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Abstract

The Leibniz integral rule enables us to interchange the order of differentiation and inte-
gration under some differentiability conditions on the functions. It can be very useful in
the computing the exact value of certain integrals. In this paper, we will present analogs
of such rule for g-integrals with functional borders and their properties.
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1. Introduction

The method of differentiation, under the integral sign, concerns integrals depending
on a parameter. It was introduced by G. Leibniz in 1697, and now it is known as the
Leibniz integral rule. It represents a formula for differentiation of a definite integral with
the functional borders and the integrand which depends on a parameter more.

Theorem 1.1. (Leibniz integral rule) Suppose that f(x,y) and its partial derivative
0. f(xz,y) are continuous in the rectangle A = [a,b] X [¢,d]. If the functions ¢, : [a,b] —
[e,d] are continuously differentiable on [a,b], then

d [v@)
%/ f(z,y) dy

Y(x)
= [, Oef@n) dy+ (@A@Y @)~ ] (@0@) ¢ (@)
p(x
This rule can be used to evaluate unusual definite integrals, as it was done in [1,2,9].
An extension to the fractional calculus can be found in [5].
Our purpose is to state its analogy in the g-calculus.
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2. Preliminaries

In the theory of g-calculus (see [3,4,6-8]), for a real parameter ¢ € (0,1), we introduce
a g-real number [a], by

[alg == (a € R).

Notice that
[a]q[blge = [ablq (a,b € R).
The g-analog of the Pochhammer symbol (g-shifted factorial) is defined by:

k—1
(@;qo=1, (a;Qr=]]0—0aq¢"), keNU{co}.
i=0
Also, g-analog of the power (a — b)* is
k—1
(a=b) @ =1, (a=bg™ =T[(a—bdg"), keNU{oc} (a,b€eR).
=0

The relationship between them is given by

(a=b;9)" =a" (b/aiq)n  (a#0).
In that way, for n € Ny, it holds

(o _ A—g9™

R p L (P

Their natural expansions to the reals are

L@ _ o (b/aid)x oy (@9)x
(@ =b)® = ey R v
and
(a—b;q) = a®(1-b/a;¢)™) = a®(b/a; q)a
It is true that
(g2 — qt; )P = ¢’ (& — ;).
We can define g-binomial coefficients with

[oz] _ (@) (@)oo

—BeR\{-1,-2,...}.
p (G Do (5 Q)0 o fa—-BERN{=1,-2,..}

Especially,
{a} _ (q_o‘;qk)k (—1)kqq ) (hen) .

3. Differential g—calculus

We define g-derivative of a function f(z) by

(Dgaf)(z) = M

T —qz
For a pair of functions w(z) and wv(z) and constants «, 8 € R, we have linearity and
product rules

(x #0).

Dy (a u(z) + B v(x)) = a(Dgou) () + B(Dgav) (@),
Dy (u(z) v(x)) = u(qr)(Dgav) () + v(2) (Dguu) (z) -



Differentiating under q—integral sign 923

It will be useful to notice the following;:
Dy ((x —a;q)') = [aly(z —a;q) ™"
Dq,x((a - Q)(a)) = _[a]q<a — q; Q)(ail)-

The composite rule is not valid in general. A known case can be provided by next
lemmas.

Lemma 3.1. Let F(x) = f(u(x)), where u=az® x>0 (a #0,c #0). Then
Dy oF(x) = Dyeu f(u) Dgau().
Lemma 3.2. Let F(z) = f(u1(x),uz(x),...,un(x)), where
ug(z) = agz®, x>0 (ag,cr 70, k=1,2,...,n).
Then the following holds:
Dy F(x) =Dgern, f(ur1,u2, ..., uy) Dy gur(x)

n
+ Z Dy [ (u1(gz), ... up—1(qx), wp, W1, - - -, un) Dy zur(x).
k=2

4. On ¢-integrals with functional borders

The g¢-integral is defined by
(Ig0f)(z) = /OI f)dgt =2(1—q) Y f(zd")d* (0 <lal <1), (4.1)
k=0

and
xT

(lnaf)@) = [

a

FOdt= [ syt = [ o dg (4.2)
For operators defined in this manner, the following is valid:

(Dgelgaf)(z) = f(z),  (IgaDgaf)(@) = f(z) - f(a).
The formula for g-integration by parts is
b —b b
| a0 dot = Tu@o®) 2 = [ o0 (D) (0 dt.

