only if (i) either M is totally

umbilical in R"™ (k) (and hence M is conformally flat), (ii) or with respect to some suitable adapted Choi-Lu frames

{E;, &} on M in R"T™(k), the shape operators are given by

0 g 0 - 0 @ 0 0 0 c 00 0
g 0 0 - 0 0 —p 0 -+ 0 0 ¢ 0
A= |0 00 o 0] 4|0 0 0 - 0f 4|00 0]
: : : Do oo : (2.14)
000 - 0 0 0 0 0 00 0 c
Aj=...=A,=0,

where c and p are real functions on M such that p # 0 and ¢* + k # 0. Moreover,

_E—&—CQ

R-C
212

Q(Rice, g A Rice) ;

and, in the second case, M is a minimal or pseudo-umbilical submanifold in R"*™ (k). O

Theorem 2.26. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"*™(k), n > 4
and m > 1. Then the tensors C - R and Q(Ricc, g A Ricc) are linearly dependent if and only if M is totally umbilical in

R™*™ (k) (and hence M is conformally flat). O
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Theorem 2.27. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"*™(k), n > 4
and m > 1. Then the tensors R - C — C - R and Q(Ricc, g A Ricc) are linearly dependent if and only if (i) either M is

totally umbilical in R"*™ (k) (and hence M is conformally flat), (ii) or with respect to some suitable adapted Choi-Lu

frames {E;, &, } on M in R"t™(k), the shape operators are given by

0 p 0 - 0 20 0 0 0 c 0 0
g 0 0 - 0 0 00 - 0 0 ¢ 0 0
A, =]0 00 0| Ay=|0 0 p 0 0| go—f00 ¢ 0]
000 - 0 0 0 0 M 00 0 c
Ay=- = A, =0,

where ¢ and p are real functions on M such that 11 # 0 ; in this second case,

n—3

~ 2
H? == 2 C-C-R—=——""°
+k p—r and R-C—-C-R TR

Q(Ricc, g A Riec). O
Corollary 2.7. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"+™(k), n > 4
and m > 1. Suppose k < 0. The following conditions are both equivalent.

(I) With respect to some suitable adapted Choi-Lu frames { E;, .} on M in R"*™ (k), the shape operators are given by

0 4 0 -~ 0 g 0 0 - 0 c 00 0
g 0 0 - 0 0 - 0 -+ 0 0 ¢ 0 0
A, =|0 00 0 a4,=|0 0 0 - 0| 4,=]0 0 ¢ 0
: Ll ST : ’ (2.16)
0o 00 --- 0 o 0 o0 --- 0 0 0 0 c
Ay=...= A, =0,
where c and p are real functions on M such that jn # 0 and 2 =—k

(II) M is Weyl-pseudo-symmetric, i.e., R - C and Q(g, R) are linearly dependent.
(IIlI) R-C and Q(g, g A Ricc) are linearly dependent.
(IV) R-Cand Q(Ricc, R) are linearly dependent.

(V) R-C and Q(Ricc, C) are linearly dependent.
(V) R-C —C - Rand Q(g, R) are linearly dependent.

In these cases (I) to (V), M is Weyl-semi-symmetric in R"*™ (k). In the case (V1),

2(n —3)p°

B [ CE)

Q(g, R). O
Corollary 2.8. Let M = M™ be a Wintgen ideal submanifold of codimension m in a real space form R"™(k), n > 4
and m > 1. Suppose k = 0. The following conditions are both equivalent.

(I) M is minimal and with respect to some suitable adapted Choi-Lu frames {E;,&,} on M in R"*™(k), the shape
operators are given by

0 u 0 0 g 0 0 0
© 0 0 0 0 —pu 0 0
A, =]0 00 0 4,=]0 0 0 of.
R : : (2.17)
000 - 0 0 0 0 0
Ay=Ay=...= A, =0,

where i is a real function on M such that p # 0.
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(1) M is Weyl-pseudo-symmetric, i.e. R - C' and Q(g, R) are linearly dependent.

(III) R-C and Q(g, g A Ricc) are linearly dependent.

(IV) R-C and Q(Ricc, R) are linearly dependent.

(V) R-C and Q(Ricc, C) are linearly dependent.

(V) R-C — C - Rand Q(g, R) are linearly dependent. [
Corollary 2.9. Let M = M"™ be a Winigen ideal submanifold of codimension m in a real space form R ™ (k), n > 4
and m > 1. Suppose k > 0. Then the following conditions are both equivalent.

