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ABSTRACT

We study the orbits arising from isometric actions of connected Lie groups on Lorentzian manifolds
with constant positive curvature.
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1. Introduction

Let M be a pseudo-Riemannian manifold and G be a Lie group with the isometric action of G on M . If
G is large enough, then the geometry and topology of M is closely related to G and the orbits of the action
of G on M . If m = max{dimG(x) : x ∈M}, then dimM −m is called the cohomogeneity of the action of G
on M and is denoted by coh(M,G). If the cohomogeneity is zero, then the action of G on M is transitive
and M is a homogeneous manifold. Study of the homogeneous Riemannian manifolds is a classic subject in
differential geometry and they are almost characterized. Also, cohomogeneity one and cohomogeneity two
Rimannian manifolds and their orbits have been studied by many authors ( see [6], [9], [13], [15], [16], [19],
[20], [21]). Isometric actions on pseudo-Riemannian manifolds and their orbits are not as well studied as in
the Riemannian manifolds. Although, some interesting partial results are obtained. See [24] for some results
about homogeneous flat pseudo-Riemannian manifolds, and see [25] for useful theorems about the isometry
groups of homogeneous pseudo-Riemannian manifolds of constant curvature. Also, we refer to [4], [8] and [18],
for some results on homogeneous and symmetric Lorentzian manifolds. If the actions on pseudo-Riemannian
manifolds are not transitive, the characterization of the orbits and orbit spaces is more complicated and there
are not much results in the literature. We take in the present paper the case where M is a Lorentzian manifold
of constant sectional curvature. The authors of [2] and [3] take the cases where M is a cohomogeneity one
Minkowski, De Siter and anti-De Siter space. Then, they studied the acting group G and the orbits. We refer
to [10] to see many more valuable results about cohomogeneity one actions on anti-De Siter spacetimes. In the
present article, among the other results, we show that the characterization (up to diffeomorphism) of the orbits
and orbit spaces of Lorentzian G-manifolds with constant positive curvature reduces to the characterization of
the orbits and orbit spaces of the isometric actions on Riemannian manifolds of constant positive curvature
(Theorem 3.8, Corollary 3.10). There are many results about the acting group and the orbits of isometric
actions on Riemannian manifolds of constant positive curvature, which by using of our theorems, they can
be transferred to the study of isometric actions on the Lorentzian manifolds of constant positive curvature (see
Theorem 4.2 and Remark 4.3 for instance).

2. Preliminaries

Let Ln+1(= Rn+1
1 ) be the usual Lorentzian space with the scalar product < v,w >= −v1w1 + v2w2 + ...+

vn+1wn+1. Let SO0(n, 1) be the connected component of the identity in the Lie group of all linear isometries of
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Ln+1 and G be a Lie subgroup of SO0(n, 1). The action of G is said irreducible if G does not leave invariant any
proper subspace of Ln+1 and weakly irreducible if any G-invariant subspace has a degenerate induced metric.
We will use the following theorem proved in [22].

Theorem 2.1. If G is a connected Lie subgroup of the isometries of Ln+1 with irreducible action, then G = SO0(n, 1).

Recall that the pseudo-sphere and the hyperbolic space of radius r > 0 are defined by:

Sn
1 (r) = {x ∈ Ln+1 :< x, x >= r2},

Hn(r) = {x ∈ Ln+1 :< x, x >= −r2}.

Sn
1 (r) is a Lorentzian manifold of constant positive curvature and Hn(r) is a Riemannian manifold of constant

negative curvature. If r = 1, we will denote Sn
1 (r) and Hn(r) by Sn

1 and Hn.
We will denote by Λ the null cone of Ln+1, Λ = {x ∈ Ln+1 :< x, x >= 0}. The upper and lower null cones
are defined by Λ+ = {x ∈ Λ : x1 > 0} and Λ− = {x ∈ Λ : x1 < 0}. By definition, the infinity Hn(∞) of the
hyperbolic space Hn(r), r > 0, is the classes of equivalence of asymptotic geodesics (see [11]). We refer to [11]
also, to see the definition of the horosphere centered at a point z ∈ Hn(∞). Definitions of the infinity and
horospheres of Hn(r) in [11] are based on the Poincare model of Hn(r). In the Lorentzian model of Hn(r)
( the above model), each null line corresponds to a point of Hn(∞). Let l be a null line in Ln+1 containing
the origin. There is a null vector v such that l = tv, t ∈ R, and there is a unique hyperplane W of Ln+1