Lemma 4.1. The Q-derivative of q-integral with functional upper border satisfies

e(z) 1 ¢(z)

o(x)
Proof. Let us denote by F(x) = / f(t) dgt. According to the definition of Q-derivative,
0

we can write

x) — x (z) (Qx)
Do.Fa) = T =g - L (/f fo it [ f(t)dqt>,

1-@Q) (1 —
wherefrom (4.3) follows. 0
Corollary 4.2. If c-d €N, ¢,d > 0, then
c—1 cd—1
ax

Dy [ 10 dp = N far )t (@£ 0), (1.4
0 k=0

[l
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Proof. According to the definition (4.1), we have

c [e.9]

|t =ati -0 X s @)
n=0
and
a:CCqu e’
/0 f(t) dgt = azq™ (1 = q) Y f (az“g*'q™) g™
m=0
=az’(1—q) Y f(azq")q"
n=cd
Applying the relation (4.3), the statement (4.4) follows. O

Lemma 4.3. The following Leibniz type rule for q-integrals is valid:

bx bx
Dy ; flx,y) dgy = ; Dy f(x,y) dgy + bf (qz, bx) (b,x >0).

Proof. The left side can be written in the form

bx

LS=D,, ; f(z,y) dyy = Dyu <bx(1 —q) Y f(a, bqu)qk>
k=0

=b(1—-¢q)Dy (i xf(x, bqu)qk> =b(l —q) i ¢"Dyx (:c - f(x, bqu))

k=0 k=0
= rf(x,bg"x) — gz f(qz, bwg"t)
)2 z(1—q)
=b>" (f(,b2") — af (g2, bug" ™)) ¢*.
k=0

Let us denote by

bx bx _
RS= | Dyaf(wy) dey = f(x’g(ll) — 5)(j$’y) dgy.

According to definition of g-integral, we have
RS = bz ( (z bxq — f(qz, bqu)) q~.
Hence

LS —RS = —bg Y _ fqz,bxq"™)g" + b flqz,bxq")q" = bf (g, b).
k=0 k=0

By the previous lemma, the next theorem follows.

Theorem 4.4. The following Leibniz type rule for g-integrals on the interval [ax,bx],
where 0 < a < b and x > 0, is valid:

bx bx
Do | flz,y) dgy = Dy f(x,y) dgy + b f(qz,bx) — aqf(qx, ax).

ax ax

In the sequel we give a general result related to interchanging g-derivative and g-integral.
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Theorem 4.5. The following Leibniz type rule for g-integrals is valid:

w(z) v(z)
Dq,x/o f(z,y) dqy=/0 Dy f(x,y) dgy + R(f, ¢, 2,q),

where the remainder term is given by

1 p(x)
R(f,¢,2,q) = =9z L(qz) flaz,y) dgy (z>0).

Proof. Let us introduce

o(x) o(z)
F(x) = /0 f(z,y)dgy, G(x) = /0 Dy, f(z,y) dgy.
According to the definition of g-integral, we have
F(z) = (1-q)y Z fla (1-q) Z pla
wherefrom
DyoF(z) = (1-q) §jlax( f(w e(@)q"))q"

Having in mind that

p(@)f (z,0(x)q") — p(gz) f (qz, p(gz)q"

Dy (p(2)f (2, 0(2)q")) = 2(1— q)

we get

Dy o F () = ©
o x n=0
From the other side,

G(x):/0¢($) f(z.y) = flaz.y)

z(1—q) "
= S0 Y (F el ~ o, o)) d"
n=0
Now,
1 o0

DyoF(x) = G) = = 3 (@) f (g, (2)q") — ¢la2) f(qz, p(g2)q") ) a"

n=0

1 o(z) ©(gz)
) (/0 flaz,y) dqy—/o flaz,y) dql/)
1 o(z)

Now, we are able to formulate the rule very close to (1.1).