(I) R-C and Q(g, R) are linearly dependent.
(II) R-C and Q(g, g A Ricc) are linearly dependent.
(III) R-C and Q(Ricc, R) are linearly dependent.

(IV) R-C and Q(Ricc, C) are linearly dependent.

(V) M is totally umbilical in R"*™ (k) (and hence M is conformally flat). O

2.2. Proofs of main results

2.2.1. Introduction We consider mainly the Wintgen ideal submanifold M = M™ of dimension n > 3 and of

codimension m > 2 in a real space form R"*™ (k). We note that the second fundamental tensor H satisfies:
H? =a® + 0> + 2

As in Theorem A, the shape operator A satifies the following relations, forall 5 > 4and 3 <i < j < n:

(2.18)
A3(Er) Ny A3(E2) = 2By Ny Es,
Ag(En) Ny Ag(E2) =0,
A1(E1) Ny AL(E;) = a®Fy Ay E; + apBsy Ay B,
A3 (E1) Ng Ao(E;) = (0* + bu)Ey Ag E;, (2.19)
A3(Er) Ny As(E;) = By Ag B,
Ap(Er) Ay Ag(E;) =0,
A1(E2) Ng A1(E;) = apEr N E; + a’Ey Ng Ei,
As(E2) Ny As(E;) = (b° — bp) Ea Ay E;, (2.20)
As(Es) Ny As(E;) = 2By Ay B,
Ap(E2) Ay Ap(E;) =0,
A1(E;) Ay AL(E)) = a®E; Ay Ej,
As(E;) Ay As(Ej) = b2E; Ay Ej, (2.21)
A3(Eq) Ny A3(Ej) = PEi g By,
Ag(E;) Ng Ag(E;) = 0.
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Due to the relations (2.18) to (2.21), the Riemannian-Christoffel curvature operator R satisfies the following

equalities:
R(Ey, Es) = <H2 tE— 2u2) By A, Bs,

R(El,Ez) = <H2 +Fkv+ b,u) Ey /\g E; +a/LE2 /\g E;,
R(EQ,EZ) =aukr Ng E; + <H2 +E - bu) FEs Ng E;,
R(E;, Ej) = (H? + k)E; Ay E;.

(2.22)

The local components Rt = R (Ey, Ey, Ey, Ei) of the Riemannian-Christoffel curvature (0,4)-tensor R are

given by: B

Rigor = H? + k — 212,

Ry = H? +k+by for i>3,
Ryio = H> + k—bu for i>3,
Rijji=H?>+Fk for 3<i<j<n,
Ryjip = ap for 3 <i<n,

the other values of R+ being null.
We denote Ricc the Ricci tensor. We set S, = Ricc (Ey, E,). Then

Sii=(n-1) (H2—|—E) —2p* + (n — 2)bu,
S12 = (n — 2)ap,
Sao = (n—1) (H2+E) —2u* — (n—2)by for i>3,

Sii:(n—1)<H2+E) for 3<i<n,

(2.23)

(2.24)

the other values of S, being null. Next, computing the Ricci operator S (associated to the Ricci tensor Ricc) by

using the above equalities, we obtain:
S(E;) = Ricc (E, Ey) E1 + Rice (Ey, Es) Es

- [(n — (H2 + E) — 22+ (n— 2)@4 By + [(n — 2)ay] Bs,
S(E3) = Ricc (Es, Ey) E1 + Rice (Ea, Es) Es

= [(n=2ap) By + [(n = 1) (H? +F) =20 = (n — 2)bu| B,
S(E;) = Ricc (F;, E1) Eq + Ricc (E;, E3) Es

= [(n —1) (H2 —1—%)] E; for i>3.

The scalar curvature 7 is given by
7= 3" Rice(E;, B)) = n(n — 1) <H2 +7~5) 4,
i=1

so that the normalized scalar of M is

= = (0 F) sy

2

We recall that for any tangent vector fields X, Y, Z, W we have

(g ARice)(X,Y; Z, W) = g(X, W)Rice(Y, Z) + Rice(X, W)g(Y, Z)
— g(X, Z)Ricc(Y,W) — Rice(X, Z)g(Y, W)
=g(X Ny SY)+S(X)NgY)(2),W).