containing l and tangent to Λ. We denote by [W ] the collection of all hyperplanes parallel to W . If W ′ ∈ [W ]
and S =W ′ ∩Hn(r) ̸= ∅, then S is a horosphere centered at l ( in the Lorentzian model of Hn(r)). We will use
the following theorem, proved in [22].
Theorem 2.2. If G is a connected subgroup of the isometries of Ln+1 with weakly irreducible action, then either G acts
transitively on Hn(r), r > 0, or there is a point l ∈ Hn(∞) such that G acts transitively on each horosphere of Hn(r)
centered at l.
Remark 2.3. In Theorem 2.2, if the action of G on Hn(r) is not transitive, then there is a null hyperplane
W such that for all W ′ ∈ [W ] with W ′ ∩Hn(r) ̸= ∅, we have G(W ′ ∩Hn(r)) =W ′ ∩Hn(r) (note that the sets
W ′ ∩Hn(r) are the horospheres with common center at infinity mentioned in the above theorem). Now, It is
easy to show that:
(1) For all W ′ ∈ [W ], G(W ′) =W ′.
(2) Since the action of G on all W ′ with W ′ ∩Hn(r) ̸= ∅ is of cohomogeneity one, then the action of G on Ln+1

is of cohomogeneity two. Then, from the fact that the union of all principal orbits of the action of G on Ln+1 is
a dense subset of Ln+1, we get that the action of G on Sn

1 is also of cohomogeneity one.

The following theorem about the decompositioin of closed and connected subgroups of SO0(n, 1) will
be a useful tool in the proofs.

Theorem 2.4 ([14]). If G is a closed and connected subgroup of SO0(n, 1) without null eigenvector, then either
G = SO0(n, 1) or there is a non-negative integer m < n and a closed and connected subgroup K of the isometries of
Rn−m such that G = SO0(m, 1)×K.
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3. Results

By the following theorem, in isometric actions of connected groups on pseudo-spheres with big
cohomogeneity, there is a useful global decomposition of the orbits. In what follows, for simplicity we
consider Sn

1 (r) with r = 1 ( similar results are true for all r > 0).

Theorem 3.1. Let G be a closed and connected subgroup of SO0(n, 1).
If coh(Sn

1 , G) ≥ 2, then there is a non-negative integer m < n and a closed and connected subgroup K of O(n−m) such
that

G = SO0(m, 1)×K.

Proof. Three cases may occur.
(1) The action of G on Ln+1 is irreducible. This case is not possible. Because, by Theorem 2.1, G = SO0(n, 1) and
coh(Sn

1 , SO0(n, 1)) = 0.
(2) The action of G on Ln+1 is reducible without null eigenvector. Then, by Theorem 2.4, either G = SO0(n, 1)
which is impossible as the above, or G splits as G = SO0(m, 1)×K, K ⊂ O(n−m), for some positive integer
m < n.
(3) The action of G is reducible with null eigenvector (i.e, weakly irreducible). Then, by Theorem 2.2 and
Remark 2.3, coh(Sn

1 , G) = 1.

If in Theorem 3.1, we replace the assumption coh(Sn
1 , G) ≥ 2 with coh(Sn

1 , G) = 1, and we consider three
possibilities in the proof of that theorem, then we get that either a similar decomposition as Theorem 3.1 is
true for G, or the action of G on Ln+1 is weakly irreducible. In the later case, by similar arguments in Remark
2.3, there is a null hyperplane W such that G(W ′) =W ′ for all W ′ ∈ [W ], which implies G(Sn

1 ∩W ′) = Sn
1 ∩W ′.

Consequently, the following corollary is true:

Corollary 3.2.
If G is a connected subgroup of SO0(n, 1) and coh(Sn

1 , G) = 1, then one of the following is true:
1) There is a non-negative integer m < n and a connected subgroup K of O(n−m) such that

G = SO0(m, 1)×K.