Corollary 4.6. The following Leibniz type rule for q-integrals is valid

¥(z) ¥(z)
Do [ Sy dy= [ Do (@9) day+ R(f i 9,0),

() »(z)

where the remainder term is

>~ (e@)f (@, 0(@)a") — plax) f (g, olaw)q") )"

925

() ()
R(fo o0, 2,q) = ! (/ flgz,y) dgy — /w flqz,y) dql/) (x> 0).
o(

z(1—q)

P(gz) qx)
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In some special cases, we can get the expression for R(f, ¢, x, q) similar to (1.1) including
some mean value relations [8].

Theorem 4.7. Let p(z) = bx™, where b > 0, m € Ng and x > 0. Then the rule (4.5) for
q-integrals is valid with

R(f.¢.2,q) Z ¢ f (. ¢(2)d") Dyaip(w).

mlq k=0
Proof. Using the notation from the proof of the previous theorem, we can write
DyoF(x) — G(x)

— % ( i ¢"p(qz) f(qz, p(qz)qd") + o (z) i " f (¢, (p(x)qk)> ‘
h=0 k=0

Including the definition of ¢(x) from the assumptions in this theorem, we have
Do F(2) — G(z)

k=0 k=0

(4.7)

m—1
=ba™ ' > " fqu, ba™q"),

k=0
wherefrom we finish the proof. U

Theorem 4.8. Let f(x,y) = fi(x)f2(y), with fa(x) =y, and ¢(z) = bz®, where a,b,c €
R* and x > 0. Then the rule (4.5) for q-integrals is valid with

R(f,0,2,q) = f(qz, 0(x)) Dgat1 ().

Proof. The formula (4.7) with supposed forms of functions f(z,y) and ¢(z), becomes
DyoF(x) — G(x)

( qubq ¢ f1(qz) f2(bgzq") +b$02qkf1(qw)f2(bxch)>

k=0
_ fl(qx)bxc_l (_ ch-‘rk(ch—i-kxc)a + qu(bxch)a>
k=0 k=0
= f1(qz)botigactet ( (a+1) CZ a+1)k + Z<qa+1)k>
k=0 k=0
(a+1)c

l—¢
= fi(qz)p® Tzttt 1 — gotl

= fi(qz) (bl'c)abxc_l[C]q‘”rl = f(q:v, ‘P(x))an“,z‘p(aj)-

5. Limit cases

In this section, we show that the previous considerations lead us to the remainder in
the classical Leibniz integral rule when ¢ tends to 1.

Theorem 5.1. Let p(x) = ba™, where b > 0, m € Ny and © > 0. Then the remainder
term (4.6) satisfies the following property:

liy B(f, p,2,) = (2. 9(2) ¢ (@)
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Proof. According to Theorem 4.7 we have

1 m—1
[m]q k=0
m—1
= b2 1Y f(zg, ba™q")q".
k=0
Hence )
. _ m—1 my __ m—1 m
él_%R(f,SO,l‘,Q)—bl’ kz:%)f(x’b'r )—bmm f(.%‘,bl‘ )7
what we wanted to prove. O

Theorem 5.2. Let f(x,y) = fi(x)f2(y), with fo(x) =y, and ¢(x) = bx®, where a,b,c €
R* and x > 0. For the remainder term (4.6), the following property is valid

lim R(f, ¢, 2,q) = [ (z,(2)) @' (x).

Proof. Under conditions of Theorem 4.8, we have

R(f, ¥, T, Q) = f(ql‘a QO(ZL'))anﬁ-l,m(p(l'),
and consequently

;1_% R(fa%%‘l) = ;1_% f(qxv(p(x))an"'l,x(p(l‘) = f (x,cp(a:)) gol(x) O
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