(2.25)

(2.26)

(2.27)
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If we set (g A Ricc),,,..; = (9 ARicc) (Ey, By, Es, Ey), foranyu > 1,v > 1,s > 1and ¢t > 1, then

(9 ARicQ) 15 = 2(n— 1) (H? + ) — 44*,

(g ARice),,;, = 2(n — 1) (H2 + 75) — 2 + (n — 2)bp,

(9 ARicC) 0 = 2(n — 1) (k + H?) — 2u% — (n— 2)bu for i >3,
(9 ARice),;;, = 2(n — 1) <H2 +'z€) for 3<i<n,

the other values of (g A Ricc),,, ., being null.
Let C be the Weyl conformal curvature tensor. Setting Cyyit = C (Ey, Ey, By, Et), we get

Chat = —72%__31)“ 2,

Chiin = m for ¢ >3,

Caiiz = m for >3,
Cijji:_m_f:)’ugl_Q) for 3<i<j<nm,

the other values of C\,,: being null.

(2.28)

(2.29)

2.2.2. Proofs of theorems 2.1, 2.2, 2.3, 2.4 and corollary 2.1 Now we compute the local components of the tensors

R-C,C-Rand R-C — C - R of a Wintgen ideal submanifold. Let Z, W be tangent vector fields.

Firstly, we compute the local components of the tensor R - C. For any index i € {3,...,n},
2(n — 3)ula
(R . O) (El, EQ, Z, I/V7 El, Ez) = % <(E1 /\g El) (Z)7 W>
_2(n— 3)u?

(B2 + T+ b) (B2 Ag ) (2). W),

2(n —3)p”
n—2

n—2
(R-C)(Ey, Es, Z,W; Es, E;) = (H2 Y E— ub) (B1 Ay Ey) (Z), W)

2(n — 3)pla
n—2

(B2 Ag E) (Z), W)
For any indexes ¢, j € {3,...,n} such thati # j,

(RC) (E17Ei7Za W;ElaEQ) = 0,
2

2 ~
(R-C) (B, Ei, Z,W; By, E;) = nﬁ2 <H2 +k+ub> (B Ay E;) (2), W),

2(n — 3)u?

n—2

(R . C) (EhEi,Z,W;EQ,EZ‘) = (H2 +E* ‘Ltb) <(E1 /\g EQ) (Z), W> s

(R . C) (El,Ei,Z,W;Ei,E]‘) = 0
For any indexes ¢, j € {3,...,n} such that i # j,
(R-C) (B2, E;, Z,W; Ey, E1) = 0,

22 ~
(R-C) (Bz, Ei, 2,W: By, By) = (H2 Fy. ,ub) (E; Ay E;) (2), W),
2(n —3)p”

(RC) (EQ,Ei,Z,W;Ei,El): n_2

[H2 4T+ pib] ((B1 Ay B2) (2), W),

(R . C) (EQ, Ei, Z, VV7 Ei,Ej) = O

(2.30)

(2.31)

(2.32)
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For any indexes i, j, k € {3,...,n} such thati # j, i # kand j # k,

22 ~
(R-C) (Ei, By, Z,W; B, By) = —— (H? + T+ ub) (B A By) (2), W)
2 2
£

o (B2 Ay B) (2), W),

2 (B, ) (2),W) 2.33)

22 5 =

S (2T = b) (B2 g By) (2),W),
(R : C) (Ei?Ej>Z7 W7E27Ek) = 07

(RC) (Elanvzavaj;Ek) =0.

(R : C) (Eiija ZvW;Ei7E2) =

Secondly, we compute the local components of the tensor C' - R. For any index ¢ € {3,...,n},
(€ R) (81 B 2B B) = 2SI (5 1, ) (2), )
M (2 — ub) (B2 Ay E) (Z), W),
(n—=1)(n-2) (234)
) .
(C-R)(Ey, By, Z,W; Ey, E;) = m (2% + pb) ((Er Ag E;) (Z), W)
2(n —3)pla '
(n _ 1)(n _ 2) <(E2 /\g E7) (Z)’ W> .
For any indexes i, j € {3,...,n} such that i # j,
(R By, B 2,W By ) = <200 gy (). )
n— 33
+ W (B2 Ny Ei)(Z), W),
(C . R) (Ela Eiv 27 W; Elv Ej) = m <(EZ /\g Ej) (Z)a W> ) (235)
(O R (B, By 2,3 B, ) = DU (a4 ) (81 1y ) (2), W),
(C . R) (El, Ei, Z, W; Ei7 Ej) =0.
For any indexes ¢, j € {3,...,n} such that i # j,
(R (Bo B 2.3 By, 1) = 0D 5y (2), )
Ay n, 1) (2).9),
(C- R) (Ba, By, Z.W; By, Ey) = —m (B: Ay ) (2). W) (2:36)
2(n —3)p” 2
(C-R) (B, Ei, Z,W; B, By) = h—Dn-2) (2 — bp) ((By Ay E2) (Z), W),
(C . R) (EQ, Ei, Z, W, EZ‘,E]‘) =0.
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For any indexes ¢, j, k € {3,...,n} such thati # j,i # kand j # k,