2) There is a null hyperplane W in Rn+1
1 such that each G-orbit of Sn

1 is included in Sn
1 ∩W ′ for some W ′ ∈ [W ].

Now, we show that when the cohomogeneity is big, characterization of the orbits of isometric actions
on pseudo-spheres reduces to characterization of the orbits of isometric actions on the usual spheres.

Theorem 3.3. If G is a closed and connected subgroup of the isometries of Sn
1 such that coh(Sn

1 , G) ≥ 2, then there is
a positive integer m < n and a connected subgroup K of O(n−m) such that each G-orbit is equal to one of the following
sets:
(a) {0} × E, Λ+ × E, Λ− × E, where E is a K-orbit in Sn−m−1 and Λ± are the upper and lower null cones in Lm+1.
(b) Sm

1 (r)× E, E is a K-orbit in Sn−m−1(1− r), 0 < r < 1,
(c) Hm(r)× E, E is a K-orbit in Sn−m−1(1− r), r < 0.
(d) Sm

1 × {0}

Proof. By Theorem 3.1, there is a positive integer m such that G splits as G = SO(m, 1)×K, K ⊂
O(n−m). Consider Rn+1

1 as Rn+1
1 = Rm+1

1 ×Rn−m. Then, for each (x, y) ∈ Rn+1
1 (= Rm+1

1 ×Rn−m), G(x, y) =
SO(m, 1)(x)×K(y). Denote by <,>0 the usual inner product of Rn−m. Then,

Sn
1 = {(x, y) ∈ Rm+1

1 ×Rn−m :< x, x > + < y, y >0= 1}.

Put < x, x >= r. If r = 0 then from the fact that the orbits are connected we get (a). If 0 < r < 1, then x ∈ Sm
1 (r)

and y ∈ Sn−m−1(1− r) and we get (b). If r < 0, in a similar way, (c) is true and r = 1 implies (d).
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If in the above theorem coh(Sn
1 , G) = 1, then the principal orbits must be of dimension n− 1. Then, the

K-orbits E must be of dimension n−m− 1, which implies that the K-orbits E are diffeomorphic to Sn−m−1.
Now, by the similar way in proof of the above theorem and by using of Corollary 3.2, we get the following
Remark.

Remark 3.4. If G is a closed and connected subgroup of the isometries of Sn
1 such that coh(Sn

1 , G) = 1,
then one of the followings is true:
(1) There is a positive integer m < n such that each orbit is equal to one of the following sets:
(a) {0} × Sn−m−1, Λ+ × Sn−m−1, Λ− × Sn−m−1, Λ± are the upper and lower null cones in Lm+1.
(b) Sm

1 (r)× Sn−m−1(1− r), 0 < r < 1.
(c) Hm(r)× Sn−m−1(1− r), r < 0.
(d) Sm

1 × {0}.
(2) There is a null hyperplane W such that each orbit D is included in W ′ ∩ Sn

1 for some W ′ ∈ [W ] depended to
D . If D is a principal orbit, by dimensional reasons, D =W ′ ∩ Sn

1 .

Remark 3.5. (a consequence of the arguments in [5], pages 62-64). If M is a connected semi-Riemannian
manifold and G is a connected subgroup of Iso(M), and if M̃ is the universal semi-Riemannian covering
manifold of M with the covering map κ : M̃ →M , then there is a connected covering G̃ of G with the covering
map π : G̃→ G, such that G̃ acts isometrically on M̃ and
(1) Each deck transformation δ of the covering κ : M̃ →M maps G̃-orbits on to G̃-orbits.
(2) If x ∈M and x̃ ∈ M̃ such that κ(x̃) = x, then κ(G̃(x̃)) = G(x).
(3) The desk transformation group, which we denote it by Γ, centralizes G̃ (i.e., for each δ ∈ Γ and
g̃ ∈ G̃, δg̃ = g̃δ).

The following theorem proved in [12] will play an important role in the proof of Theorem 3.7.

Theorem 3.6. A complete, connected and homogeneous Riemannian manifold of negative curvature is simply
connected.