) ~2(n—3)pPb ‘
(C-R)(Ei, Ej, Z,W; E;, Er) = CENCED)] (B Ng E5) (2), W)
2(n — 3)pa _
+ (n _ 1)(n _ 2) <(E2 /\9 EJ) (Z)a W> i
3
(€ B) (Bx. B3, 2.W: B Ba) = (s P (B g ) (2),1)
B 2(n — 3)u3b A
(Tl _ 1)(TL _ 2) <(E2 /\g E’L) (Z)7W> ’
(C . R) (EZ, Ej, Z7 W, Ei, Ek) = 0,
(O . R) (EZa Ej, Z, W, Ej, Ek) =0.

(2.37)

Thirdly, we compute the local components of the tensor R - C'— C - R on a Wintgen ideal submanifold. For

any index i € {3,...,n},

(R-C—C-R)(Ey, By, Z,W By, Ey) = Q(ng){;a ((Ev Ng Ey) (Z),W)
- m (0= 1) (H2 4 ) + (0= 2)sb +202) (B> 1 Bo) (2), W),
(R-C—C-R)(Ey,Es, Z,W ; By, E;) = — 2n(n — 3)ula

(n—1)(n-2)
2(n — 3)u?

ey (0= 1) (B2 4 F) = b — 20 ) (B 1y B (2),W).

(B2 A Ei) (2), W)

For any different indexes i, j € {3,...,n},

(R-C—C-R)(E\,E;, Z,W ; Ey, E)
_4(n—3)pla _ 4(n —3)ub
== -1 ((Br Ny Ei) (Z), W) a1

(R C C R) E17E17ZW El? )

(B2 N Ei) (2), W),

- nfl

( n—1) <H2 +%) +2ub> (B Ay E;) (2), W),
(R c-C- R Ev,Ei, Z,W : By, E;)
5 (in-

n—l

) (
(H2 ¥ k) — b —2u ) (B1 Ay Bs) (2), W),
(R-C—C- R)(EhEZ,ZW Ei E;) =

For any different indexes i, j € {3,...,n},

(R-C—C-R)(F2,E;, Z,W ; Ey, Ey)
4(n — 3)u3b 4(n — 3)ula
A=W 5y, B (2), W) 4 T

(R C—C R)(EQ,EZ'7ZW;E2,EJ')

(B2 Ag E) (Z), W),

=gy (= D (B +F) —2ub) (B ng B7) (2), ),

(RC CR

) (
7n—1 n—2 (
(R-C—-C-R)(Ey,E;, Z,W ,E;,E;) =0.

Es, E;, Z,W ; E;, By)
n

C)(HE4R) + Wb) (1 Ay B2) (2), W),

(2.38)

(2.39)

(2.40)
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For any different indexes i, j, k € {3,...,n},

(R-C —C-R)(Ei,E;, Z,W ; Ei, Fy) = (71—12)71—2) ((n ~1) (H2 +7§) + 2pb) (By Ay E) (Z),W)
413a 4
413a

(R-C = CR) (B By, Z2.W 3 B Ba) = o5 s ((

FEy /\g El) (Z), W>

+ (71—12;51—2) ((n ~1) (H2 + 75) - Q;Lb) (Bx Ay Ei) (2), W),

(R-C—C-R)(E;,E;, Z,W ; E;, Ey,) = 0,
(R-C—-C-R)(E;,E;,Z,W ; E;, E}) = 0.

(2.41)
In terms of the equalities (2.30), (2.31), (2.32), (2.33), (2.34), (2.35), (2.36), (2.37), and (2.38), (2.39), (2.40), (2.41),
we prove theorems 2.1, 2.2, 2.3, 2.4 and corollary 2.1 above.

2.2.3. Proofs of theorems 2.5, 2.6, 2.7, 2.8, 2.9 and corollaries 2.2, 2.3 We compute the local components of the tensor
Q(g, R) of a Wintgen ideal submanifold. Let Z, W be tangent vector fields of M. For any index i € {3,...,n},

Q (9, R) (B, Bs, Z,W; B, E;) = (bu — 214%) (B2 Ag Ei) (2), W), 242)
Q (gaR) (ElvEQa Z>W;E27Ei) = (b/U' + 2M2) <(E1 /\g El) (Z)7W> —ap <(E2 /\g El) (Z)7W> . ‘
For any indexes ¢, j € {3,...,n} such that ¢ # j,
Q (9, R) (En, Ei, Z,W; B, Ep) = ap((E1 Ay ;) (Z2), W) = 2bp (B2 Ny E3) (Z), W),
(g’R) (E 7Ei727W1E15 ): <(E /\gE)(Z)?W>7 (243)
Q(9,R) (Ev,E;i, Z,W; Ea, E;) = (b + 2p%) {(Ey Ay E2) (2), W), '
Q(g9,R) (Er,E;, Z,W;E;,E;) = 0.
For any indexes i, j € {3,...,n} such thati # j,
(g,R) (E‘27E‘“Z7 W,El,EQ) = 2b/,& <(E1 /\g EZ) (Z), W> —ap <(E2 /\g El) (Z), W> ,
Q(97R) (E Eiaz W'EiyEl) = (_b/’('_'_ 2/-1/2) <(E1 /\g E2) (Z)7W>a '
Q(ng) (E27E17Z W EZaE ) = 0.
For any indexes i, j, k € {3,...,n} such thati # j,i # kand j # k,
Q(gaR) (EZa Z WEMEI):b <(E1 /\QE) (Z)7W>7
Q (g, R) (EZ,EJ,Z Wi Ei, Ea) = ap((Ey Ng Ej) (Z2), W) — bu((E2 Ny E;) (Z), W), (2.45)
Q(Q,R) (Elij727W7EzaEk) :07 '
( R)(EmEmZaW’EJaEk):O

In terms of the equalities (2.30), (2.31), (2.32), (2.33), (2.34), (2.35), (2.36), (2.37), (2.38), (2.39), (2.40) , (2.41) and
(2.42), (2.43), (2.44), (2.45), we prove theorems 2.5, 2.6, 2.7, 2.8, 2.9 and corollaries 2.2, 2.3 above.

2.2.4. Proofs of theorems 2.10, 2.11, 2.12 Now we compute the local components of the tensor Q(g,C) for the
considered Wintgen ideal submanifold. Let X, Y, Z, W be tangent vector fields. For any index ¢ € {3,...,n},
2(n — 3)p?
Q(9,C) (E1, Ey, Z,W; Er, E;) = I (B2 Ny E;) (Z), W),
2(n — 3)u?
n—2

(2.46)

Q(gvc) (E17E2727W;E27Ei): <(E1 /\g El) (Z)aW>
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For any indexes ¢, j € {3,...,n} such that ¢ # j,

Q(g,C) (E17Ei727W;E1aE2):O
2
Q(9,C) (Er, By, Z,W; By, Ej) = nz“ (E; Ny Ej) (2),W),

2(n — 3)u?

Q(Q7C)(E13EiaZ7W;E27Ei): n—2

(B1 g E2) (2), W),

Q(gac) (ElinaZ7W;Ei7Ej) =0.
For any indexes ¢, j € {3,...,n} such that ¢ # j,

Q(g,C) (E27Ei727W;E2aE1) :0
2
Q(9,C) (B2, Ei, Z,W; By, Ej) = nz“ (E; Ny Ej) (2),W),

2(n — 3)u?

Q(!LC) (EZaEi7Z7W;Ei7E1): n_2

(B1 g E2) (2), W),

Q(g7c) (EQaEi7Z7W;EiaE1) =0.
For any indexes ¢, j, k € {3,...,n} such thati # j,i # kand j # k,

2 2
QU9,C) (Bi, By, 2W; By, 1) = —— ((By g By) (2), W),

2 2
Q(gvc) (EiijaZ7W;Ei7E2) = n ﬁ 9 <(E2 /\9 EJ) (Z)vW>7
Q(g7c) (X,Ya Z7WaEZaEk> = 07
Qg,C)(X,Y,Z,W;E; E) =0.

(2.47)

(2.48)

(2.49)

In terms of the equalities (2.30), (2.31), (2.32), (2.33), (2.34), (2.35), (2.36), (2.37), (2.38), (2.39), (2.40) , (2.41) and

(2.46), (2.47), (2.48), (2.49), we prove theorems 2.10, 2.11, 2.12.