By the following theorem, characterization of the orbits and orbit spaces of isometric actions on Lorentzian
manifolds of constant positive curvature is actually a problem in Riemannian manifolds of constant positive
curvature.

Remark 3.7. If ϕ and ψ are isometries of a connected pseudo-Riemannian manifold M and there is a
p ∈M such that ϕ(p) = ψ(p) and dϕp = dψq, then ϕ = ψ (see [17], Section 3, Proposition 62). Consequently, if
two isometries are equal on a open subset of M then they are equal.

Theorem 3.8. Let Mn
1 be a Lorentzian manifold of constant positive curvature and G be a closed and connected

subgroup of the isometries.
If coh(M,G) ≥ 2, then there is a positive integer m and a connected subgroup G′ of O(n−m) such that:
(a) M is diffeomorphic to Sm

1 ×M ′, where M ′ = Sn−m−1

Γ , Γ = π1(M).
(b) G is covered by SO(m, 1)×G′ and there is an isometric action of G′ on M ′ such that:
(b1) π1(M) = π1(M

′), coh(M,G) = coh(M ′, G′).
(b2) Each G-orbit is diffeomorphic to one of the following spaces:

Sm
1 , E, Λ+ × E, Λ− × E, Sm

1 × E, Hm × E.

Where, Λ+ and Λ− are the upper and lower null cones in Lm+1 and E is a G′-orbit in M ′.

Proof. Without lose of generality, let M be of constant curvature c = 1. The universal covering manifold of
M is Sn

1 (= Sn
1 (1)). Keeping the symbols used in Remark 3.5, G̃ acts isometrically on Sn

1 with Coh(Sn
1 , G̃) =

Coh(M,G). By Theorem 3.1, there is a positive integer m < n such that G̃ decomposes as G̃ = SO(m, 1)×G′,
G′ ⊂ O(n−m). Then, the G̃-orbits of Sn

1 are equal to one of the cases mentioned in Theorem 3.3. For each
r < 0, the set Hm(r)× Sn−m−1(1− r) is the union of all orbits in the form (c) of Theorem 3.3. Let Γ be the
decktransformation group (which is isomorphic to π1(M)). By Remark 3.5, Γ maps orbits to orbits and for each
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r < 0 the submanifold of Sn
1 in the form Hm(r)× Sn−m−1(1− r) is unique. Then,

Γ(Hm(r)× Sn−m−1(1− r)) = Hm(r)× Sn−m−1(1− r), r < 0.

A differential geometric argument involving sectional curvatures shows that each γ ∈ Γ, has the following
decomposition when we consider its action on Hm(r)× Sn−m−1(1− r):

γ = γ1 × γ2 ∈ Iso(Hm(r))× Iso(Sn−m−1(1− r)).

Since
⋃

r<0(H
m(r)× Sn−m−1(1− r)) is open in Sn

1 , then by Remark 3.7, each γ ∈ Γ decomposes as γ = γ1 × γ2 ∈
O(m, 1)×O(n−m) all over Sn

1 . Put

Γ1 = {γ1 : γ1 × γ2 ∈ Γ for some γ2}

and define Γ2 similarly. Thus, we have

Hm(r)× Sn−m−1(1− r)

Γ
=
Hm(r)

Γ1
× Sn−m−1(1− r)

Γ2
.

Hm(r)
Γ1

is homogeneous (since Hm(r)
Γ1

× Sn−m−1(1−r)
Γ2

is a G-orbit and the action of G on this orbit decomposes by
the above argument ). Thus, by Theorem 3.6, γ1 = {I}. Therefore,

Γ = {I} × Γ2 (∗)

For each c = 1− r > 0, Put M ′(c) = Sn−m−1(c)
Γ2

and let M ′ =M ′(1). By (∗) part (a) of the theorem is true.
Now, Consider the universal covering map κ : Sn−m−1(c) →M ′(c). G′ acts on M ′(c) as follows:

g ∈ G′, x ∈M ′(c), g(x) = κ(gy), for some y ∈ κ−1(x).