2.2.5. Proofs of theorems 2.13, 2.14, 2.15, 2.16 and corollary 2.4 We compute the local components of the tensor
Q(g,9 A Ricc) of a Wintgen ideal submanifold. Let X, Y, Z, W be tangent vector fields of M. For any index

i€{3,...,n},

Q(g7g A RiCC) (E17 E27 Z7 w ;E17 E’L) = ((n - 2)b/'b - 2:”’2) <(E2 /\g El) (2)7 W> )
Q(g. g ARice) (Br, Bz, ZW 5 Bz, By) = ((n — 2)bp + 21%) (B Ng Ei) (2),W) .
For any different indexes i, j € {3,...,n},

Q(g7g /\RICC) (ElaE’LaZ W E17E2

) = =2(n = 2)bu((E2 Ay Ei) (2), W),
Q(g,g/\RiCC) (El,EZ‘,Z,W ;El, )

i)

)

(=(n —2)bu+2u%) ((Bs Ay B;) (Z), W),
( 2)bp + 2 ) ((ExAg E2) (Z2), W),
0.

Q(g,9 ANRicc) (Ey, E;, Z,W ; Es, E
Q(g,9 ANRice) (E1, E;, Z,W s By, By

For any different indexes i, j € {3,...,n},

Q(g,9 A Ricc)
Q(g, 9 A Ricc)
Q(g,9 N Ricc)
Q(g,9 N Ricc)

For any different indexes 4, j, k € {3,...,n},

—~

Es, By, Z,W ; Eo, Ey
By Ei . Z,W ;Ey E

Ey B, Z,W El,El
By, B, Z,W ;E;, E;

2(n = 2)bp ((Ex N Bi) (2), W),

( n_zb:u_QM)<(Ei/\gEj)(Z)7W>a
(=

0.

—~

(n = 2)bp + 2p%) ((Er Ag E2) (2), W),

P

\./\./\./\./
I

Q(g,9 A Ricc) (E;, Ej, Z,W ; E;, Eq)
Q(g, g ARicc) (B;, E;, Z,W ; E;, Es)
Q(g, g A Ricc) (E,,E],Z W E,,E)

Q(g, 9 ARice) (Ej, E Ey)

(2]

((n = 2)bu = 244) ((Ex Ny Ej) (2), W),
(~ (0 — 2oy — 20%) ((Ea Ay ) (2).W).
0
0.

)

(2.50)

(2.51)

(2.52)

(2.53)
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In terms of the equalities (2.30), (2.31), (2.32), (2.33), (2.34), (2.35), (2.36), (2.37), (2.38), (2.39), (2.40) , (2.41) and
(2.50), (2.51), (2.52), (2.53), we proved theorems 2.13, 2.14, 2.15, 2.16 and corollary 2.4 above.

2.2.6. Proofs of theorems 2.17, 2.18, 2.19, 2.20 and corollary 2.5 We compute the local components of the tensor
Q(Ricc, R) for a Wintgen ideal submanifold. Let X, Y, Z, W be the tangent vector fields of A/. For any index

i€{3,...,n},

Q (Rice, R) (Ey, By, Z,W; By, E;) = a (— (H2 + E) + 2,3) (E1 Ay E:) (Z), W)

+ ((n —9)(a? + W) — 2bp® — (20 — 4) 2 (H2 +'/5) + b (H2 + E)) (B2 Ay E) (Z), W),

Q (Rice, R) (E1, B2, Z,W; By, E;) = [-2bp® — (n — 2)(a® + b%) i (2.54)
(20 — )2 (H2 +7%> + b (H2 + %)} (B1 Ay Ey) (Z), W)

+ (—Qa;ﬁ +apu (H2 —|—E)) (B2 Ny E3) (Z),W).

For any different indexes i, j € {3,...,n},

Q (Rice, R) (E, Ei, Z,W; Ey, Bs) = 2ap ((H2 + E) - Q,E) (B1 Ay By (Z), W)

+ 2y (— (H2 + E) + 2,ﬁ) (B2 Ay E) (Z), W),
Q (Rice, R) (Ey, By, Z, W E1, ;) = <H2 + 75) (b +21°) (B N Ej) (2), W), (2.55)
Q (Rice, R) (E1, E;, Z,W; By, E;) = [—(n — 2) (a® + b°) p® — 2by°

(20 — )2 (H? + &) + bu(H? + E)} (By Ay Bs) (2), W),

Q (Rice, R) (B, By, Z,W; E;, Ej) = 0.

For any different indexes i, j € {3,...,n},

Q (Rice, R) (Ea, Ei, 2, W; Es, Ey) — (2bu (H2 n E) - 4bu3) (E1 A, B3 (Z),W)

+ (Za,u (H2 + 75) - 4a,ﬁ) (Bs Ay E2) (2), W),
Q (Ricc, R) (Ea, E;, Z,W; B, Ej) = (—bu + 2% (H2 + 75) ((Bing E5)(2), W), (2.56)
Q (Rice, R) (E», E;, Z,W; By, Ey) = [2bp® — (n — 2)(a® + b?)p?

(20 — )2 (H2 + 75) ~ b (H2 + %)} (B1 Ay Bs) (2), W),

Q (Rice, R) (B, E;, Z,W; E;, E;) = 0.

For any different indexes i, j, k € {3,...,n},

Q (Rice, R) (Ey, By, Z,W; By, By) = (b + 201) (H2 +75) (B1 Ay E;)(2),W)
+ap (H2 +F) ((Bz Ay B5) (2), W),

Q (Rice, R) (Ei, Ey, 2, Ws Es, Ez) = ap (H2 + K ) ((By A By) (2), W) 2.57)
+ (=bu+2u2) (H2 + %) (B 1, B) (2), W),

Q (Rice, R) (B3, Ej, Z,W; Ey, E),) = 0,
Q (Ricc, R) (E;, Ej, Z,W; E;, Ey,) = 0.

From the equalities (2.30), (2.31), (2.32), (2.33), (2.34), (2.35), (2.36), (2.37), (2.38), (2.39), (2.40) , (2.41) and (2.54),
(2.55), (2.56), (2.57), we proved theorems 2.17, 2.18, 2.19, 2.20 and corollary 2.5 above.
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2.2.7. Proofs of theorems 2.21, 2.22, 2.23, 2.24 and corollary 2.6 We compute the local components of the tensor

Q(Ricc, C) for a Wintgen ideal submanifold. Let X, Y, Z, W be the tangent vector fields of M. For any index
i€{3,...,n},

2n =3’ N Ei) (Z), W)

Q(RiCC,C) (El,EQ’Z,W;E17Ei): n—1

2(n_3)M2 2 2, 7 2
S = (0 =12 (H2 4 ) + (n = 2y = 202) (B2 1, B) (2), W),

s S (2.58)
Q (Rice, C) (Bv, Ea, Z, W5 By, E;) = *% (B2 Ay Ei) (Z)W)
m (0 =12 (H2 + %) = (n = by — 262 (B 1, B) (2), W),
For any different indexes i, j € {3,...,n},
Q (RiCC, C) (El, Ei, Z, W; El, EQ)
= I gy g ) 20wy + I iy 0 ) (20,0,
Q (RiCC, C) (El, EZ', Z, W; El, EJ)
2 ~
=g (= 0 (B2 4 F) + 200 = 20— %) (B A, ) (2). W), 259
Q (RiCC, C) (El, Ei, Z, W, Eg, E,)
n—3)u? ~
=(,f(_1)(;?‘_‘2) (0 =12 (H2 + %) = (n = 2)bps = 262) (B 1, B2) (2), W),
Q (Rice, C) (B, E;, Z, W3 E;, E;) = 72(7:;7_3)1@& (By Ay Bo) (2),W).
For any different indexes i, j € {3,...,n},
Q (RiCC, C) (EQ, Ei, Z7 W, EQ, El)
n — 3 n— 3au®
IO iy, 1) (2),w) Dy B (2), W),
Q (RiCC, C) (EQ, Ei, Z, W, Eg, E])
2 ~
=(n_f)ﬁ (0 =12 (H2 + ) = 2(n = 2)bp — 42 (Bi 1, By) (2), W), (2.60)
Q (RiCC, C) (EQ, Ei, Z, W, Ei7 El)
:m (=12 (B2 4 7) + (0 = 20— 22 (B 1, B) (2), W),
Q (RiCC, C) (EQ, Ei, Z, W; Ei7 Ej) =0.
For any different indexes 4, j, k € {3,...,n},
Q (Rice, C) (E;, By, Z, W E;, Ey) = 4‘3”‘ (Ba Ay E) (Z), W)
2 ~
T D) f)*zn — ((n _1)? (H2 + k) 4 2(n — 2)bu — 4,3) (E1 Ay Ej) (Z), W),
Q (Rice, C) (Ey, By, Z, W E;, Es) = 3““1 (E1 Ay E;) (Z), W) (2.61)

212 ~
+ m ((n -1)? (H2 + k) —2(n — 2)bu — 4u2) (B2 Ny Ej) (2), W),
(RICC C) (Eianvza WvEHEk') = 07
(RICC C) (Ei,Ej,Z, W;Ej;Ek:) =0.