This action of G′ on M ′(c) is well defined( Because, if y1, y2 ∈ κ−1(x), then for some δ ∈ Γ2, δ(y1) = y2. Since by
Remark 3.5(3), gδ = δg, then κ(gy2) = κ(gδ(y1)) = κ(δg(y1)) = κ(g(y1))).
Now, we get the result easily from Theorem 3.3.

Remark 3.9. If Mn
1 is a Lorentzian manifold of constant curvature then it is isometric to Sn

1

Γ such that Γ is a
finite subgroup of O(1)×O(n).

Proof. The proof is a simple consequence of Proposition 12, Proposition 15, and Lemma 15 in Section 9 of [17].

The following Corollary characterizes the orbits, when the cohomogeneity is one.

Theorem 3.10. Let Mn
1 be a Lorentzian manifold of constant positive curvature and G be a closed and connected

subgroup of the isometries. If coh(M,G) = 1, then one of the followings is true:
(1) There is a positive integerm such thatM is diffeomorphic to Sm

1 ×M ′, whereM ′ = Sn−m−1

Γ , Γ = π1(M).G is covered
by SO(m, 1)×G′ and there is an isometric action of G′ on M ′ such that π1(M) = π1(M

′), coh(M,G) = coh(M ′, G′).
Each G-orbit is diffeomorphic to one of the following spaces:
Sm
1 , M ′, Λ+ ×M ′, Λ− ×M ′, Sm

1 ×M ′, Hm ×M ′.
Where, Λ+ and Λ− are the upper and lower null cones in Lm+1.
(2) M =

Sn
1

Z2
and all orbits are diffeomorphic to Rn−1.

Proof. Keep the symbols used in the proof of Theorem 3.8 and consider Corollary 3.2 and Remark 3.4 for the
action of G̃ on Sn

1 . If the case (1) in Corollary 3.2 is true for the action of G̃ on Sn
1 , then we can repeat the proof

of Theorem 3.8 to get part (1) of the theorem (note that by dimensional reasons E is diffeomorphic to M ′). If
the case (2) in Corollary 3.2 is true, we get part (2) of the theorem by the following argument.
Consider the null hyperplaneW with the property that all G̃-orbits are included inW ′ ∩ Sn

1 for someW ′ ∈ [W ].
By Remark 3.9, each δ ∈ Γ belongs to O(1)×O(n− 1). Let δ = (A,B) ∈ O(1)×O(n− 1). Since δ maps orbits to
orbits, it is easy to see that δ preserves the foliation [W ]. Since δ(o) = o and W is the unique member of [W ]
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which contains o (only one hyperplane in [W ] is a vector subspace of Rn+1
1 ), then δ(W ) =W . In other way, we

have
Sn−1 = Sn

1 ∩ ({0} ×Rn) ⊂ R1
1 ×Rn(= Rn+1

1 ).

If b = (0, x) ∈ Sn−1 ⊂ R1
1 ×Rn, then δ(b) = (A,B)(0, x) = (0, Bx) ∈ Sn−1. Thus, δ(Sn−1) = Sn−1. SinceW is null,

then W ∩ Sn−1 has two points, say {b,−b}. We have δ(W ) =W and δ(Sn−1) = Sn−1. Then, δ(b) = ± b. If
δ(b) = b, then δ = I( a decktransformation with a fixed point will be identity).
If δ(b) = −b, then δ2(b) = b and δ2 = I . Thus, B2 = I . Since B ∈ O(n− 1), we get from B2 = I that B is
symmetric. Then, there is an orthonormal basis for Rn consisting of eigenvectors of B ( with eigenvalues ±1).
If one eigenvalue of B is 1, then B has fixed point and as the above argument, we get that δ = I . If not, then all
eigenvalues of B are −1. Thus, B = −I and δ is equal to one of the following:

(1, I), (−1, I), (1,−I), (−1,−I).