From the equalities (2.30), (2.31), (2.32), (2.33), (2.34), (2.35), (2.36), (2.37), (2.38), (2.39), (2.40) , (2.41) and (2.58),
(2.59), (2.60), (2.61), we proved theorems 2.21, 2.22, 2.23, 2.24 and corollary 2.6 above.

dergipark.org.tr/en/pub/iejg


https://dergipark.org.tr/en/pub/iejg

R. Deszcz, M. Glogowska, M. Petrovié¢-Torgasev & G. Zafindratafa

2.2.8. Proofs of theorems 2.25, 2.26, 2.27 and corollaries 2.7, 2.8, 2.9 We compute the local components of the tensor
Q(Ricc, g A Ricc) for a Wintgen ideal submanifold. Let X, Y, Z, W be the tangent vector fields of M. For any
indexi € {3,...,n},

Q (Ricc, g A Ricc) (Ey, Bz, Z,W: Ey, E;)
—(n — Dap [2(n — (H2 + E) + (n— 2)bp — 2,3} (By Ay E:) (Z), W)
+ [—4u4 + (= 2)26%2 + 2(n — 1)u? (H2 ) (n—1)(n — 2)bu <H2 +7£)} (Bs A, E3) (Z), W), oo
Q (Rice, g A Ricc) (Ey, Ea, Z,W; Es, E;)
- [4;1,4 (= 22622 — 2(n — 1) (H2 + k;) —(n—1)(n—2)bu (H2 +E)} (E1 Ay E:) (Z), W)

— (n - 2)ap [2(n —1) (H2 + '15) — (n—2)bu— Qﬂ (Ba Ay Ei) (2),W).
For any different indexes i, j € {3,...,n},

Q (Ricc, g A Rice) (Ey, FEyy Z,W; Eq, Es)
——2(n— Yap |2(n — 1) (H2 +F) +(n — 2)bu — 22%] {(Bx Ay Bi) (2), W)

+2(n —1)(n — 2)bu (H2 +E) (By Ay Ey) (2), W),
Q (RiCC, g A RiCC) (El, Ei, Z, W, El, EJ)
- [—(n ~1)(n - 2)bu <H2 +%) +2(n — 1) (H2 ¥ E)} (E; Ay E;) (2), W),
Q (RiCC, g RiCC) (El, E;, Z, W, EQ, EJ)
- [4,# ~(n—2)20%2 — 2(n — )2 <H2 +E> —(n—1)(n—2)bu (H2 v E)} (B1 Ay B2) (2), W),
Q (RiCC, g RiCC) (El, Ei, Z, W, Ei, EJ) = 0.

(2.63)

For any different indexes i, j € {3,...,n},
Q (Ricc, g A Ricc) (Es, E;, Z,W; Es, Ey)
— —2(n—1)(n—2)bu (H2 +E> (B1 Ay Ey) (Z), W)
—2(n— 2)au [2(n ~1) <H2 n E) —(n—2)bu— Qﬂ (By Ay E;) (2), W),
@ (Ricc, g A Ricc) (Eo, E;, Z,W; By, E})
- [(n —D)(n - 2)bu (H2 + '15) +2(n — )2 (H2 n '15)} (E; Ay E;) (2), W),
@ (Ricc, g A Ricc) (Eo, E;, Z,W; E;, E)
= [4p* = (n — 2)b% +(n— 1)(n — 2)bp (H2 + E) —o(n— 1) (H2 +E)] (E1 Ay Bs) (Z),W)
@ (Ricc, g A Ricc) (Bo, E;, Z,W; E;, E;) = 0.

(2.64)

For any different indexes i, j, k € {3,...,n},
Q (Ricc, g ARice) (E;, Ej, Z,W; E;, Er)

= [0 =1) (H2 + ) (~(n = g+ 262) | (1 1, By (2), W)
—2(n—1)(n - 2)ap (H2 + %) (Bs Ay E;) (Z),W)
Q (Ricc, g ARice) (E;, Ej, Z,W; E;, Es)

(2.65)
— _2(n—1)(n a,u(H2 ) (B A, Ej) (Z), W)

=)+ 20 ( )+2n—1) 2<H2+%>}<(E2A9Ej)(Z),W>,
Q (Ricc, g ARicc) (E;, Ej, Z,W; E;, Ey) = 0,
Q (RiCC,g A RiCC) (Ei,Ej,Z,W;E]‘,Ek) =0.
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Using (2.30), (2.31), (2.32), (2.33), (2.34), (2.35), (2.36), (2.37), (2.38), (2.39), (2.40) , (2.41) and (2.62), (2.63), (2.64),
(2.65), we can prove theorems 2.25, 2.26, 2.27 and corollaries 2.7, 2.8, 2.9 above.
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