If δ = (−1, I) then δ(0, x) = (0, x) which is contradiction ( since a decktransformation with fixed point must be
identity). In similar way since (1,−I)(a, o) = (a, o) we have contradiction. Therefore,
Γ = {(1, I), (−1,−I)} which is isomorphic to Z2. Consider the universal covering map κ : Sn

1 →M and let et
G(x) be a principal orbit in M and let κ(x̃) = x, x̃ ∈ Sn

1 . G̃(x̃) is a connected component of W ′ ∩ Sn
1 , for some

W ′ ∈ [W ] ( Sn
1 ∩W ′ has two connected components and each component is diffeomorphic toRn−1). But, if δ ∈ Γ

is nonidentity, then by the above argument, δ = (−1,−I). Then, δ maps a connected component of Sn
1 ∩W ′ to

the other one. Thus, κ : G̃(x̃) → G(x) is isometry and G(x) must be diffeomorphic to Rn−1.

4. Application, cohomogeneity one and cohomogeneity two Lorentzian manifolds of
constant positive curvature

Cohomogeneity one Riemannian manifolds have been investigated by several authors. See [6] and [19] for
some interesting results about cohomogeneity one Riemannian manifolds of non-positive curvature. When
the curvature is positive the classification of the manifold and the orbits is a more complicated problem and it
is not solved completely. Among other achievements in the positive curvature case, we refer to the work by C.
Searle in [21], which provided a complete classification, up to diffeomorphism, when the manifold is compact
of positive curvature with dimension less than seven. The seven dimensional case has been studied by F.
Podesta and L. Verdiani in [20]. A. Kollross obtained a classification of cohomogeneity one hyperpolar actions
on irreducible Riemannian symmetric spaces of compact type ([13]). The authors of [1] studied cohomogeneity
one actions on non-simply connected Riemannian manifolds of constant positive curvature with arbitrary
dimension.
In direction of the papers (mentioned in Introduction) about cohomogeneity one actions on Lorentzian
manifolds, we use our theorem 3.10 to characterize the orbits of cohomogeneity one isometric actions on
Lorentzian manifolds of constant positive curvature. First, we mention the following theorem which comes
from Corollary 2.7.2 in chapter 2 of [25]. For definition of the groups D∗

k, T
∗, O∗, I∗ see [25] chapter 2.

Theorem 4.1. A connected homogeneous n-dimensional Riemannian manifold of constant positive curvature (say
1) is isometric to one of the following spaces: RPn, Sn

Zk
or Sn

D∗
k

for some k > 2, Sn

T∗ , Sn

O∗ , Sn

I∗ .

We call each space mentioned in the above theorem a Wolf space and we denote it briefly by WS.
In Theorem 3.10, M ′ is a homogeneous Riemannian manifold of constant positive curvature (because, by the
proof of Theorem 3.10, M ′ is a G′-orbit). Then, M ′ is a Wolf space and we get the following theorem from
Theorem 3.10 and Theorem 4.1.

Theorem 4.2. If Mn
1 is a cohomogeneity one Lorentzian manifold of constant positive curvature, then one of the

following is true:
(1) There is a positive integer m < n and a Wolf space WS such that Mn

1 is diffeomorphic to Sm
1 ×WS. Each orbit is

diffeomorphic to one of the spaces: Sm
1 , Λ+ ×WS, Λ− ×WS, Sm

1 ×WS, Hm ×WS. Where, Λ+, Λ− are the upper and
lower null cones in Rm+1

1 .
(2) M =

Sn
1

Z2
and all orbits are diffeomorphic to Rn−1.
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Remark 4.3. In Theorem 3.3, if the action of G on Sn
1 is of cohomogeneity two, then the action of K on

the spheres in parts (a),(b),(c) must be of cohomogeneity one. It is proved that if a connected group acts by
chomogeneity one on Sn, then its action on Rn+1 is hyperpolar (of cohomogeneity two). All groups with
hyperpolar actions on Rn+1 have been characterized (see [9] for definition of hyperpolar actions and the
classification theorems). Thus, by our theorem 3.3, all groups which can act by cohomogeneity two on Sn

1

are characterized. Similarly, in Theorem 3.8, M ′ is a cohomogeneity one Riemannian manifolds of constant
positive curvature and this kind of manifolds and the acting group have been studied (see [1]). Consequently,
our Theorem 3.8 leads to many useful results about cohomogeneity two actions on Lorentzian manifolds of
constant positive curvature.
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